
Tivoli® IBM Tivoli NetView for z/OS

Resource Object Data Manager

and GMFHS Programmer’s Guide

Version 5 Release 3

SC31-8865-02

���

Tivoli® IBM Tivoli NetView for z/OS

Resource Object Data Manager

and GMFHS Programmer’s Guide

Version 5 Release 3

SC31-8865-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 681.

This edition applies to version 5, release 3 of IBM Tivoli NetView for z/OS (product number 5697-ENV) and to all

subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using

the correct edition for the level of the product.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . xi

About this publication . xv

Intended audience . xv

Publications . xv

IBM Tivoli NetView for z/OS library . xv

Prerequisite publications . xvii

Related publications . xvii

Accessing terminology online . xvii

Using LookAt to look up message explanations . xviii

Accessing publications online . xix

Ordering publications . xix

Accessibility . xx

Tivoli technical training . xx

Support information . xx

Downloads . xx

Conventions used in this publication . xxi

Typeface conventions . xxi

Operating system-dependent variables and paths . xxi

Syntax Diagrams . xxii

Part 1. Learning About RODM . 1

Chapter 1. Overview . 3

Managing SNA Resources with NetView . 3

Defining Non-SNA Resources to NetView . 3

Resource Definition Task . 4

Resources Supported by GMFHS . 5

Saving RODM Data . 5

RODM in Network Automation . 5

Automation Concepts . 6

Automation Example . 7

For More Information . 7

RODM Programming Tasks . 7

RODM Transactions . 7

RODM Functions . 8

Programming Languages . 9

RODM Notification Process . 9

RODM Load Function . 9

Additional RODM Documentation . 10

Tools for RODM . 11

RODM Samples and Macros . 11

Part 2. Defining Resources to NetView . 13

Chapter 2. Defining Your Network to GMFHS 17

Manual Network Definition Overview . 17

Sample Network . 18

SNA Components of the Sample Network . 19

Non-SNA Components of the Sample Network . 19

Identifying Which Network Elements to Define . 22

Identifying Management Objects . 22

Identifying Managed Objects . 23

Identifying Connectivity Relationships . 26

© Copyright IBM Corp. 1997, 2007 iii

Identifying Views . 28

Defining Your Configuration to RODM . 33

Defining Management Objects . 33

Defining Managed Objects . 36

Defining Connectivity Relationships Between Objects . 40

Defining Views . 41

Defining Layout Parameters . 46

Putting It All Together . 54

Chapter 3. Loading the GMFHS Data Model . 55

Loading the Data Models and Network Definitions . 55

Changing Network Definitions When GMFHS Is Running . 55

Selecting the Required GMFHS CONFIG Command . 56

Adding NMGs and Domains When GMFHS Is Active . 58

Chapter 4. Communicating with Network Management Gateways 59

Defining Non-SNA Presentation Protocol . 60

DOMP010 Presentation Protocol . 60

DOMP020 Presentation Protocol . 61

PASSTHRU Presentation Protocol . 62

NONE Presentation Protocol . 63

Output Formatting For All Presentation Protocols . 63

DOMP010 Formatting Rules . 63

Command Formatting and Protocol Examples . 72

Timing Considerations . 74

Defining Non-SNA Session Protocols . 75

DOMS010 . 75

PASSTHRU . 76

NONE . 76

Session Establishment for DOMS010 . 76

Session Establishment for NetView/6000 V2, NetView for AIX V3, NetView for AIX V4, and DOMS010 . . . 77

GMFHS-Initiated Session Establishment . 77

INIT Generic Alert for Session Establishment . 78

Session Termination . 80

Defining Non-SNA Transport Protocols . 81

COS Gateway Support . 81

Program-to-Program Interface Gateway . 82

OST/PPT Gateway . 82

Monitoring Non-Network Devices . 83

Types of NMGs . 83

Migrating from NETCENTER Protocols to GMFHS Protocols 85

Chapter 5. How GMFHS Uses RODM . 87

GMFHS Initialization . 87

Aggregation Warm Start . 87

Resource Status Warm Start . 87

GMFHS Initialization Process Overview . 88

Monitoring Topology Managers . 89

Building Views . 89

Object Discovery Process . 89

Object Connectivity Process . 100

Defining Exception View Objects and Criteria . 100

Locate Resource Function . 113

Restricting Recursive Views . 114

Refreshing Open Views . 114

Applying Span-of-Control to Views . 114

Views . 115

Resources . 118

Helpful Hints . 120

Applying Span-of-Control to Set and Clear Operator Status 121

iv Resource Object Data Manager and GMFHS Programmer’s Guide

Applying Policy to Views . 122

Representing Policy Definitions in RODM . 122

Resources Belonging to Multiple Policies . 124

Resources Suspended from Aggregation Due to Policy 128

Suspending Aggregation Using an Aggregate . 128

System Status Updates No Longer Sent to Resources Due to Policy 129

Additional Information . 130

Aggregation Concepts . 130

Aggregation Overview . 130

Creating an Aggregation Hierarchy . 132

Building the Aggregation Hierarchy in RODM . 132

Updating Status . 134

Status Groups . 142

Using Status Groups . 142

Examples of Customizing Aggregate DisplayStatus . 143

Using the Collection Definition Objects . 143

Collection Definition Objects . 144

Using Collection Specifications . 145

Examples of Collection Definition Objects . 155

Using NetView Resource Manager . 159

NetView Resource Manager Views . 159

Modifying DUIFSMT for NetView Resource Manager . 164

Using DUIFVINS with NetView Resource Manager . 164

NetView Resource Manager Sample Loader Files . 164

Chapter 6. Customizing GMFHS to Process and Receive Alerts and Resolutions . . . 167

Receiving and Monitoring Alerts or Resolutions . 167

What GMFHS Receives from the Hardware Monitor . 167

Objects in RODM Representing SNA Resources . 168

Objects in RODM Representing NMGs . 169

Objects in RODM Representing Non-SNA Domains . 169

Objects in RODM Representing Non-SNA Resources . 171

DUIFEDEF Alert Processing . 172

Parameters . 172

Alert Translation Tables . 176

Part 3. Using RODM for Network Automation 179

Chapter 7. Writing Automation Code . 181

Advantages of Using the NetView-Supplied Data Models for Automation 181

Notifying Your Application about Changes in GMFHS Fields 181

Accessing and Changing GMFHS-Defined Fields . 182

Using GMFHS Methods . 183

DUIFCCAN: Clear All Notes . 183

DUIFCATC: Aggregation Threshold Change . 183

DUIFCLRT: Link Resource Type . 183

DUIFCUAP: Update Aggregation Path . 183

DUIFCUUS: Update User Status . 184

DUIFECDS: Change Display Status . 184

DUIFFAWS: Aggregation Warm Start . 184

DUIFFIRS: Set Initial Resource Status . 184

DUIFFRAS: Recalculate Aggregate Status . 184

DUIFFSUS: Set Unknown Status . 184

DUIFRFDS: Refresh DisplayStatus Change Method DUIFCRDC 185

DUIFVCFT: Change Exception State . 185

DUIFVINS: Install View Notification Granularity Method 185

GMFHS Methods That Cannot Be Used . 185

GMFHS Automation Example . 185

Sample Automation Application and Method . 186

Contents v

Chapter 8. Using the RODM Automation Platform 189

RODM Automation Platform Services . 189

Sample Automation Code . 190

Part 4. Application Programming Using RODM 191

Chapter 9. Understanding RODM Concepts 195

RODM Classes . 195

Class Names . 195

System-Defined Classes . 196

RODM Objects . 208

Object Names . 208

Object Identifiers . 210

RODM Fields . 210

Field Names . 210

Field Identifiers . 211

System-Defined Fields . 211

RODM Subfields . 213

Data Types for Subfields . 215

Multivalued Fields and Links between Objects . 216

Link and Unlink Action Functions . 218

Subfields Associated with Fields . 219

Indexed Fields . 220

Object and Class Locking in RODM . 220

Using the Application Program Interfaces . 220

User Application Program Interface (API) . 220

Method Application Program Interface (API) . 221

RODM Abstract Data Types . 221

Null Values of Data Type . 222

Data Type Identifiers . 222

Types of Data in Fields . 222

Abstract Data Type Reference . 223

Chapter 10. Using the RODM Load Function 239

Considerations When Designing a Data Model . 239

Introduction to the RODM Load Function . 240

Load Function Statements . 240

Load Function Operations . 240

Loading the RODM Data Cache . 241

Using Load Function Statements . 241

High-Level Load Function Statements . 242

Load Function Primitive Statements . 242

When to Use High-Level or Primitive Load Function Statements 243

Process for Loading the RODM Data Cache . 244

Identifying the Methods to Install . 245

Creating the Class Structure and Object Definitions . 245

Deciding on the Type of Load . 246

Running the RODM Load Function . 248

Checking the Output Listings . 253

Load Function Reference . 258

Understanding the Verify Operation . 258

Using CLASSID and OBJECTID Data Types . 259

Null Values for RODM Load Function Data Types . 260

Control Table—EKGCTABL . 260

Method Name Table . 261

Parameter Mapping Table . 262

RODM Data Definition (DD) Statements . 264

z/OS Linkage Conventions . 265

RODM Load Function Parameter Syntax . 269

Coding RODM High-Level Load Function Statements . 272

vi Resource Object Data Manager and GMFHS Programmer’s Guide

Coding RODM Load Function Primitive Statements . 281

Common Syntactic Elements . 290

Chapter 11. Writing Applications that Use RODM 301

Tasks Best Performed with User Applications . 301

Using the User Application Program Interface . 302

Register Conventions . 302

Usage Notes . 302

Compiling and Link-Editing . 303

Using Control Blocks . 304

Access Block . 305

Transaction Information Block . 307

Function Block . 308

Entity Access Information Block . 309

Field Access Information Block . 312

Response Block . 314

Error Conditions in Transactions . 317

RODM Notification Process . 318

Setup . 319

Wait . 321

Notification . 324

Clean Up . 325

Asynchronous Error Notification . 325

Object Deletion Notification . 326

Setup for Object-Deletion Notification . 326

Wait for Object-Deletion Notification . 327

Notification for Object-Deletion Notification . 327

Cleanup for Object-Deletion Notification . 327

Connecting to RODM . 327

Disconnecting from RODM . 328

Chapter 12. Topology Object Correlation . 329

Enabling the Correlation Function . 329

Enabling MultiSystem Manager Object Correlation . 329

Enabling SNA Topology Manager Object Correlation . 329

Enabling GMFHS Object Correlation . 330

Correlation Concepts . 330

Correlation Methods . 330

Objects Enabled for Correlation . 331

Types of Correlation . 331

Correlated Aggregate Object Classes and Names . 333

Correlated Object Relationships . 333

Correlated Aggregate Object Display Labels . 333

Correlated Aggregate Object Field Values . 334

Using Correlation for Objects You Create . 335

Extending Correlation of Objects Created by MultiSystem Manager and SNA Topology Manager 335

How to Determine Object Names . 336

Correlating MultiSystem Manager Objects . 336

Correlating SNA Topology Manager Objects . 336

Customizing the Correlation Function . 336

Changing the Display Name Priority . 337

Disabling Correlation for Specific Resources . 338

Chapter 13. Writing RODM Methods . 339

Tasks Best Performed with Methods . 339

Types of Methods . 340

Object-Independent Methods . 340

Object-Specific Methods . 342

Null Method . 352

Deciding Which Method Type to Use . 352

Contents vii

When to Use an Object-Independent Method . 352

When to Use an Object-Specific Method . 352

Using the Method API . 353

Register Conventions . 354

Usage Notes . 355

Method Parameters . 355

Installing and Freeing Methods . 356

Synchronous and Asynchronous Execution of Functions 357

Method Anchor Service . 357

Coding Your RODM Method . 358

Installation Written Methods . 358

NetView-Supplied Methods . 358

Programming Language Specific Preprocessor Statements 359

Restrictions on Methods . 360

RODM Method Services . 363

Services Available to both Object-Specific and Object-Independent Methods 363

Other Services Available to Object-Independent Methods 364

Other Services Available to Object-Specific Methods . 364

Services Available to the Initialization Method . 364

RODM Method Library . 365

Chapter 14. Application Programming Reference 367

Summarizing RODM Functions . 367

Access Functions . 367

Control Functions . 367

Administrative Functions . 367

Action Functions . 368

Query Functions . 369

RODM User API Services . 370

RODM Method API Services . 370

Function Reference . 371

Function Reference Format . 371

EKG_AddNotifySubscription — Add Notification Subscription 373

EKG_AddObjDelSubs — Add Object Deletion Subscription 374

EKG_ChangeField — Change a Field . 376

EKG_ChangeMultipleFields — Change Multiple Fields 377

EKG_ChangeSubfield — Change a Subfield . 378

EKG_Checkpoint — Checkpoint RODM to DASD . 380

EKG_Connect — Connect to RODM . 383

EKG_CreateClass — Create a Class . 384

EKG_CreateField — Create a Field . 385

EKG_CreateObject — Create an Object . 387

EKG_CreateSubfield — Create a Subfield . 388

EKG_DeleteClass — Delete a Class . 389

EKG_DeleteField — Delete a Field . 390

EKG_DeleteNotifySubscription — Delete Notification Subscription 392

EKG_DeleteObject — Delete an Object . 393

EKG_DeleteSubfield — Delete a Subfield . 394

EKG_DelObjDelSubs — Delete Object Deletion Subscription 396

EKG_Disconnect — Disconnect from RODM . 397

EKG_ExecuteFunctionList — Execute a List of Functions 399

EKG_LinkNoTrigger, EKG_LinkTrigger — Link Two Objects 401

EKG_Locate—Locate Objects Using Public Indexed Field 403

EKG_LockObjectList — Lock List of Objects . 404

EKG_MessageTriggeredAction — Trigger an Action by a Message 405

EKG_OutputToLog — Output to Log . 407

EKG_QueryEntityStructure — Query Structure of an Entity 408

EKG_QueryField — Query a Field . 409

EKG_QueryFieldID — Query Field Identifier . 411

EKG_QueryFieldName — Query a Field Name . 412

EKG_QueryFieldStructure — Query Structure of a Field 414

viii Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_QueryFunctionBlockContents — Query Function Block Contents 415

EKG_QueryMultipleSubfields — Query Multiple Value Subfields 417

EKG_QueryNotifyQueue — Query Notification Queue 419

EKG_QueryObjectName — Query Object Name . 422

EKG_QueryResponseBlockOverflow — Query for Response Block Overflow 423

EKG_QuerySubfield — Query a Subfield . 425

EKG_ResponseBlock — Output to Response Block . 426

EKG_RevertToInherited — Revert to Inherited Value . 428

EKG_SendNotification — Send a Notification . 429

EKG_SetReturnCode — Set Return and Reason Codes 431

EKG_Stop — Stop RODM . 433

EKG_SwapField — Swap a Field . 434

EKG_SwapSubfield — Swap a Subfield . 435

EKG_TriggerNamedMethod — Trigger a Named Method 437

EKG_TriggerOIMethod — Trigger an Object-Independent Method 439

EKG_UnlinkNoTrigger, EKG_UnlinkTrigger — Unlink Two Objects 440

EKG_UnlockAll — Unlock All Held Entities . 442

EKG_WhereAmI — Where Am I . 443

Function Parameter Descriptions . 444

RODM Return and Reason Codes . 451

Reason Codes for Return Code 0 . 452

Reason Codes for Return Code 4 . 452

Reason Codes for Return Code 8 . 456

Reason Codes for Return Code 12 . 466

List of Reason Codes for Each Function . 469

List of Functions for Each Reason Code . 471

List of Function Names by Function ID . 477

List of Reason Codes from NetView-Supplied Methods 478

Maximizing RODM Performance . 479

Data Model Structure and Size . 479

Method Design . 479

User Application Design . 479

Customization Parameters and System Fields . 479

Indexed Fields . 479

NetView-Supplied Methods . 479

RODM Notification Methods . 480

RODM Change Methods . 483

RODM Named Methods . 484

RODM Object-Independent Methods . 484

GMFHS Methods . 487

Part 5. Appendixes . 501

Appendix A. RODM Tools . 503

RODMView . 503

Navigating Within RODMView . 504

RODMView Restrictions . 505

Starting RODMView . 505

Access and Control Function . 507

Simple Query Function . 508

Compound Query Function . 515

Locate Objects Function . 522

Link/Unlink Function . 525

Change Field Function . 528

Subfield Actions Function . 531

Create Actions Function . 533

Delete Actions Function . 535

Method Actions Function . 536

RODM Unload Function . 538

Starting the RODM Unload Function . 539

Contents ix

Customizing the RODM Unload Function . 539

Running the RODM Unload Function . 541

FLCARODM . 542

Overview . 542

Stem Building Subroutines . 543

About the Examples . 548

FLCARODM Command . 549

FLCARODM Functions . 553

Putting It All Together . 565

Result Stem . 571

Return Codes . 579

Object Data Stream Detail . 581

BLDVIEWS . 585

Before You Begin . 586

BLDVIEWS Processing . 586

BLDVIEWS Control Statements . 587

Running BLDVIEWS . 659

BLDVIEWS Control Statement Examples . 662

Deleting Views . 665

Appendix B. View Layout Facility . 667

View Layout Examples . 667

Choosing a View Layout Type . 672

GMFHS Fields Used By the View Layout Facility . 673

Layout Type Descriptions . 673

Radial Layout View by Link Type . 673

Radial Layout View by Cluster ID . 674

Local Area Network Layout View . 675

Token-Ring Network Layout View Interface . 675

Bus Network Layout View Interface . 676

Hierarchical Graph Layout View . 676

Elliptical Layout View . 677

Connectivity Tree Layout View . 678

Grid Layout . 678

Grid Layout Notes . 680

Notices . 681

Trademarks . 682

Index . 683

x Resource Object Data Manager and GMFHS Programmer’s Guide

Figures

 1. Required Syntax Elements xxii

 2. Optional Syntax Elements xxiii

 3. Default Keywords and Values xxiii

 4. Syntax Fragments xxiv

 5. Using RODM to Support the NetView

management console 4

 6. Sample Network 18

 7. DEC Network 20

 8. Ethernet Network 20

 9. Token-Ring LAN 21

 10. NV6000 Network 22

 11. Exception View Example 29

 12. High-Level View BIGPIC 30

 13. Management View SAMPNET 31

 14. Peer View of ETHERNET Network 32

 15. Exception View of a Network 42

 16. Network View of DEC Network 43

 17. Peer View of Token-Ring Network

TRLANNET 44

 18. Defining Layout Parameters for More Detail

Views 51

 19. Defining Layout Parameters for Objects in

More Detail Views 53

 20. Single-Response Protocol 72

 21. Multiple-Response Protocol 73

 22. Session Establishment at the Request of the

NMG 76

 23. Session Establishment at the Request of

GMFHS 78

 24. Session Termination 80

 25. Technique for Linking

Display_Resource_Type_Class Objects Prior to

NetView Version 3 90

 26. Technique for Linking

Display_Resource_Type_Class Objects Now . . 91

 27. View_Information_Object_Class Object

Determination Technique One 92

 28. View_Information_Object_Class Object

Determination Technique Two 93

 29. Sample Table DUIFSMT 102

 30. Macro DUIFSMTE Syntax 105

 31. Customizing a Resource 109

 32. Example of a MYNAME and RESOURCE

Keyword in the Same DUIFSMTE Entry . . 110

 33. DisplayStatus Mapping Table Coding

Example 1 110

 34. DisplayStatus Mapping Table Coding

Example 2 111

 35. Aggregation Example Using Real (R) and

Aggregate (A) Objects 131

 36. Links Between AggregationChild and

AggregationParent Fields 133

 37. Example DUIFSMTE Statements in Table

DUIFSMT 135

 38. Example of Customizing Aggregate Display

Status 143

 39. Resources Properties Notebook 160

 40. Data 1 Field 161

 41. RODM System-Defined Classes 196

 42. Examples of Links between Objects in RODM 217

 43. RODM System Structure (z/OS) 221

 44. Format of BER Data 224

 45. Identifier Byte in Short Form 225

 46. Identifier Byte in Long Form 225

 47. Length Byte in Short Form 225

 48. Length Byte in Long Form 226

 49. Example IndexList Field 230

 50. SelfDefining Data Type Syntax 234

 51. Example SelfDefining Field 235

 52. Adding Objects and Classes 239

 53. Data Set Concatenation for EKGIN1 248

 54. Data Set Concatenation for EKGIN3 248

 55. Object Load Batch Job Using EKGLLOAD

Sample 250

 56. Class and Method Load Batch Job Using

EKGLLOAD Sample 251

 57. Example of PARSE Operation Output to

EKGPRINT 255

 58. Example of Structure Load Output to

EKGPRINT 256

 59. Example of Object Load Output to

EKGPRINT 257

 60. Sample Control Table EKGCTABL with

Column Scale 260

 61. Relationship between EKGCTABL,

EKGINMTB, EKGPTENU and JCL 261

 62. Method Name Table Format with Column

Scale 262

 63. Sample Control Table EKGCTABL with

Column Scale 262

 64. Sample Parameter Table EKGPTENU with

Column Scale 263

 65. z/OS Linkage Conventions Required for

Module Call to EKGLJOB 266

 66. Calling the RODM Load Function from a

PL/I Program 268

 67. Hierarchical Pseudo-Structure for Examples 274

 68. High-Level Input Statements for

Pseudo-Structure 275

 69. Create Object Example 278

 70. Delete Object Example 279

 71. Set Value of Fields in an Object Example 280

 72. Typical User API Invocation in C and PL/I 302

 73. API Query Function Control Block Example 305

 74. PL/I Coding Example 322

 75. C Coding Example 323

 76. Correlate Objects on Multiple Free-Form

Values 332

 77. Aggregate Resource Symbol 333

 78. Default Display Name Priority 337

 79. Customized Display Name Priority 338

© Copyright IBM Corp. 1997, 2007 xi

80. Object-Independent Method Procedure

Interface for PL/I 341

 81. Object-Independent Method Procedure

Interface for C 341

 82. Change Method Procedure Interface for PL/I 344

 83. Change Method Procedure Interface for C 344

 84. Query Method Procedure Interface for PL/I 346

 85. Query Method Procedure Interface for C 346

 86. Notification Method Procedure Interface for

PL/I 348

 87. Notification Method Procedure Interface for C 348

 88. Named Method Procedure Interface for PL/I 350

 89. Named Method Procedure Interface for C 350

 90. Method API Interface Declaration and

Invocation Example 354

 91. Method API Query Field Control Block

Sample 355

 92. Example RODM Load Function Primitive

Statement to Invoke EKGSPPI 487

 93. RODM Load Function Primitive Statement

Invoking DUIFCLRT 489

 94. RODM load function primitive statement

invoking DUIFCUAP 491

 95. RODMView NetView Command Line Call 506

 96. RODMView Main Menu — EKGVMMNI 506

 97. RODMView Access and Control Panel —

EKGVACTI 507

 98. RODMView Message for a Successful

Connection 508

 99. RODMView Query Panel — EKGVQUEI 509

100. RODMView Querying Your User ID 509

101. RODMView Query Output Panel 510

102. RODMView Simple Query Specifying

SystemView Class and Field Names 512

103. RODMView Simple Query-Translated

SystemView Textual Class and Field Names . 512

104. RODMView Query for Fields That Contain

the Word Log 513

105. RODMView Query Output for Fields

Containing ’Log’ 514

106. RODMView Excessively Large Query Output 515

107. RODMView Compound Query Panel 1 —

EKGVQA1I 516

108. RODMView Query Criteria Panel 2 —

EKGVQA2I 516

109. RODMView Query Traversed Criteria Panel 3

— EKGVQA3I 517

110. RODMView Query Field Selection Panel 4 —

EKGVQA4I 517

111. Starting a Compound Query on the

GMFHS_Aggregate_Objects_Class 518

112. Selecting Only Those Entities that Have

Nonsatisfactory DisplayStatus 518

113. Selecting Only the DisplayResourceName

Field to be Displayed 519

114. Compound Query Example 1 Output 519

115. Starting a Compound Query on the

GMFHS_Aggregate_Objects_Class 520

116. Selecting Only Those Entities Having a

Satisfactory DisplayStatus 520

117. Traversing Across the ComposedOfPhysical

Link Field and Adding DisplayStatus Criteria . 521

118. Selecting Only the DisplayResourceName

Field to be Displayed 521

119. Query Output Example 2 522

120. Locate Objects Panel 522

121. Locating Objects with an Indexed CharVar

Field 523

122. Locate Objects Output 524

123. Locating Objects with Number of Objects and

No Object Detail 524

124. Locate Objects Output, No Object Detail 525

125. RODMView Link Objects Panel —

EKGVLNKI 525

126. RODMView Linking Two Objects 526

127. RODMView Linking a GMFHS Aggregate

Object To Its Resource Type 527

128. Updating the Aggregation Path Between

NETVIEW.T46A and NV6000 528

129. RODMView Change Field Panel —

EKGVCHGI 528

130. RODMView Changing a Field 529

131. Adding Multiple Values to an IndexList Field

in Character Format 531

132. RODMView Subfield Actions Panel —

EKGVSUBI 532

133. RODMView Creating a Notify Subfield 532

134. RODMView Create Actions Panel —

EKGVCREI 533

135. RODMView Creating an Object 534

136. RODMView Creating a Field 534

137. RODMView Delete Actions Panel —

EKGVDELI 535

138. RODMView Deleting a Field from a Class 536

139. RODMView Method Actions Panel —

EKGVMETI 537

140. RODMView Triggering a Named Method 537

141. RODMView Return and Reason Codes From

a Triggered Method 538

142. Sample JCL for EKGIN1 539

143. Sample SYSIN DD file of the JCL. 540

144. EKGKUJCL SYSIN Parameters to Unload

RODM Completely 541

145. EKGKUJCL SYSIN Parameters to Unload

Network Monitorable Objects 542

146. EKGKUJCL SYSIN Parameters to Unload an

Object When Class is Unknown 542

147. EKGKUJCL SYSIN Parameters to Unload an

Object When Class is Known 542

148. EKGKUJCL SYSIN Parameters to Determine

Object Definitions for Two Classes 542

149. Issuing the FLCARODM Command 549

150. Sample FLCSX6 566

151. Sample FLCSX7 566

152. Sample FLCSX14 567

153. Sample FLCSX15 567

154. Sample FLCSX16 568

155. Sample FLCSX17 568

156. Sample FLCSX18 568

157. Sample FLCSXL02 569

158. Sample FLCSXF1 569

xii Resource Object Data Manager and GMFHS Programmer’s Guide

159. Sample FLCSX10 570

160. Sample FLCSX9 570

161. Sample FLCSX19 570

162. Sample FLCSX11 571

163. Sample FLCSX8 571

164. Sample FLCSX22 571

165. Radial Layout Example 668

166. Token-Ring Layout Example 668

167. LAN Net Layout Example 669

168. LAN Bus Layout Example 669

169. Ellipse Layout Example 670

170. Hierarchical Graph Layout Example 670

171. Connectivity Tree Layout Example 671

172. Grid Layout Example 671

Figures xiii

xiv Resource Object Data Manager and GMFHS Programmer’s Guide

About this publication

The IBM® Tivoli® NetView® for z/OS® product provides advanced capabilities that

you can use to maintain the highest degree of availability of your complex,

multi-platform, multi-vendor networks and systems from a single point of control.

This publication, the IBM Tivoli NetView for z/OS Resource Object Data Manager and

GMFHS Programmer’s Guide, describes the NetView Resource Object Data Manager

(RODM). It describes how to define your non-SNA network to RODM and manage

your network (non-SNA, SNA resources, or both) using the NetView management

console. This publication also describes how to implement network automation

using RODM. Finally, this publication describes the use of RODM for application

programming.

Intended audience

This publication is for network managers and system programmers who need to

define their non-SNA networks to RODM. It is intended for application

programmers and system programmers who need to create or modify RODM

applications, methods, and data models.

This publication is also useful for network planners who need to plan how to

automate their networks using RODM.

Publications

This section lists publications in the IBM Tivoli NetView for z/OS library and

related documents. It also describes how to access Tivoli publications online and

how to order Tivoli publications.

IBM Tivoli NetView for z/OS library

The following documents are available in the Tivoli NetView for z/OS library:

v Administration Reference, SC31-8854, describes the NetView program definition

statements required for system administration.

v Application Programmer’s Guide, SC31-8855, describes the NetView

program-to-program interface (PPI) and how to use the NetView application

programming interfaces (APIs).

v Automated Operations Network Customization Guide, SC31-8871, describes how to

tailor and extend the automated operations capabilities of the NetView

Automated Operations Network (AON) component, which provides

event-driven network automation.

v Automated Operations Network User’s Guide, GC31-8851, describes how to use the

Automated Operations Network component to improve system and network

efficiency.

v Automation Guide, SC31-8853, describes how to use automated operations to

improve system and network efficiency and operator productivity.

v Command Reference Volume 1, SC31-8857, and Command Reference Volume 2,

SC31-8858, describe the NetView commands, which can be used for network and

system operation and in command lists and command procedures.

v Customization Guide, SC31-8859, describes how to customize the NetView product

and points to sources of related information.

© Copyright IBM Corp. 1997, 2007 xv

v Data Model Reference, SC31-8864, provides information about the Graphic

Monitor Facility host subsystem (GMFHS), SNA topology manager, and

MultiSystem Manager data models.

v Installation: Configuring Additional Components, SC31-8874, describes how to

configure NetView functions beyond the base functions.

v Installation: Configuring Graphical Components, SC31-8875, describes how to install

and configure the NetView graphics components.

v Installation: Getting Started, SC31-8872, describes how to install and configure the

NetView base functions.

v Installation: Migration Guide, SC31-8873, describes the new functions provided by

the current release of the NetView product and the migration of the base

functions from a previous release.

v Installation: Configuring the Tivoli NetView for z/OS Enterprise Agents, SC31-6969,

describes how to install and configure the Tivoli NetView for z/OS enterprise

agents.

v Messages and Codes Volume 1 (AAU-DSI), SC31-6965, and Messages and Codes

Volume 2 (DUI-IHS), SC31-6966, describe the messages for the NetView product,

the NetView abend codes, the sense codes that are shown in NetView messages,

and generic alert code points.

v MultiSystem Manager User’s Guide, GC31-8850, describes how the NetView

MultiSystem Manager component can be used in managing networks.

v NetView Management Console User’s Guide, GC31-8852, provides information

about the NetView management console interface of the NetView product.

v Programming: Assembler, SC31-8860, describes how to write exit routines,

command processors, and subtasks for the NetView product using assembler

language.

v Programming: Pipes, SC31-8863, describes how to use the NetView pipelines to

customize a NetView installation.

v Programming: PL/I and C, SC31-8861, describes how to write command processors

and installation exit routines for the NetView product using PL/I or C.

v Programming: REXX and the NetView Command List Language, SC31-8862, describes

how to write command lists for the NetView product using the Restructured

Extended Executor language (REXX™) or the NetView command list language.

v Resource Object Data Manager and GMFHS Programmer’s Guide, SC31-8865,

describes the NetView Resource Object Data Manager (RODM), including how

to define your non-SNA network to RODM and use RODM for network

automation and for application programming.

v Security Reference, SC31-8870, describes how to implement authorization checking

for the NetView environment.

v SNA Topology Manager Implementation Guide, SC31-8868, describes planning for

and implementing the NetView SNA topology manager, which can be used to

manage subarea, Advanced Peer-to-Peer Networking®, and TN3270 resources.

v Troubleshooting Guide, LY43-0093, provides information about documenting,

diagnosing, and solving problems that might occur in using the NetView

product.

v Tuning Guide, SC31-8869, provides tuning information to help achieve certain

performance goals for the NetView product and the network environment.

v User’s Guide, GC31-8849, describes how to use the NetView product to manage

complex, multivendor networks and systems from a single point.

xvi Resource Object Data Manager and GMFHS Programmer’s Guide

v Web Application User’s Guide, SC32-9381, describes how to use the NetView Web

application to manage complex, multivendor networks and systems from a

single point.

v Licensed Program Specifications, GC31-8848, provides the license information for

the NetView product.

Prerequisite publications

To read about the new functions offered in this release, see the IBM Tivoli NetView

for z/OS Installation: Migration Guide.

For information about how the NetView for z/OS product interacts with the IBM

Tivoli Monitoring product, see the following IBM Tivoli Monitoring publications:

v Introducing IBM Tivoli Monitoring, GI11-4071, introduces the components,

concepts, and function of IBM Tivoli Monitoring.

v IBM Tivoli Monitoring: Upgrading from Tivoli Distributed Monitoring, GC32-9462,

provides information on how to upgrade from IBM Tivoli Distributed

Monitoring.

v IBM Tivoli Monitoring: Installation and Setup Guide, GC32-9407, provides

information about installing and setting up IBM Tivoli Monitoring.

v IBM Tivoli Monitoring User’s Guide, SC32-9409, which complements the IBM

Tivoli Enterprise™ Portal online help, provides hands-on lessons and detailed

instructions for all Tivoli Enterprise Portal functions.

v IBM Tivoli Monitoring Administrator’s Guide, SC32-9408, describes the support

tasks and functions required for the IBM Tivoli Enterprise Portal Server and

clients.

v Configuring IBM Tivoli Enterprise Monitoring Server on z/OS, SC32-9463, describes

how to configure and customize the IBM Tivoli Enterprise Monitoring Server

running on a z/OS system.

v IBM Tivoli Monitoring Problem Determination Guide, GC32-9458, provides

information and messages to use in troubleshooting problems with the software.

v Exploring IBM Tivoli Monitoring, SC32-1803, provides a series of exercises for

exploring IBM Tivoli Monitoring.

v IBM Tivoli Universal Agent User’s Guide, SC32-9459, introduces the IBM Tivoli

Universal Agent.

v IBM Tivoli Universal Agent API and Command Programming Reference Guide,

SC32-9461, explains how to implement the IBM Tivoli Universal Agent APIs and

describes the API calls and command-line interface commands.

Related publications

For information about the NetView Bridge function, see Tivoli NetView for OS/390

Bridge Implementation, SC31-8238-03 (available only in the V1R4 library).

You can find additional product information on the NetView for z/OS Web site:

http://www.ibm.com/software/tivoli/products/netview-zos/

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms

related to Tivoli software. The Tivoli Software Glossary is available at the following

Tivoli software library Web site:

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

About this publication xvii

http://www.ibm.com/software/tivoli/products/netview-zos/
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

The IBM Terminology Web site consolidates the terminology from IBM product

libraries in one convenient location. You can access the Terminology Web site at the

following Web address:

http://www.ibm.com/software/globalization/terminology/

For a list of NetView for z/OS terms and definitions, refer to the IBM Terminology

Web site. The following terms are used in this library:

NetView

For the following products:

v Tivoli NetView for z/OS version 5 release 3

v Tivoli NetView for z/OS version 5 release 2

v Tivoli NetView for z/OS version 5 release 1

v Tivoli NetView for OS/390® version 1 release 4

MVS™ For z/OS operating systems

MVS element

For the BCP element of the z/OS operating system

CNMCMD

For CNMCMD and its included members

CNMSTYLE

For CNMSTYLE and its included members

PARMLIB

For SYS1.PARMLIB and other data sets in the concatenation sequence

The following IBM names replace the specified Candle® names:

IBM Tivoli Monitoring Services

For OMEGAMON® platform

IBM Tivoli Enterprise Monitoring Agent

For Intelligent Remote Agent

IBM Tivoli Enterprise Monitoring Server

For Candle Management Server

IBM Tivoli Enterprise Portal

For CandleNet Portal

IBM Tivoli Enterprise Portal Server

For CandleNet Portal Server

Unless otherwise indicated, references to programs indicate the latest version and

release of the programs. If only a version is indicated, the reference is to all

releases within that version.

When a reference is made about using a personal computer or workstation, any

programmable workstation can be used.

Using LookAt to look up message explanations

LookAt is an online facility that you can use to look up explanations for most of

the IBM messages you encounter, as well as for some system abends (an abnormal

end of a task) and codes. Using LookAt to find information is faster than a

conventional search because in most cases LookAt goes directly to the message

explanation.

xviii Resource Object Data Manager and GMFHS Programmer’s Guide

http://www.ibm.com/software/globalization/terminology/

You can use LookAt from the following locations to find IBM message

explanations for z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for

AIX® and Linux®:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System

Services running OMVS).

v Your Microsoft® Windows® workstation. You can install code to access IBM

message explanations on the z/OS Collection (SK3T-4269), using LookAt from a

Microsoft Windows DOS command line.

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

Accessing publications online

The documentation CD contains the publications that are in the product library.

The publications are available in Portable Document Format (PDF), HTML, and

BookManager® formats. Refer to the readme file on the CD for instructions on how

to access the documentation.

An index is provided on the documentation CD for searching the Tivoli NetView

for z/OS library. If you have Adobe Acrobat on your system, you can use the

Search command to locate specific text in the library. For more information about

using the index to search the library, see the online help for Acrobat.

IBM posts publications for this and all other Tivoli products, as they become

available and whenever they are updated, to the Tivoli Information Center Web

site at http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp.

In the Tivoli Information Center window, click Tivoli product manuals. Click the

letter that matches the first letter of your product name to access your product

library. For example, click N to access the Tivoli NetView for z/OS library.

Note: If you print PDF documents on other than letter-sized paper, set the option

in the File → Print window that enables Adobe Reader to print letter-sized

pages on your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web address:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

 You can also order by telephone by calling one of these numbers:

v In the United States: 800-879-2755

About this publication xix

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli

publications. To locate the telephone number of your local representative, perform

the following steps:

1. Go to the following Web address:

http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi

2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center window is displayed.

3. On the left side of the window, click About this site to see an information page

that includes the telephone number of your local representative.

Accessibility

Accessibility features help users with a physical disability, such as restricted

mobility or limited vision, to use software products successfully. Standard shortcut

and accelerator keys are used by the product and are documented by the operating

system. Refer to the documentation provided by your operating system for more

information.

For additional information, see the Accessibility appendix in the User’s Guide.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli

Education Web site at http://www.ibm.com/software/tivoli/education.

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM

provides the following ways for you to obtain the support you need:

Online

Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant

The IBM Support Assistant (ISA) is a free local software serviceability

workbench that helps resolve questions and problems with IBM software

products. The ISA provides quick access to support-related information

and serviceability tools for problem determination. To install the ISA

software, go to http://www.ibm.com/software/support/isa.

 Problem determination guide

For more information about resolving problems, see the IBM Tivoli NetView

for z/OS Troubleshooting Guide.

Downloads

Clients and agents, demonstrations of the NetView product, and several free

NetView applications that you can download are available at the NetView for

z/OS Web site:

http://www.ibm.com/software/tivoli/products/netview-zos/

xx Resource Object Data Manager and GMFHS Programmer’s Guide

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/tivoli/products/netview-zos/

These applications can help with the following tasks:

v Migrating customization parameters from earlier releases to the current style

sheet

v Getting statistics for your automation table and merging the statistics with a

listing of the automation table

v Displaying the status of a job entry subsystem (JES) job or canceling a specified

JES job

v Sending alerts to the NetView program using the program-to-program interface

(PPI)

v Sending and receiving MVS commands using the PPI

v Sending Time Sharing Option (TSO) commands and receiving responses

Conventions used in this publication

This publication uses several conventions for special terms and actions, operating

system-dependent commands and paths, and command syntax.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise

difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin

buttons, fields, folders, icons, list boxes, items inside list boxes,

multicolumn lists, containers, menu choices, menu names, tabs, property

sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs

v Words defined in text (example: a nonswitched line is called a

point-to-point line)

v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The

LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a

workspace that contains data.

v Variables and values you must provide: ... where myname represents...

Monospace

v Examples and code examples

v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text

v Message text and prompts addressed to the user

v Text that the user must type

v Values for arguments or command options

Operating system-dependent variables and paths

For workstation components, this publication uses the UNIX convention for

specifying environment variables and for directory notation.

About this publication xxi

When using the Windows command line, replace $variable with %variable% for

environment variables and replace each forward slash (/) with a backslash (\) in

directory paths. The names of environment variables are not always the same in

the Windows and UNIX environments. For example, %TEMP% in Windows

environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX

conventions.

Syntax Diagrams

Syntax diagrams start with double arrowheads on the left (��) and continue along

the main syntax line until they end with two arrowheads facing each other (��).

When more than one line is needed for a syntax diagram, the continued lines end

with a single arrowhead (�).

Position and Appearance of Syntax Elements

Syntax diagrams do not rely on highlighting, brackets, or braces. In syntax

diagrams, the position of the elements relative to the main syntax line indicates the

required, optional, and default values for keywords, variables, and operands as

shown in the following table.

 Table 1. Position of Syntax Elements

Element Position Meaning

On the main syntax line Required

Above the main syntax line Default

Below the main syntax line Optional

Keywords and operands are shown in uppercase letters. Variables are shown in

lowercase letters and are either italicized or, for NetView help and BookManager

online publications, shown in a differentiating color. The appearance of syntax

elements indicates the type of element as shown in the following table.

 Table 2. Appearance of Syntax Elements

Element Appearance

Keyword CCPLOADF

Variable resname

Operand MEMBER=membername

Default today or INCL

Required Syntax Elements

The command name and the required keywords, variables, and operands are

shown on the main syntax line. Figure 1 shows that the resname variable must be

used for the CCPLOADF command.

CCPLOADF

�� CCPLOADF resname ��

Figure 1. Required Syntax Elements

xxii Resource Object Data Manager and GMFHS Programmer’s Guide

Optional Syntax Elements

Optional keywords, variables, and operands are shown below the main syntax line.

Figure 2 shows that the ID operand can be used for the DISPREG command but is

not required.

Default Keywords and Values

Default keywords and values are shown above the main syntax line.

If the default is a keyword, it is shown only above the main line. You can specify

this keyword or allow it to default. Figure 3 shows the default keyword STEP

above the main line and the rest of the optional keywords below the main line.

If an operand has a default value, the operand is shown both above and below the

main line. A value below the main line indicates that if you specify the operand,

you must also specify either the default value or another value shown. If you do

not specify the operand, the default value above the main line is used. Figure 3

shows the default values for operands MODNAME=* and OPTION=* above and below

the main line.

Syntax Fragments

Commands that contain lengthy sections of syntax or a section that is used more

than once in a command are shown as separate fragments following the main

diagram. The fragment name is shown in mixed case. Figure 4 on page xxiv shows

a syntax diagram with the fragments Pu, PurgeAll, and PurgeBefore.

DISPREG

�� DISPREG

ID=resname
 ��

Figure 2. Optional Syntax Elements

RID

��

RID TASK=opid
 ,STEP

,CONTINUE

,END

,RUN

 ,MODNAME=*

,MODNAME=

*

name

�

�
 ,OPTION=*

,OPTION=

*

HAPIENTR

HAPIEXIT

��

Figure 3. Default Keywords and Values

About this publication xxiii

Commas and Parentheses

Required commas and parentheses are shown in the syntax diagram.

When an operand can have more than one value, the values are typically enclosed

in parentheses and separated by commas. For example, in Figure 4, the OP

operand contains commas to indicate that you can specify multiple values for the

testop variable.

If a command requires positional commas to separate keywords and variables, the

commas are shown before the keyword or variable, as in Figure 3 on page xxiii.

Commas are also used to indicate the absence of a positional operand. In the

following example of the BOSESS command, the second comma indicates that an

optional operand is not being used:

NCCF BOSESS applid,,sessid

You do not need to specify the trailing positional commas. Trailing positional and

non-positional commas either are ignored or cause a command to be rejected.

Restrictions for each command state whether trailing commas cause the command

to be rejected.

Abbreviations

Command and keyword abbreviations are listed in synonym tables after each

command description.

CSCF

�� CSCF Pu

PurgeAll

PurgeBefore

 ��

Pu

�

 PU=resname

,

,OP=(

testop

)

PurgeAll

 PURGE ALL

PurgeBefore

 PURGE BEFORE date

time

Figure 4. Syntax Fragments

xxiv Resource Object Data Manager and GMFHS Programmer’s Guide

Part 1. Learning About RODM

Chapter 1. Overview 3

Managing SNA Resources with NetView 3

Defining Non-SNA Resources to NetView 3

Resource Definition Task 4

Resources Supported by GMFHS 5

Saving RODM Data 5

RODM in Network Automation 5

Automation Concepts 6

Automation Example 7

For More Information 7

RODM Programming Tasks 7

RODM Transactions 7

RODM Functions 8

Programming Languages 9

RODM Notification Process 9

RODM Load Function 9

Additional RODM Documentation 10

Tools for RODM 11

RODM Samples and Macros 11

© Copyright IBM Corp. 1997, 2007 1

2 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 1. Overview

This document describes Tivoli NetView for z/OS V5R3 Resource Object Data

Manager (RODM), which runs under the z/OS operating system. This document

describes how to:

v Manually define your network resources to RODM so that you can manage

these resources using NetView management console (NMC).

v Automate network operations based on the status of resources stored in RODM.

v Write programs that use the services of RODM.

RODM is an object-oriented data cache. Objects in RODM represent resources in

your network. The data cache is located entirely in the memory of the host

processor resulting in fast access to data and high transaction rates. Many

applications can interact with a single RODM, and more than one RODM can run

on a host processor. You can use RODM for many tasks. RODM provides

application programming interfaces (APIs) that can be used by any application

running in the host processor.

The Graphic Monitor Facility host subsystem (GMFHS) is the host program that

works with RODM and the NetView program running on the host processor, and

NetView management console to manage resources.

GMFHS works with the SNA topology manager and NetView management console

to manage SNA resources. For more information, refer to the IBM Tivoli NetView for

z/OS SNA Topology Manager Implementation Guide, SC31-8868.

GMFHS also works with MultiSystem Manager and NetView management console

to manage non-SNA resources. For more information, refer to the IBM Tivoli

NetView for z/OS MultiSystem Manager User’s Guide.

Managing SNA Resources with NetView

Using the SNA topology manager, the NetView program provides subarea and

Advanced Peer-to-Peer Networking (APPN) network management from NetView

management console. You can display graphic views of resources in the network,

and you can issue commands to resources you select from the view. The views

contain both status and configuration information about your network. For more

information, refer to the IBM Tivoli NetView for z/OS SNA Topology Manager

Implementation Guide.

Defining Non-SNA Resources to NetView

Using the MultiSystem manager, the NetView program enables you to dynamically

discover and manage non-SNA networks from NetView management console. You

can display graphic views of resources in the network, and you can issue

commands to resources you select from the view. The views contain both status

and configuration information about your network.

You can also manually define your non-SNA resources. You need to provide

information about your network to the NetView program so that views can be

created and commands can be processed. For SNA networks, NetView gets its

information from the VTAM® and NCP definitions you create. For non-SNA

© Copyright IBM Corp. 1997, 2007 3

networks, NetView gets its information from RODM definitions you create. This

document describes the RODM definitions that you need to create and how you

can create them.

NetView management console communicates with GMFHS. Figure 5 shows that

GMFHS runs in its own address space in the host and communicates with RODM,

which also runs in its own address space in the host.

Resource Definition Task

Resources in your non-SNA network are represented by objects in the RODM data

cache. There are three general types of objects you can create:

v Management objects

v Managed objects

v View objects

Management objects represent the programs that control parts of the network and

that connect to the NetView program. LAN Manager and NetView/PC are

examples of management objects. The programs represented by management

objects send alerts to NetView to update the status of resources in the network.

These programs receive commands from the NetView program for the network

resources they control.

Managed objects represent the network resources you are managing. Managed

objects contain both status and configuration information. A personal computer

connected to a token-ring local area network (LAN) and a printer connected to an

Ethernet LAN are examples of resources represented by managed objects. Managed

objects must have a corresponding management object that sends status to

NetView and receives commands for the resource.

z/OS System

NetView
Address Space

GMFHS/MSM
Data Model
Source File

Customer
Network
Definition
Source File

GMFHS
Address Space

RODM
Address Space

MSM

GMFHS

RODM Data Cache

NMC
Server

NMC
Workstation

Figure 5. Using RODM to Support the NetView management console

Defining Non-SNA Resources to NetView

4 Resource Object Data Manager and GMFHS Programmer’s Guide

View objects represent graphic views that can be displayed on NetView

management console. Most graphic views are created automatically based on the

configuration information contained in RODM. You might also want to define

specific views as well. The information about which resources to display and how

to display them is contained in the view object.

Network configuration information is represented by links between managed objects.

For example, each managed object representing a resource on a token-ring segment

has links to each adjacent resource on the segment. You can define both the logical

configuration and the physical configuration of your network.

Resources Supported by GMFHS

GMFHS supports resources that can send status updates to the NetView program

in a standard format. A service point is the program that interfaces the non-SNA

network to the SNA network that contains the NetView program. The service point

generates alerts that GMFHS converts to the status of objects in RODM.

The alerts sent to the NetView program identify the resource which has changed

status. You need to assign names to RODM objects that match the names that are

supplied by alerts. For information about how GMFHS uses resource names from

alerts, see Chapter 6, “Customizing GMFHS to Process and Receive Alerts and

Resolutions,” on page 167. It also describes how you can customize GMFHS alert

processing to recognize additional alert types.

Saving RODM Data

All of the data in the RODM data cache is stored in memory. If you stop RODM,

shut down your processor, or your system fails, all of the data in the data cache is

lost. The checkpoint function enables you to save a copy of the data cache to DASD.

When you restart RODM, you can read in the stored data from DASD. The

checkpoint function can be requested by a program, by the z/OS console operator,

or by a NetView operator, if the NetView program used by the operator is set up

to send commands to z/OS. Because status information stored in RODM is

volatile, restoring data from DASD might not be appropriate.

A warm start of RODM is when you start RODM and read in checkpoint data. The

data cache contains the exact data at the time of the checkpoint. After a warm

start, you might need to update some objects in the data cache. If the applications

that maintain the status of your resources keep track of updates sent to RODM, the

applications can resend any changes since the checkpoint.

A cold start means you start RODM without checkpoint data. The data cache

contains only the system-defined classes. You then need to load your data model

and data.

RODM in Network Automation

Using the SNA topology manager, you can automate the management of your

subarea network. For more information, refer to the IBM Tivoli NetView for

z/OS SNA Topology Manager Implementation Guide.

You can also automate the management of your non-SNA network resources using

RODM. Because GMFHS maintains the status of the non-SNA network resources in

the RODM data cache for you, you can write automation routines using the data in

RODM. The following RODM concepts are important to automation.

Defining Non-SNA Resources to NetView

Chapter 1. Overview 5

Automation Concepts

Two types of programs work with RODM, user applications and methods. A

RODM user application is a program that runs in a different address space than

RODM, and that communicates with RODM using an API. The user application

must run on the same z/OS host as RODM. User applications can be written in

any programming language. Sample control blocks for the API are supplied for use

with PL/I and C. Therefore, you might prefer to use one of these two languages.

A method is a program that runs in the RODM address space and communicates

with RODM using another API. Methods are usually small programs that perform

specific tasks on data in the data cache. Running or executing a method is referred

to as triggering the method. Methods must be written in PL/I or C. They are

restricted in the types of functions they can perform. There are six types of

methods:

v RODM triggers the query method for a field when the value of the field is

queried. For example, it can issue a command to a network resource to request

its current status. The query subfield specifies the query method for a field.

v RODM triggers the change method for a field when another method or user

application requests to change the value of the field. For example, the change

method can issue a command to change the real status of the network resource

to match the new status of the object that represents the resource in RODM. The

change subfield specifies the change method for a field.

v RODM triggers the notification method when the value of a field changes. You can

define any number of notification methods for a field. It notifies user

applications of changes. The notification method is particularly valuable for

automation tasks. The notify subfield specifies the notification methods for a field.

v RODM triggers a named method when another method or user application

requests it. A named method is specified by a field of an object or class. Named

methods can be used to perform some action for a particular object or class. For

example, you can create a named method that contains the commands to

activate the object with which the method is associated.

v An object-independent method is any method that is not associated with a specific

object or class. Object-independent methods can act on many objects and classes.

For example, an object-independent method can query the status of all objects

that represent the workstations on a specified LAN.

v The initialization method is a special type of object-independent method. The

initialization method, if specified, is automatically triggered when RODM is

started.

The query method, change method, notification method, and named method are

known as object-specific methods because they are associated with a specific object

or class. The NetView program supplies sample methods that you can use for

automation tasks.

A set of NetView services named the RODM automation platform makes automation

easier. The NetView automation table, command lists, and applications can issue

requests to RODM to change values of fields and trigger methods. A

NetView-supplied method sends commands to be issued by a NetView task. And

the RODM automation platform provides an enhanced API which enables

applications in the NetView address space to issue RODM functions with less

programming effort.

RODM in Network Automation

6 Resource Object Data Manager and GMFHS Programmer’s Guide

Automation Example

A typical automation implementation can use methods, a user application, and the

RODM automation platform. For example, you can use a notification method to

notify your automation application when a resource fails. Your automation

application can query RODM to find the resources in the network that are related

to the resource that failed. By querying the status of the related resources, your

automation application can determine the most likely location of the problem and

can issue commands to correct the problem.

You can create methods associated with specific objects in RODM that issue

NetView commands using the RODM automation platform. An object-specific

method can contain the commands to activate the resource that the method is

associated with. When triggered by your automation application, the object-specific

method sends the commands to the NetView-supplied method EKGSPPI, the

commands are passed to the NetView program and issued by an autotask. This

enables the same application to activate different types of resources without

knowing the commands specific to each resource.

For More Information

This document contains two chapters specifically about automation. Read

Chapter 7, “Writing Automation Code,” on page 181 for more information about

automation with the GMFHS data model. Read Chapter 8, “Using the RODM

Automation Platform,” on page 189 for more information about the RODM

automation platform services.

RODM Programming Tasks

While this overview has focused on using RODM to support NetView

management console and network automation, RODM can support other types of

network and system management programs. This section describes RODM

programming tasks in general.

RODM can be used for any task that requires a high-speed data cache manager.

RODM provides an application programming interface for user application

programs, and another application programming interface for methods. It also

provides a load function to simplify loading data into the data cache and

maintaining the data.

User applications and methods have very similar interfaces to RODM. Many of the

functions that RODM provides can be used by both types of programs. Both user

applications and methods send function requests to RODM. RODM replies with a

return code and reason code to indicate if the request was successful. Some

function requests cause RODM to return data as well. A single function request

made to RODM and the response from RODM make up a transaction.

RODM Transactions

Many transactions request RODM to take some action on a particular class, object,

field, or subfield in the data cache. For example, a user application sends a request

to RODM to change the value of a field that represents the status of a network

resource. The particular class, object, field, or subfield that the transaction specifies

is the target of the transaction. In general, a transaction has a single target.

Each transaction is made using a call to RODM that passes the required

parameters for that transaction. The parameters are grouped into six control blocks:

RODM in Network Automation

Chapter 1. Overview 7

v Access block

v Transaction information block

v Function block

v Response block

v Entity access information block

v Field access information block

Specific transactions use different blocks as needed.

The access block identifies the user application to RODM. Methods run within

RODM, so they never use an access block. The RODM automation platform

services CNMQAPI and DSINOR take care of the access block for applications

running in the NetView address space.

The transaction information block is used to track each transaction with RODM.

RODM places the return code and reason code for the transaction in this control

block. All transactions use this block.

The function block specifies the RODM function to be run. It contains the particular

parameters that RODM needs to run the function. All transactions use this block.

The response block contains any data requested from RODM. Functions that request

data, such as query functions, use a response block.

The entity access information block identifies the specific class and object that is the

target of a transaction. This block is used when a class, object, field, or subfield is

the target of a transaction.

The field access information block identifies the specific field that is the target of a

transaction. This block is used when a field or subfield is the target of a

transaction.

RODM Functions

RODM provides functions for user applications and methods. Some functions are

available only to user applications, and some are available only to methods. Many

functions are available to both. Each function requires a particular authorization

level, so you can limit the functions available to particular applications.

RODM provides functions to connect to and disconnect from RODM. It provides

functions to checkpoint RODM and stop RODM.

RODM provides a set of functions to change the structure of the elements in the

data cache. There are functions to create and delete classes, objects, fields, and

subfields. Link and unlink functions enable you to define relationships among

objects.

RODM provides a set of functions to change the values of the fields and subfields

of classes and objects. Changing the value of a field triggers its change method if

one has been defined. Changing the value of a subfield does not trigger the change

method.

RODM provides query functions to get information about the classes and objects in

the data cache. Programs can query the value of any field or subfield. Querying

the value of a field triggers its query method if one has been defined. Querying the

value of a subfield does not trigger the query method. Programs can also query the

RODM Programming Tasks

8 Resource Object Data Manager and GMFHS Programmer’s Guide

structure of the elements in the data cache. RODM also provides the ability to

locate objects in RODM based on the value of a character field.

RODM provides functions to support the notification process. Programs can add

and delete notification subscriptions. User applications can get information from

the notification queue. Notification methods support the RODM notification

process.

Other functions enable you to write diagnostic information to the RODM log and

trigger methods. You can issue a list of functions in a single call to RODM. You can

also issue asynchronous requests to RODM.

Each function is described in detail in Chapter 14, “Application Programming

Reference,” on page 367. There are sample function blocks and programming

examples for each function RODM provides.

Programming Languages

User applications access RODM using the RODM user application programming

interface. User applications can be written in any programming language

supported by your z/OS environment. However, RODM samples and examples are

provided only in PL/I and C.

Methods access RODM using the RODM method application programming

interface. RODM methods can be written only in PL/I or C. Many

NetView-supplied methods are supplied in source format. You can use these

methods as models to write your own RODM methods.

RODM Notification Process

The RODM notification process enables user applications to receive asynchronous

notification of events. User applications subscribe to fields in the data cache. When

the value of the field changes, the notification method associated with the field is

triggered. The notification method writes information about the change to a

notification queue and RODM posts the event control block (ECB) for the user

application.

The user application waits until its ECB is posted by RODM. The user application

calls the EKGWAIT module to wait until the ECB is posted. The user application

gets the information from the notification queue and takes the appropriate actions.

When it finishes processing an event, the user application waits to be notified of

the next event.

RODM Load Function

The RODM load function provides an easy way to load the class structure and

objects into the RODM data cache. Refer to the IBM Tivoli NetView for z/OS Data

Model Reference for more information about data models, class structures, fields,

and objects.

You create input statements for each class and object which are processed by the

load function. You can use the load function to load the initial structure and objects

into the data cache, and you can also use it to update and maintain the data cache

at any time.

The RODM load function accepts two types of input statements:

RODM Programming Tasks

Chapter 1. Overview 9

v High-level RODM load function statements enable you to create and delete classes

and objects. Each create statement defines one class or object and all of its fields.

A single high-level RODM load function statement can do the work of many

RODM transactions.

v RODM load function primitive statements enable you to make changes to the

RODM data cache that are not possible with the high-level RODM load function

statements. For example, you can trigger an object-independent method or

change the value of a subfield in the data cache using RODM load function

primitive statements.

Additional RODM Documentation

This document contains information about defining a network to the GMFHS data

model, loading the data model into the RODM data cache, and writing application

programs and methods that use RODM. Other documents in the NetView library

contain information about RODM that can be of use to you when you are

performing the tasks that are outlined in this document:

IBM Tivoli NetView for z/OS Installation: Configuring Graphical Components

Describes procedures for installing the NetView program and for

customizing your system and tailoring your network for your needs.

Topics include:

v Defining RODM as an MVS Subsystem

v Setting up Security

v Defining the RODM Log

v Updating the RODM Start Procedure

v Defining Global Variables for RODM

v Defining RODM Using the EKGCUST Member

v Defining Initialization Values for RODM DSIQTSK Task

IBM Tivoli NetView for z/OS Administration Reference

Contains the following information:

v The statements that are used to define RODM and the RODM

automation task

v Customizing RODM using the EKGCUST member

IBM Tivoli NetView for z/OS Security Reference

This document contains information for defining RODM security.

IBM Tivoli NetView for z/OS Automation Guide

Describes how to use RODM as part of NetView automation.

IBM Tivoli NetView for z/OS Troubleshooting Guide

This document contains information about diagnostics and troubleshooting,

including:

v Debugging methods

v The RODM log

v The RODM dump utility

v The RODM load utility error listing

v Using RODM API statistics to improve RODM performance

IBM Tivoli NetView for z/OS Messages and Codes Volume 2 (DUI-IHS)

Describes the messages that are returned by RODM. RODM messages are

prefixed with EKG.

IBM Tivoli NetView for z/OS SNA Topology Manager Implementation Guide

Describes how to use the SNA topology manager.

RODM Programming Tasks

10 Resource Object Data Manager and GMFHS Programmer’s Guide

|
|
|

IBM Tivoli NetView for z/OS Data Model Reference

Describes the GMFHS, SNA topology manager, and MultiSystem manager

data models.

IBM Tivoli NetView for z/OS Tuning Guide

This document provides information for tuning RODM and GMFHS.

IBM Tivoli NetView for z/OS User’s Guide

This document provides information for operators and system

programmers on how to use NetView, including RODM and GMFHS.

Tools for RODM

NetView provides the following tools for use with RODM:

v RODMView

v RODM unload function

v FLCARODM (RODM Access Facility)

v BLDVIEWS

v Visual BLDVIEWS (VBV)

For more information about these tools, see Appendix A, “RODM Tools,” on page

503.

RODM Samples and Macros

The NetView program provides sample code that you can use to set up your own

network in RODM and to learn how to write application programs and methods. It

also supplies macros for you to include in the application programs and methods

that you write. The sample code and macros, which are shipped with the NetView

product, can be found in the following libraries:

NETVIEW.V5R3M0.CNMSAMP

This library contains sample code that you can use to define and load your

network into RODM. Additionally, this library contains sample code that

you can use to learn how to connect to RODM and how to write

application programs and methods that use GMFHS automation. The

names of the function samples have prefixes EKG5 and EKG6.

NETVIEW.V5R3M0.SCNMMAC1

This library contains the macros that you include in your application

programs and methods. The names of these macros have prefixes EKG1,

EKG2, EKG3, and EKG4. For more information about these macros, see

Chapter 14, “Application Programming Reference,” on page 367.

Some of these macros and parts of the sample code are described in this document.

The names of the specific macros or functions are listed in the sections in which

they are described.

Additional RODM Documentation

Chapter 1. Overview 11

RODM Samples and Macros

12 Resource Object Data Manager and GMFHS Programmer’s Guide

Part 2. Defining Resources to NetView

Chapter 2. Defining Your Network to GMFHS . . 17

Manual Network Definition Overview 17

Sample Network 18

SNA Components of the Sample Network . . . 19

Non-SNA Components of the Sample Network 19

Service Points 19

DEC Network 19

Ethernet Network 20

Token-Ring Local Area Network 21

NV6000 Network 21

Identifying Which Network Elements to Define . . 22

Identifying Management Objects 22

SNA Domains 22

Network Management Gateways 22

Non-SNA Domains 23

Identifying Managed Objects 23

GMFHS_Shadow_Objects_Class Objects . . . 24

GMFHS_Managed_Real_Objects_Class Objects 24

GMFHS_Aggregate_Objects_Class Objects . . 25

Identifying Connectivity Relationships 26

ComposedOfLogical and IsPartOf 26

ComposedOfPhysical and IsPartOf 26

AggregationParent and AggregationChild . . 27

ParentAccess and ChildAccess 27

PhysicalConnPP 27

LogicalConnPP 28

PhysicalConnUpstream and

PhysicalConnDownstream 28

LogicalConnUpstream and

LogicalConnDownstream 28

BackboneConnPP 28

Identifying Views 28

Exception Views 28

Network Views 29

Configuration Views 31

More Detail Views 32

Defining Your Configuration to RODM 33

Defining Management Objects 33

Defining SNA Domains 33

Defining Network Management Gateways . . 34

Defining Non-SNA Domains 35

Defining Managed Objects 36

Defining SNA Resources 36

Defining Non-SNA Real Resources 37

Defining GMFHS Aggregate Objects 38

Defining Connectivity Relationships Between

Objects 40

Defining Logical Connectivity 40

Defining Physical Connectivity 40

Defining Parent-Child Relationships 41

Defining Views 41

Defining Exception Views 41

Defining Network Views 42

Defining Configuration Views 43

Defining More Detail Views 45

Defining Layout Parameters 46

Defining Layout Parameters for Exception

Views 46

Defining Layout Parameters for Network,

Configuration, and More Detail Views . . . 46

Defining Layout Parameters for Dynamically

Built More Detail Views 48

Putting It All Together 54

Chapter 3. Loading the GMFHS Data Model . . . 55

Loading the Data Models and Network Definitions 55

Changing Network Definitions When GMFHS Is

Running 55

Selecting the Required GMFHS CONFIG

Command 56

Non_SNA_Domain_Class Changes 57

SNA_Domain_Class Changes 57

NMG_Class Changes 58

GMFHS_Managed_Real_Objects_Class

Changes 58

Adding NMGs and Domains When GMFHS Is

Active 58

Chapter 4. Communicating with Network

Management Gateways 59

Defining Non-SNA Presentation Protocol 60

DOMP010 Presentation Protocol 60

DOMP020 Presentation Protocol 61

PASSTHRU Presentation Protocol 62

NONE Presentation Protocol 63

Output Formatting For All Presentation Protocols 63

DOMP020 and PASSTRU Output Formatting 63

DOMP010 Output Formatting 63

DOMP010 Formatting Rules 63

General Packet Format 63

Keyword and Value Definitions 64

Command Execution—CE 64

Command—CM 65

Component ID—CP 65

Domain—DM 66

Protocol—PT 66

Reason—RN 67

Response—RP 68

Command Sender ID—SN 68

Message Sequence Number—SQ 69

Status—ST 69

Time Stamp—TM 71

Text—TX 71

Command Formatting and Protocol Examples . . 72

Single-Response Protocol 72

Multiple-Response Protocol 73

Timing Considerations 74

Alerts 74

Command Responses 75

Defining Non-SNA Session Protocols 75

DOMS010 75

PASSTHRU 76

© Copyright IBM Corp. 1997, 2007 13

NONE 76

Session Establishment for DOMS010 76

Session Establishment for NetView/6000 V2,

NetView for AIX V3, NetView for AIX V4, and

DOMS010 77

GMFHS-Initiated Session Establishment 77

INIT Generic Alert for Session Establishment . . 78

Session Termination 80

Defining Non-SNA Transport Protocols 81

COS Gateway Support 81

Program-to-Program Interface Gateway 82

OST/PPT Gateway 82

Monitoring Non-Network Devices 83

Types of NMGs 83

Common Operations Services NMGs 83

Operator Station Task NMGs 83

Program-to-Program Interface NMGs 83

PPI Command Transport Envelope 84

Migrating from NETCENTER Protocols to GMFHS

Protocols 85

Chapter 5. How GMFHS Uses RODM 87

GMFHS Initialization 87

Aggregation Warm Start 87

Resource Status Warm Start 87

GMFHS Initialization Process Overview 88

Setup Subprocess 88

Session Establishment Subprocess 88

Monitoring Topology Managers 89

Building Views 89

Object Discovery Process 89

Predefined Views 89

Dynamically Built Views 89

Object Discovery Process Description for

Specific Views 94

Object Connectivity Process 100

Defining Exception View Objects and Criteria 100

Defining Exception Criteria 101

Defining Candidates for Exception Views . . 103

Defining the ExceptionViewFilter Field . . . 103

Customizing the DisplayStatus Mapping

Table for Exception Views 104

Default Values for Classes 109

Specifying Resource Names for DisplayStatus

Mapping 109

Examples of Customizing DisplayStatus

Mapping 110

Creating a DisplayStatus Method for

Exception Views 111

Implementing Exception View Processing for

MultiSystem Manager 112

Locate Resource Function 113

Restricting Recursive Views 114

Refreshing Open Views 114

Applying Span-of-Control to Views 114

Views 115

Defining Predefined Views to Spans 115

Defining Dynamically Built Views to Spans 115

Examples of Defining Views to Spans . . . 116

Resources 118

Examples of Restricting Resources Within

Views Using Spans 119

Helpful Hints 120

No Views in the View List Are in the

Operator’s Span-of-Control 120

No Resource in the View Is in the Operator’s

Span-of-Control 120

Selected Object Is Not in the Operator’s

Span-of-Control 121

Changing the NGMFVSPN Attribute . . . 121

RACF Is Used for RODM Security 121

Applying Span-of-Control to Set and Clear

Operator Status 121

Applying Policy to Views 122

Representing Policy Definitions in RODM . . . 122

Resources Belonging to Multiple Policies . . . 124

Resources Suspended from Aggregation Due to

Policy 128

Suspending Aggregation Using an Aggregate 128

System Status Updates No Longer Sent to

Resources Due to Policy 129

Additional Information 130

Aggregation Concepts 130

Aggregation Overview 130

Creating an Aggregation Hierarchy 132

Building the Aggregation Hierarchy in RODM 132

Updating Status 134

How Status Affects Aggregation 134

Using the DisplayStatus of Real Objects . . 134

Calculating the Aggregate Parent Status . . 136

Aggregation Problems 139

UserStatus Field 139

Events That Start the Aggregation Process 139

Aggregation Methods 142

Status Groups 142

Using Status Groups 142

Examples of Customizing Aggregate

DisplayStatus 143

Using the Collection Definition Objects 143

Collection Definition Objects 144

Collection Definition Object Fields 144

Using Collection Specifications 145

Conditional Statements 145

Postfix Notation in Conditional Statements 146

Complex Conditional Statements 147

Stack Model Postfix Processing 148

Collection Specification Syntax 149

Collection Specification Values 150

Values and Data Types 153

Examples of Collection Definition Objects . . . 155

Using NetView Resource Manager 159

NetView Resource Manager Views 159

NetView Resource Manager Object

Information 162

NMC Command support for NetView

Resource Manager 162

Modifying DUIFSMT for NetView Resource

Manager 164

Using DUIFVINS with NetView Resource

Manager 164

14 Resource Object Data Manager and GMFHS Programmer’s Guide

NetView Resource Manager Sample Loader

Files 164

Customizing Sample Loader Files 165

Chapter 6. Customizing GMFHS to Process and

Receive Alerts and Resolutions 167

Receiving and Monitoring Alerts or Resolutions 167

What GMFHS Receives from the Hardware

Monitor 167

Objects in RODM Representing SNA Resources 168

Objects in RODM Representing NMGs 169

Objects in RODM Representing Non-SNA

Domains 169

First Method 169

Second Method 170

Objects in RODM Representing Non-SNA

Resources 171

Single Non-SNA Resource 171

Multiple Non-SNA Resources 171

DUIFEDEF Alert Processing 172

Parameters 172

Pointer to a reentrant work area 172

Pointer to a second reentrant work area . . 173

Value of the EMDomain field 173

Value of the DomainCharacteristics field . . 173

Pointer to an array of structures 173

Pointer to hardware monitor resource

hierarchy 173

Pointer to the length of the hardware

monitor resource hierarchy 174

Register 15 Conventions 174

Default DUIFEDEF Actions 174

Alert Translation Tables 176

Part 2. Defining Resources to NetView 15

16 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 2. Defining Your Network to GMFHS

This chapter describes how to manually define your network configuration to

NetView based on the GMFHS data model. This chapter first describes a sample

network, and then shows the steps in manually defining a network.

Notes:

1. You can use the SNA topology manager to define your SNA network to

RODM. Refer to the IBM Tivoli NetView for z/OS SNA Topology Manager

Implementation Guide for more information.

2. You can use the MultiSystem Manager Access facility to define your non-SNA

network to RODM.

To help you manually define your network to RODM, a sample object load file,

DUIFSNET, is provided with NetView. The sample file contains the RODM load

function statements that define the sample network to RODM.

You manually define your network using RODM load function statements. You can

generate these statements in any of the following ways:

v If you have configuration information stored in a repository, write a conversion

program to convert the information to the RODM load file format presented in

Chapter 10, “Using the RODM Load Function,” on page 239.

v Create the configuration definitions with a text editor.

You can also define your network without using the RODM load function. If you

have your network configuration information stored in a database, you can write a

RODM user application that places the configuration information directly into

RODM. Your user application puts the data into RODM by issuing calls to the

RODM user API. See Chapter 11, “Writing Applications that Use RODM,” on page

301 for information about writing RODM user applications.

Manual Network Definition Overview

To manually define your network configuration to RODM, perform the following

tasks in the order listed:

1. Analyze your configuration and identify the network elements that you need to

define to RODM.

2. Define the management objects in your network. Management objects are:

v SNA domains

v Network management gateways

v Non-SNA domains
3. Define the managed objects in your networks. Managed objects are:

v Real non-SNA objects for which you are to receive status, alerts, or both

through a service point

v SNA objects that appear in views with non-SNA objects

v Aggregate objects
4. Define connectivity relationships for the resources in your network. Examples

of connectivity relationships include logical and physical connectivity,

parent-child, composed-of-logical, composed-of-physical, and is-part-of.

© Copyright IBM Corp. 1997, 2007 17

5. Define the types of views of your configuration that you want the operator to

see.

Sample Network

This chapter uses a sample network (as shown in Figure 6) to describe how to

define your network to RODM. This network contains both SNA and non-SNA

components.

A0488P24A0488P23A0488P22

BRIDGE01

NetView

VTAM

B30A54C

NETB

B01MPU

NCP

Programmable
Workstation

Minicomputer

Synoptic
Concentrator

Programmable
Workstation

Host

Host

LAN
Network
Manager
A0488P21

A0488P25 AIX NetView
Service Point
A0488P31

Programmable
Workstations

TCP/IP
Host

Minicomputer Minicomputer

B3088P2 B3088P1

TRLAN
N
V
6
0
0
0

NetView

VTAM

A04A54C

NETA

A01MPU

NCP

ETHERNET Network

DEC Network

V01LG01

V63LG01

Figure 6. Sample Network

Manual Network Definition Overview

18 Resource Object Data Manager and GMFHS Programmer’s Guide

SNA Components of the Sample Network

The sample network consists of two network domains: network NETA and

network NETB.

Network NETA consists of the following components:

v Host processor A01MPU, running a NetView program and VTAM

v NCP A04A54C, which connects the host processor to a token-ring LAN

v NMG A0488P21, which manages the TRLAN network

v NMG A0488P31, which manages the NV6000

v TRLAN network

v NV6000 network

Network NETB consists of the following components:

v Host B01MPU, running a NetView program and VTAM

v NCP B30A54C, which connects the host to a token-ring

v NMG B3088P1, which manages the Ethernet network

v NMG B3088P2, which manages the DEC network

v Ethernet network

v DEC network

The two host systems are connected by two logical gateway connectors, V01LG01

and V63LG01, through NCP/Token-Ring interconnection (NTRI). These logical

gateway connectors between the two NCPs are associated with the two token-ring

LANs with a bridge between them. The SNA links connecting the service points to

their NCPs also use token rings for their underlying physical connectivity.

The hosts, NCPs, service points, gateway connectors, and link connectors in the

sample network are SNA resources managed by the NetView and VTAM

programs. The focal point NetView, GMFHS, and RODM run in host A01MPU. The

NetView management console monitors these SNA resources and generates views

for them.

Non-SNA Components of the Sample Network

NetView management console does not recognize the non-SNA components of the

sample network. For a NetView management console to manage these non-SNA

components, they must be defined to RODM using the GMFHS data model.

Service Points

There are four service points, defined as network management gateways, in the

sample network:

v NMG B3088P1 runs transaction program SYNOPTAP, which manages the

Ethernet network.

v NMG B3088P2 runs transaction program NAP, which manages the DEC

network.

v NMG A0488P21 runs in the token-ring LAN and runs transaction program

LANMGR, which manages the TRLAN network.

v NMG A0488P31 runs transaction program A94306F8, which manages the

NV6000 network.

DEC Network

Figure 7 on page 20 shows more detail of the DEC network shown in the sample

network. The DEC network consists of:

v DEC host RALV4, which is attached to service point B3088P2

v Link TX-0-2, which attaches RALV4 to minicomputer RALXT1

Sample Network

Chapter 2. Defining Your Network to GMFHS 19

v Link TX-1-2, which attaches RALV4 to minicomputer RALXT2

Transaction program NAP runs in service point B3088P2 and converts the events

related to these resources into alerts, which are then sent to the NetView

management console focal point host A01MPU. This transaction program also

accepts commands for these resources.

Ethernet Network

Figure 8 shows more detail of the Ethernet network shown in the sample network.

An adapter on service point B3088P1 connects the service point to synoptic

concentrator CNTR3000. The concentrator is connected to the hosts and

workstations through three connectors:

v Connector OEMLAB, which has non-SNA Hosts VAX6210 and 9370 associated

with it

v Connector NSL_ENET, which is associated with DOS workstation DOSTCPIP

and the RISC System/6000® workstation RS6000

v Connector NSL_B202, which is associated with host AS400.

DEC
VAX6210

B3088P2

NAP

DEC
Minicomputer

DEC
Minicomputer

RALXT2RALXT1

Link TX-0-2 Link TX-1-2

RALV4

Service
Point

Figure 7. DEC Network

B3088P1

Service
Point

SYNOPTAP

RS6000

DOSTCPIP

CNTR3000

AS400

Host

Host

9370

VAX6210

Figure 8. Ethernet Network

Sample Network

20 Resource Object Data Manager and GMFHS Programmer’s Guide

Token-Ring Local Area Network

Figure 9 shows token-ring network TRLAN. It consists of the following:

v Adapter TRADPTR, which connects NCP A04A54C to the token ring

v Resource A04N1088, which is the SNA line representing the token-ring interface

coupler (TIC)

v Resource A04P1088, which is defined for the SNA physical unit (PU) for the TIC

v Resources A0488P21 through A0488P25, which are token-ring adapters for

programmable workstations and are associated with the appropriate adapter

addresses in the LAN Manager

v BRIDGE01, which is a bridge on the LAN that connects to another token ring in

NETB

The sample network defines SNA PU 2 resources representing the programmable

workstations to SNA, and has named the SNA PUs A0488P21 through A0488P25,

associating the SNA PUs to the adapter resident in each workstation that supports

a PU. The sample network uses the DisplayResourceName field to specify the

name that is displayed for each resource in the token-ring network. For example,

the object LANMGR.10005AC35CA0 has its DisplayResourceName field set to

A0488P21. This enables you to display names for resources that are meaningful to

your operators.

NV6000 Network

Figure 10 on page 22 shows more detail of the NV6000 network that was shown in

the sample network. The NV6000 network consists of:

v RS/6000® host running Tivoli NetView for AIX, AIX NetView Service Point, and

AIX SNA Server/6000

v Programmable workstations T46A, T47A, T47B, T48A, and T48B

AIX SNA Server/6000 is configured as PU name A0488P31, and the Tivoli NetView

for AIX SPAPPLD application is configured as A94306F8. Workstations T46A,

T47A, T47B, T48A, and T48B are connected to the TCP/IP network in which Tivoli

NetView for AIX resides. Tivoli NetView for AIX converts selected traps related to

NCP

A04A54C

A0488P21 A0488P22 A0488P23 A0488P24 A0488P25

To
NETB

BRIDGE01

A04N1088

Figure 9. Token-Ring LAN

Sample Network

Chapter 2. Defining Your Network to GMFHS 21

these resources into alerts, which are then sent to the focal point host A01MPU.

The A94306F8 transaction program also accepts commands for these resources.

Identifying Which Network Elements to Define

To properly define your network to RODM, assess your network components and

their configuration, and then identify the network elements. The elements to

identify are:

v Management objects

v Managed objects

v Connectivity relationships

v Desired views

Identifying Management Objects

Management objects represent the programs that control the components of a

network and connect the components to the NetView program. These programs

send alerts to the NetView program to update the status of resources in the

network and receive commands from the NetView program for the resources that

they control. Three types of management objects need to be identified to RODM:

v SNA domains

v Network management gateways

v Non-SNA domains

SNA Domains

An SNA domain represents one NetView program. You need to define to RODM

one SNA domain for each NetView program that can originate alerts for SNA

resources, if these SNA resources are defined as shadow objects to RODM.

You also need to define an SNA domain for each NetView program that has a

non-SNA domain reporting to it, even if it has no SNA shadow objects defined on

it. This ensures command support for the non-SNA objects and enables GMFHS to

determine if the status of resources in the non-SNA domain is known. For

information about shadow objects, see “Identifying Managed Objects” on page 23.

In the sample network, one SNA domain is defined for each of the NetView

programs that reside in hosts B01MPU and A01MPU.

Network Management Gateways

A network management gateway (NMG) is a gateway between the NetView

program, which is the SNA network management system, and the network

management function of one or more non-SNA networks. The AIX and

Figure 10. NV6000 Network

Sample Network

22 Resource Object Data Manager and GMFHS Programmer’s Guide

NetView/PC service points running one or more transaction programs are

examples of NMGs. An NMG can also be a user-written service point that uses

service point command service (SPCS) support or sends alerts by some other

means.

Two other NetView facilities that support network management gateways are the

program-to-program interface (PPI) and operator station tasks (OSTs). The

program-to-program interface provides a path for the exchange of network

management information and commands for applications that manage non-SNA

resources and run in the focal point host in address spaces other than the NetView

address space. OSTs run command procedures and command processors that

accept network management commands for, and provide status of, non-SNA

resources.

In the sample network, four service points are defined as network management

gateways:

v B3088P2

v B3088P1

v A0488P31

v A0488P21

Non-SNA Domains

You must define a non-SNA domain for each non-SNA network being monitored.

A non-SNA domain is uniquely identified by any combination of service point,

transaction program, and element management system.

The transaction program (TP) manages the non-SNA network from within the SNA

network. The element management system (EMS) manages the non-SNA network

from the other, or native, side of the network. The transaction program interacts

with the element management system in managing the network.

Depending on the transaction program used, the transaction program and element

management system might or might not identify themselves in alerts coming to

NetView for non-SNA resources. A Non_SNA_Domain_Class object needs to be

defined for each combination of service point, transaction program, and element

management system that is identified in alerts flowing to the NetView program.

In the sample network, a non-SNA domain is defined for each of the following

networks:

v The Ethernet network, which has a service point named B3088P1, a transaction

program named SYNOPTAP, and no element management system.

v The DEC network, which has a service point named B3088P2 and a transaction

program named NAP.

v The TRLAN network, which has a service point named A0488P21 and a

transaction program named LANMGR.

v The NV6000 network, which has a service point named A0488P31 and a

transaction program named A94306F8.

Identifying Managed Objects

Managed objects represent the network resources that you manage. These objects

contain status and configuration information about the network resources that they

represent. Managed objects require management objects to send status to the

NetView program and to receive commands for the resource. You identify one

managed object for each network resource that you want to manage using RODM.

Four types of managed objects can be defined to RODM:

Defining Network Elements

Chapter 2. Defining Your Network to GMFHS 23

v SNA topology manager class objects. The SNA topology manager objects are not

included in the sample network DUIFSNET. For more information, refer to

theIBM Tivoli NetView for z/OS SNA Topology Manager Implementation Guide.

v GMFHS_Shadow_Objects_Class objects

v GMFHS_Managed_Real_Objects_Class objects

v GMFHS_Aggregate_Objects_Class objects

GMFHS_Shadow_Objects_Class Objects

The SNA topology manager creates SNA objects for resources that it manages. If

there are other SNA resources that are not managed by SNA topology manager,

you can create GMFHS_Shadow_Objects_Class objects to represent them.

GMFHS_Shadow_Objects_Class objects represent SNA resources that you want to

relate to non-SNA resources. The status of shadow objects is not kept in RODM,

but is maintained by the NetView management console SNA support. When a

view containing shadow objects is displayed at the NetView management console

workstation, NetView management console fills in and maintains each object’s

status.

Note: The NetView management console does not maintain shadow object status.

Shadow objects are displayed on the NetView management console, but the

status is always unknown.

If you want to relate SNA resources to non-SNA resources such as those in the four

non-SNA networks in the sample network, you need to define the SNA resources

as objects on the GMFHS_Shadow_Objects_Class. These

GMFHS_Shadow_Objects_Class objects are SNA resources, such as PUs, logical

units (LUs), and link connections, that are defined in RODM so that they can be

related to associated non-SNA resources.

In the sample network, logical link connectors V01LG01 and V63LG01 have been

defined and are related to the physical path that connects the two NCPs and the

two token-ring LANs. If either of the logical link connectors is displayed with a

status of unsatisfactory, the operator can select the connector and request more

detailed information about the resource. GMFHS then locates the

GMFHS_Shadow_Objects_Class object for the connector in RODM, follows the

configuration relationships to determine what resources made up the connector,

and dynamically constructs and displays a view consisting of more detailed

information.

GMFHS_Managed_Real_Objects_Class Objects

GMFHS_Managed_Real_Objects_Class objects represent non-SNA resources that

are managed by a NetView management console. The status of each of these

resources is determined by alerts and command responses sent through the

network and is stored in RODM. Examples of these resources include multiplexers,

modems, software applications, and T1 element managers. You must define a

GMFHS_Managed_Real_Objects_Class object to GMFHS for each resource that you

manage. If you have added child classes to the

GMFHS_Managed_Real_Objects_Class, create objects of the child classes instead.

For more information, refer to the IBM Tivoli NetView for z/OS Data Model Reference.

In the sample network, a GMFHS_Managed_Real_Objects_Class object is defined

for each resource of interest in the four non-SNA networks. For example, in the

DEC network illustrated in Figure 7, a GMFHS_Managed_Real_Objects_Class

object is defined for the following resources:

v The DEC host RALV4

Defining Network Elements

24 Resource Object Data Manager and GMFHS Programmer’s Guide

v The minicomputers RALXT1 and RALXT2

v The links TX-0-2 and TX-1-2

GMFHS_Aggregate_Objects_Class Objects

GMFHS_Aggregate_Objects_Class objects represent a group of objects. This group

of objects can consist of any number and combination of real objects and aggregate

objects. Examples of aggregate objects are data centers, complex circuits composed

of multiple components, and arbitrary groups of resources.

You can define an aggregate object to GMFHS and relate it to underlying

GMFHS_Managed_Real_Objects_Class objects. The status of the aggregate object is

determined by the status of the real objects that the aggregate object represents. If

you have added child classes to the GMFHS_Aggregate_Objects_Class, you need to

create objects of the child classes instead.

You can also define an aggregate object that is composed of other aggregate

objects. The status of this higher-level aggregate object is determined by the status

of the real objects that contribute to the status of the lower-level aggregate objects.

The status of the lower-level aggregate objects does not contribute to the status of

the higher-level aggregate object; only real objects contribute to the status of

aggregate objects.

Because GMFHS_Shadow_Objects_Class objects do not have status fields, the real

resources that they represent do not contribute to the status of an aggregate object.

GMFHS supports up to nine levels of aggregation. A level of aggregation is one

aggregate object composed of one or more real or aggregate objects. If a real object

is defined as a child of an aggregate parent object and that aggregate parent object

is defined as a child of another parent aggregate object, two levels of aggregation

have been defined.

Aggregate objects must be defined in a strict hierarchy. An aggregate object cannot

be defined as a child aggregate object of an aggregate object that is below it in the

aggregation hierarchy.

For more information about using aggregation, see “Aggregation Concepts” on

page 130.

In the sample network, an aggregate object has been defined for each of the

non-SNA networks: Ethernet, DEC, NV6000, and TRLAN. Each of these aggregate

objects represents all of the real resources in the respective network. The status of

each of these aggregate objects reflects the collective status of the underlying real

resources.

Two other aggregate objects are also defined:

v Aggregate object WESTCTR is composed of aggregate objects ETHERNET and

DEC. The status of WESTCTR is determined by the status of the real resources

in the Ethernet and DEC networks.

v Aggregate object EASTCTR is composed of aggregate objects NV6000 and

TRLAN. The status of EASTCTR is determined by the status of the real

resources in the NV6000 and TRLAN networks.

These aggregate objects appear in the high-level view described in “Identifying

Views” on page 28.

Defining Network Elements

Chapter 2. Defining Your Network to GMFHS 25

Identifying Connectivity Relationships

Connectivity relationships are ways in which resources defined in RODM can be

connected to each other. These relationships can be physical, logical, or peer. The

GMFHS data model supports the following relationships:

v ComposedOfLogical and IsPartOf

v ComposedOfPhysical and IsPartOf

v AggregationParent and AggregationChild

v ParentAccess and ChildAccess

v PhysicalConnPP

v LogicalConnPP

v PhysicalConnUpstream and PhysicalConnDownstream

v LogicalConnUpstream and LogicalConnDownstream

v BackboneConnPP

ComposedOfLogical and IsPartOf

ComposedOfLogical and IsPartOf create a logical relationship in which one object

is logically composed of other objects. The other objects, in turn, are part of the

first object. This logical relationship can be between any number of real objects,

aggregate objects, or shadow objects.

In the sample network, shadow object NETV.WECONN represents the gateway

connectors between NCP A04A54C and NCP B30A54C. It has a

ComposedOfLogical relationship with the shadow objects V01LG01 and V63LG01.

These GMFHS_Shadow_Objects_Class objects in turn have an IsPartOf relationship

with the GMFHS_Shadow_Objects_Class object NETV.WECONN.

If the SNA topology manager is installed, the ComposedOfLogical relationship can

be done using the SNA topology manager object instead of the shadow object.

When an operator selects the NETV.WECONN object in a view and requests more

detail, GMFHS follows the ComposedOfLogical relationship for the

NETV.WECONN object to retrieve all objects satisfying this relationship. GMFHS

builds a view consisting of these objects, and sends it to the workstation for

display. If a ComposedOfPhysical relationship is also defined on the

NETV.WECONN object, GMFHS also builds a view of that relationship and sends

it to the workstation for display.

ComposedOfPhysical and IsPartOf

ComposedOfPhysical and IsPartOf create a physical relationship in which one

object is physically composed of other objects. The other objects are, in turn, part

of the first object.

In the sample network, the GMFHS_Aggregate_Objects_Class object named DEC,

representing an entire non-SNA network, has a ComposedOfPhysical relationship

with objects in RODM representing the host and two minicomputers, as shown in

Figure 7 on page 20. The GMFHS_Managed_Real_Objects_Class objects in RODM

representing these resources, in turn, have an IsPartOf relationship with aggregate

object DEC.

If an operator selects the DEC object in a view and asks for more detail, GMFHS

follows the ComposedOfPhysical relationship for the DEC object to retrieve all

objects satisfying this relationship from RODM, builds a view consisting of these

objects, and sends it to the workstation for display to the requesting operator. If a

ComposedOfLogical relationship is also defined on the DEC object, GMFHS builds

a view of that relationship also and sends it to the workstation for display, along

with the ComposedOfPhysical relationship view.

Defining Network Elements

26 Resource Object Data Manager and GMFHS Programmer’s Guide

Although ComposedOfPhysical and IsPartOf are generally used to define a

relationship between an aggregate object and underlying real objects, this is not the

only use for this relationship. For example, you can define an object of the

GMFHS_Managed_Real_Objects_Class as being composed of other

GMFHS_Managed_Real_Objects_Class objects. In this case no aggregation occurs,

but if the operator selects the first object and asks for more detail, a view of the

objects that the first object is composed of is displayed.

AggregationParent and AggregationChild

AggregationParent and AggregationChild create a relationship in which one object

is the aggregate parent for one or more aggregation children. The status of the

aggregate parent is determined by the status of the aggregation children.

The AggregationParent field of a real object links to all of the aggregate objects to

which that real object contributes status; a real object can contribute status to any

number of aggregate objects. The AggregationChild field of an aggregate object

links to all of the real objects that contribute status to that aggregate object.

You do not directly create links between the AggregationParent fields and

AggregationChild fields in the GMFHS data model. Instead, GMFHS supplies a

method, DUIFCUAP, that links these fields. For example, the following RODM

load function primitive statement will link the AggregationParent field of the real

object DECNET.RALV4.RALXT2 to the AggregationChild field of the aggregate

object DEC:

OP DUIFCUAP INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Managed_Real_Objects_Class.DECNET.RALV4.RALXT2’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.DEC’);

The DUIFCUAP method is also used to remove these links.

ParentAccess and ChildAccess

The ParentAccess and ChildAccess fields are used by GMFHS to build

Configuration Parents views and Configuration Children views. ParentAccess and

ChildAccess create a relationship in which one object is the parent for one or more

children objects.

When an operator selects a resource and asks for a Configuration Parents view,

GMFHS retrieves the resource from RODM and determines the resource’s entire

ancestry. It then builds a view of the objects that satisfy this relationship and

displays the view at the workstation.

This relationship is often useful in hierarchically-arranged networks for

determining a path to an owner of a resource. Define both the ParentAccess and

ChildAccess relationships if you want to use either the Configuration Parents view

or the Configuration Children view.

PhysicalConnPP

PhysicalConnPP creates a relationship in which one resource is physically

connected to another resource in a peer-to-peer relationship. This connection can be

either a node to link connection or a node to node connection. If the connection is

node to node, GMFHS inserts a null connector between the two nodes when it

displays a view containing the two objects.

In the sample network, the Host in the DEC network is connected by

PhysicalConnPP relationships to two links, which are in turn connected by

PhysicalConnPP relationships to minicomputers. When the operator selects a

Defining Network Elements

Chapter 2. Defining Your Network to GMFHS 27

resource and asks to see a view consisting of those resources that are physically

connected, GMFHS uses this relationship to build and display the view.

LogicalConnPP

The LogicalConnPP relationship works the same way as the PhysicalConnPP

relationship, except that this relationship is logical rather than physical.

In the sample network, NCP B30A54C is connected to gateway connector V01LG01

through the LogicalConnPP relationship. Gateway connector V01LG01 is in turn

connected to NCP A04A54C by this same relationship.

PhysicalConnUpstream and PhysicalConnDownstream

PhysicalConnUpstream and PhysicalConnDownstream are used to physically

connect objects in which direction is important. These relationships are used when

it is important to group resources at one or the other end of a connection.

For example, if you are defining a multipoint link and the resources connected to

it, you can use PhysicalConnUpstream to link a controller to the link, and

PhysicalConnDownstream to link several terminals to the link. In this case, when

the operator asked for a view showing physical connectivity, the controller is

linked at one end of the link, and the terminals are all linked at the other end.

LogicalConnUpstream and LogicalConnDownstream

LogicalConnUpstream and LogicalConnDownstream are used to logically connect

objects in which direction is important. These relationships are the logical

counterpart of the PhysicalConnUpstream and PhysicalConnDownstream

relationships.

BackboneConnPP

BackboneConnPP is used to show objects that are part of a subarea backbone.

Identifying Views

GMFHS builds most views based on the relationships defined among the objects

that are displayed at the workstation. However, you can define four types of views

in which you specify the objects that are to be displayed: exception, network,

configuration, or more detail views. The views you define depend upon your

network.

Exception Views

An exception view is a collection of real, shadow, and aggregate objects that have

been defined as exceptions. There is no connectivity relationship shown among

these objects. An exception view is simply a graphical list of objects. This list can

be filtered by DisplayStatus or UserStatus values of the resource object.

The following list offers just a few examples of how you can define exception

views to meet your varying business needs.

v To display all NCPs that are inactive.

v To display all NCPs that are inactive except for those that are being reactivated

by an automation routine.

v To define views that contain failing resources that are specific to an operators

area of responsibility.

v To show all lines that have failed.

v To define the time of day that a resource can be included in an exception view.

For example, suppose you have a workstation on a token-ring LAN that is

represented as a PU. During the day, you want to monitor the workstation to

Defining Network Elements

28 Resource Object Data Manager and GMFHS Programmer’s Guide

ensure that its status is satisfactory. When you turn off the workstation at the

end of the day, the status of the PU changes to unsatisfactory. Depending on

your exception view definition, the PU is included in an exception view. To

prevent this, you can create two definitions: one for regular hours and one for

off hours. At the end of the business day a timer starts an automation routine to

change from the regular hours definition to the off hours definition, and the PUs

is then excluded from the exception view. For more information, see “Defining

Exception View Objects and Criteria” on page 100.

Figure 11 shows an example of an exception view.

Network Views

A network view is a collection of real, aggregate, and shadow objects that the

operator is to view together. When the operator selects a network view, GMFHS

retrieves the appropriate view object from RODM and determines what objects are

specified as being part of this view. GMFHS then retrieves these objects, builds a

view containing them, and displays the view at the workstation. If the objects have

any logical or physical connectivity relationships defined among them, these

relationships are shown in the view.

Two of the network views defined for the sample network are:

v A high-level view named BIGPIC, which shows the status of the non-SNA

components of the network at a high level.

v A management view named SAMPNET, which shows the major SNA and

non-SNA components of the network that are involved in managing the

non-SNA networks.

Figure 12 on page 30 shows the high-level view named BIGPIC. In this view,

WESTCTR is an aggregate object composed of aggregate objects ETHERNET and

DEC. EASTCTR is an aggregate object composed of aggregate objects TRLAN and

NV6000. Aggregate objects ETHERNET, DEC, TRLAN, and NV6000 represent the

real objects in each of the non-SNA networks being managed.

When real objects change status, their status is reflected up to aggregate objects

ETHERNET, DEC, TRLAN, and NV6000, and also to aggregate objects WESTCTR

Figure 11. Exception View Example

Defining Network Elements

Chapter 2. Defining Your Network to GMFHS 29

and EASTCTR. High-level view BIGPIC, therefore, presents operators with a view

that represents all of the non-SNA real objects being managed.

If the status of WESTCTR changes from satisfactory to degraded, the operator can

select the WESTCTR object and ask for more detail. A view consisting of the

aggregate objects ETHERNET and DEC is displayed. Or the operator can select the

object and request a fast path to failing resource view. This view consists of the

real objects in aggregate objects ETHERNET and DEC that are in an exception

state. This type of view can be valuable in a network that contains many real and

aggregate objects.

 Figure 13 on page 31 shows the management view named SAMPNET. This view

displays the major SNA and non-SNA components of the network. It contains the

SNA hosts, NCPs, and service points as well as the logical gateway connectors

linking the two NCPs. Connected to the service points that are network

management gateways are the aggregate objects ETHERNET, DEC, TRLAN, and

NV6000. The SNA resources shown are defined to GMFHS as

GMFHS_Shadow_Objects_Class objects.

This view shows the major SNA and non-SNA components involved in managing

the non-SNA networks in the sample, and the relationships among them. The

operator can see the status of both the SNA and the non-SNA objects. If a

non-SNA aggregate changes status, the operator can select it and ask for a more

detailed view to find the source of the status change.

WESTCTR

EASTCTR

Data Center

Data Center

NETV.WECONN

Gener ic l ink

Figure 12. High-Level View BIGPIC

Defining Network Elements

30 Resource Object Data Manager and GMFHS Programmer’s Guide

Configuration Views

The following configuration views are predefined views. They are used to show

objects in relationship to other objects.

View Type Description

Peer Displays objects that have a peer relationship.

Physical Displays objects in a network based on a physical relationship

between objects.

Logical Displays objects in a network based on a logical relationship

between objects.

Backbone Displays objects that comprise a subarea backbone.

The following configuration views can also be dynamically built views:

v Backbone

v Logical

v Physical

For more information about configuration views, see “Object Discovery Process

Description for Specific Views” on page 94. The sample network contains a

configuration peer view, which is described next.

A configuration peer view is a collection of objects that share a peer relationship in

the network displayed in a view. You specify the objects that are to appear in a

configuration peer view when you define the view. Although you can specify any

type of displayable object in a peer view, select only those objects that share a peer

relationship. It is up to you to decide which objects have such a relationship.

When the operator selects a resource in a view and asks to see any peer views in

which that object is defined, GMFHS uses the peer view objects you define to

construct the appropriate views and sends them to the requesting operator’s

A01MPUB01MPU

B 3 0 8 8 P 2

V63LG01

A0488P31

N V 6 0 0 0

A0488P21B308 8P1

DEC ETHERNET T R L A N

A04A54CB30A54C
VOILG0I

Figure 13. Management View SAMPNET

Defining Network Elements

Chapter 2. Defining Your Network to GMFHS 31

workstation for display. As with network views, if the objects have any logical or

physical connectivity relationships defined among them, these relationships are

shown in the view.

Figure 14 is a peer view containing three objects from the ETHERNET network in

the sample network. This view contains:

v Connector OEMLAB

v Connector NSL_ENET

v Connector NSL_B202

The names used in this peer view are determined by the DisplayResourceName

field of the objects. For example, the MyName value of the object displayed as

OEMLAB is LATTVIEW.656_MAIN.CNTR3000.SL02P0.

Each of the three objects in this peer view are linked to the DisplayResourceType

object DUIXC_RTN_LAN_ADAPTER. The icon DUIU5N00 and the

trapezoid-shaped terminal symbol are specified by the link to

DUIXC_RTN_LAN_ADAPTER. No relationships are defined between these objects

in the sample network definition, so none are displayed in the view.

More Detail Views

The following more detail views are predefined views. They are used to show

objects in relationship to other objects.

View Type Description

Logical Displays the next lower layer of objects in a network based on a

logical relationship between objects.

Physical Displays the next lower layer of objects in a network based on a

physical relationship between objects.

More detail views can also be dynamically built. For more information, see “More

Detail Views” on page 97.

OEMLAB

N S L _B 2 0 2 N S L _E N E T

Figure 14. Peer View of ETHERNET Network

Defining Network Elements

32 Resource Object Data Manager and GMFHS Programmer’s Guide

Defining Your Configuration to RODM

You can use the SNA topology manager to define APPN and subarea networks,

and you can use MultiSystem Manager to define non-SNA resources in RODM.

You can also manually define non-SNA resources in RODM as described next.

After you identify the resources in your network that you want to monitor with

GMFHS, you then define those resources to RODM. All resources are defined in

terms of RODM load function statements and the GMFHS data model. The source

for your definition is one or more RODM load files containing the definition

statements.

This section describes how to define each of the objects you identified in the

previous section to RODM. For each type of object described previously, a

description about how that type of object is defined, the fields that must be

defined for that type of object are identified, and a sample object using the RODM

load function statements is defined. For more information about the RODM load

function statements, see Chapter 10, “Using the RODM Load Function,” on page

239.

You can create the RODM load function statements required to define your

network to GMFHS using an editor, or you can write a program to convert from

your own configuration database format to the format required by the RODM load

function.

Defining Management Objects

Management objects include network management gateways, SNA domains, and

non-SNA domains. Create one NMG_Class object for each network management

gateway. Create one SNA_Domain_Class object for each SNA domain. Create one

or more Non_SNA_Domain_Class objects for each non-SNA domain, depending on

the specific information contained in alerts sent from the domain.

Defining SNA Domains

Define one SNA_Domain_Class object for each SNA domain identified in your

configuration that provides access to service points that are contained in SNA

resources. This object can be displayed in a view; however, the status of

SNA_Domain_Class objects is not maintained by GMFHS.

In the sample network, SNA domain B01NV is defined by the following RODM

load function statement:

-- Create SNA Domain Object for B01NV --

CREATE INVOKER ::= 0000003;

 OBJCLASS ::= SNA_Domain_Class;

 OBJINST ::= MyName = (CHARVAR) ’B01NV’;

 ATTRLIST

 SNANet ::= (CHARVAR) ’NETB’;

END;

The name of an SNA_Domain_Class object in RODM is the 5–character NetView

domain identifier.

In this example, the SNA_Domain_Class object named B01NV is in an SNA

network named NETB. The object name is specified on the OBJINST parameter

and the network name is specified in the field SNANet of the ATTRLIST parameter

associated with the CREATE statement for this object. If you are defining more

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 33

than one SNA domain, the basic information in the definition remains the same for

each domain; you need only provide the name of the object and the SNA network

to which the domain is related.

Defining Network Management Gateways

Create a network management gateway object for each network management

gateway in your network.

In the sample network, network management gateway B3088P2 is defined by the

following RODM load function statement:

-- Create NMG Object for B3088P2 --

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= NMG_Class;

 OBJINST ::= MyName = (CHARVAR) ’B3088P2’;

 ATTRLIST

 Domain ::= (OBJECTLINK)

 (’SNA_Domain_Class’.’B01NV’.’ContainsResource’),

 CommandRouteLUName ::= (CHARVAR) ’B01NV’,

 NMGCharacteristics ::= (ANONYMOUSVAR) x’80’,

 AgentStatusEffect ::= (ANONYMOUSVAR) x’80’,

 TransportProtocolName ::= (CHARVAR) ’COS’,

 WindowSize ::= (INTEGER) 1;

END;

The name of the network management gateway object in RODM is determined as

follows:

v If the gateway uses the common operator services (COS) facilities of the

NetView program to receive commands, the name of the network management

gateway object is the PU or LU name associated with the SNA resource that

contains the service point.

v If the gateway uses PPI interface to deliver commands and receive command

responses and alerts, the network management gateway object name is the

program-to-program interface receiver name associated with the network

management application to which the commands are sent.

v If the gateway uses command processors and procedures running on an OST,

the network management gateway object name can be any name that is unique

for objects of this type.

In this example, the value of the TransportProtocolName field is COS, which

specifies that either an SSCP-PU or an LU-LU session using the common

operations services (COS) architecture is used to transport commands and alerts

between service point B3088P2 and the NetView program. The window size is 1,

specifying that only 1 command can be outstanding against the NMG.

The CommandRouteLUName field is set to B01NV, specifying that commands in

host A01MPU be routed to the service point B3088P2 by a RMTCMD command,

which specifies that the commands are first sent over a NetView-NetView session

to the NetView program residing in host B01MPU. This NetView program sends a

RUNCMD command to service point B3088P2 and routes responses back to the

NetView program in Host A01MPU.

The TransportProtocolName field specifies how GMFHS communicates with the

network management gateway when delivering commands and accepting

responses to commands. Valid values for this field are:

v COS

v PPI

Defining Your Network Configuration to RODM

34 Resource Object Data Manager and GMFHS Programmer’s Guide

v OST

v NONE

Defining Non-SNA Domains

Define one Non_SNA_Domain_Class object for each unique combination of service

point (SP), transaction program (TP), and element management subsystem (EMS)

in your network. The following combinations uniquely specify an object of the

Non_SNA_Domain_Class:

v SP

v SP.TP

v SP.TP.EMS

v TP

v TP.EMS

Note that only the first three entries in the preceding list are valid for the

DOMS010 session protocol.

The value of the DisplayStatus field of an object in the Non_SNA_Domain_Class

represents the status of the command and response communication session

between GMFHS and the transaction program associated with the domain. It does

not indicate whether the transaction program is able to forward alert information

about the domain to GMFHS. For more information about alert handling, see

Chapter 6, “Customizing GMFHS to Process and Receive Alerts and Resolutions,”

on page 167.

In the sample network, Non_SNA_Domain_Class object DECNET is defined by the

following RODM load function statement:

-- Create Non_SNA Domain Object for DECNET --

CREATE INVOKER ::= 0000003;

 OBJCLASS ::= Non_SNA_Domain_Class;

 OBJINST ::= MyName = (CHARVAR) ’B3088P2.NAP.DECNET’;

 ATTRLIST

 EMDomain ::= (CHARVAR) ’DECNET’,

 DomainCharacteristics ::= (ANONYMOUSVAR) x’3672’,

 InitialResourceStatus ::= (INTEGER) 129,

 PresentationProtocolName ::= (CHARVAR) ’DOMP020’,

 SessionProtocolName ::= (CHARVAR) ’PASSTHRU’,

 TransactionProgram ::= (CHARVAR) ’NAP’,

 ReportsToAgent ::= (OBJECTLINK)

 (’NMG_Class’.’B3088P2’.’ReportsOnDomain’); END;

In this example the following field values are specified for the object of the

Non_SNA_Domain_Class:

v The MyName field consists of three names, separated by periods:

– The name of the service point (B3088P2)

– The name of the transaction program (NAP)

– The name of the element management subsystem (DECNET)

The element management subsystem contains only the element management

domain name; DECNET in this example.

v The DomainCharacteristics field specifies:

– The transaction program NAP supports native commands, display status,

activate, and deactivate commands.

– Resource name elements are concatenated with periods building the full name

of the reported-on resource.

– The transaction program returns responses for commands.

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 35

– The soliciting of resource status of real objects in the domain is suppressed.
v The InitialResourceStatus field specifies that a satisfactory status is reported for

resources managed by transaction program NAP until the actual resource status

is reported by alerts or by response to a command.

v The PresentationProtocolName field specifies DOMP020. The DOMP020 protocol

specifies that GMFHS substitutes a command string for each generic command.

GMFHS uses the command string from the object of

GMFHS_Managed_Real_Objects_Class that is the target of the generic command,

or from the object of the Non_SNA_Domain_Class that is the domain of the

target of the generic command. For example, GMFHS substitutes the value of

the ActivateCommandText field when an activate generic command is selected.

v The SessionProtocolName field specifies PASSTHRU, which means that GMFHS

assumes a session exists with the transaction program associated with this

domain.

v The ReportsToAgent field specifies that the domain is associated with the service

point and the NMG_Class object defined for that service point (B3088P2).

Because in this sample the domain is not displayed in any views, no connectivity

is defined for it.

Defining Managed Objects

Managed objects include SNA resources, non-SNA real resources, and aggregate

resources. You can use the SNA topology manager to load SNA objects into

RODM, or you can manually define GMFHS_Shadow_Objects_Class objects using

the process described next. This section describes how to define these resources to

RODM.

Note: Because the alerts sent to the NetView program identify resources that have

changed status, assign names to managed objects that match the names that

are supplied by the alerts. For information about how GMFHS uses resource

names from alerts, see Chapter 6, “Customizing GMFHS to Process and

Receive Alerts and Resolutions,” on page 167.

Defining SNA Resources

Define one object of the GMFHS_Shadow_Objects_Class for each SNA resource

that you want to define to RODM. Although the status of SNA resources is not

stored in RODM, you might want to define SNA resources to RODM for one or

more of the following reasons:

v To show the relationship between SNA and non-SNA resources

v To obtain alert history for SNA resources

v To obtain SNA alert pending user status

In the sample network, the shadow object for SNA host B01MPU is defined by the

following RODM load function statement:

 -- Create GMFHS Shadow Object for SNA Host B01MPU --

 CREATE INVOKER ::= 0000003;

 OBJCLASS ::= GMFHS_Shadow_Objects_Class;

 OBJINST ::= MyName = (CHARVAR) ’NETB.B01MPU’;

 ATTRLIST

 LocateName ::= (INDEXLIST)((CHARVAR) ’NETB.B01MPU’),

 DisplayResourceName ::= (CHARVAR) ’B01MPU’;

 END;

 OP DUIFCLRT INVOKED_WITH (SELFDEFINING)

Defining Your Network Configuration to RODM

36 Resource Object Data Manager and GMFHS Programmer’s Guide

((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Shadow_Objects_Class.NETB.B01MPU’

 (CHARVAR)’Display_Resource_Type_Class.DUIXC_RTS_HOST’);

The name of a shadow object is the SNA network name of the network that

contains the SNA object, a period (.), and the SNA name of the resource. In this

example, the name is NETB.B01MPU.

In this example, the host B01MPU has a DisplayResourceName of B01MPU; this

name is displayed next to the resource in all views that contain the resource. The

shadow object is assigned the DisplayResourceType of DUIXC_RTS_HOST,

indicating that it is an SNA Host.

You do not define the relationships for GMFHS_Shadow_Objects_Class objects

when defining the objects themselves, but do so only after all objects are defined.

Therefore, linkages to other objects are defined later in this section.

Defining Non-SNA Real Resources

Define an object of the GMFHS_Managed_Real_Objects_Class for each non-SNA

real resource you want to define to RODM. The name of this object is used to

correlate alerts received for the resource to the object that represents the resource.

If you have added child classes to the GMFHS_Managed_Real_Objects_Class, you

need to create fields and objects on the child classes instead. Refer to the IBM Tivoli

NetView for z/OS Data Model Reference for more information.

If the object you are defining is to be displayed in predefined network,

configuration, or more detail views using certain layout algorithms, you might

need to define an object of the Layout_Parameters_For_Object_Class for this object.

The definition of the Layout_Parameters_For_Object_Class object is described in

“Defining Layout Parameters for Network, Configuration, and More Detail Views”

on page 46.

In the sample network, minicomputer RALXT1 is a non-SNA real resource residing

in the DEC network. RALXT1 is defined to RODM as a

GMFHS_Managed_Real_Objects_Class object by the following RODM load

function statement:

-- Create a GMFHS Managed Real Object for RALXT1 --

CREATE INVOKER ::= 0000003;

 OBJCLASS ::= GMFHS_Managed_Real_Objects_Class;

 OBJINST ::= MyName = (CHARVAR) ’DECNET.RALV4.RALXT1’;

 ATTRLIST

 DisplayResourceName ::= (CHARVAR) ’RALXT1’,

 Domain ::= (OBJECTLINK)

 (’Non_SNA_Domain_Class’.’B3088P2.NAP.DECNET’.’ContainsResource’),

 DisplayStatusCommandText ::= (CHARVAR)

’DECCMD/00,SHOW NODE RALXT1 SUMMARY’;

END;

OP DUIFCLRT INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Managed_Real_Objects_Class.DECNET.RALV4.RALXT1’

 (CHARVAR)’Display_Resource_Type_Class.DUIXC_RTN_MINI’);

The name of a GMFHS_Managed_Real_Objects_Class object is used to resolve

alerts coming in for the real resource. It consists of the character string specified in

the EMDomain field of the Non_SNA_Domain_Class object representing the

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 37

non-SNA domain in which the real resource resides, and the name of the resource

as known to its transaction program and element management system, separated

by a period.

In this example, minicomputer RALXT1 is associated with

Non_SNA_Domain_Class object B3088P2.NAP.DECNET, and is given a

DisplayResourceType of DUIXC_RTN_MINI. Because the DisplayResourceName

field is specified, the name that appears to the operator in conjunction with this

resource when it is displayed in views is RALXT1.

The link between an object of the GMFHS_Managed_Real_Objects_Class and an

object of the Display_Resource_Type_Class is created by a RODM load function

primitive statement that triggers the DUIFCLRT method. RODM load function

primitive statements are described in “Load Function Primitive Statements” on

page 242. The DUIFCLRT method is described in “DUIFCLRT: Link Resource Type

Method” on page 488.

Defining GMFHS Aggregate Objects

Aggregate objects can be used to group resources into a higher-level resources for

monitoring purposes. You can also use exception views to monitor the resources

directly. For more information, see “Defining Exception View Objects and Criteria”

on page 100.

Define one GMFHS_Aggregate_Objects_Class object for each aggregate object that

you want to display in a view. If you have added child classes to the

GMFHS_Aggregate_Objects_Class, you need to create objects of the child classes

instead. To define a GMFHS aggregate object:

v Specify the composite relationships of the elements of the aggregate object.

v Specify which resources belong to the aggregate object.

v Set up the hierarchies between the aggregation parent and the aggregation

children.

In the sample network, a DEC network is managed through service point B3088P2.

The DEC network is composed of a host, two minicomputers, and two links, as

illustrated in Figure 7 on page 20. An aggregate object, named DEC, is defined to

represent the DEC network. The DEC aggregate object is included in a high-level

view, and its status represents the collective status of the resources it represents.

The GMFHS_Aggregate_Objects_Class object for the network DEC is defined by

the following RODM load function statements:

-- Create a GMFHS Aggregate Object for DEC --

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= GMFHS_Aggregate_Objects_Class;

 OBJINST ::= MyName = (CHARVAR) ’DEC’;

 ATTRLIST

 ThresholdDegraded ::= (INTEGER) 1,

 ThresholdSeverelyDegraded ::= (INTEGER) 2,

 ThresholdUnsatisfactory ::= (INTEGER) 3,

 ComposedOfPhysical ::= (OBJECTLINKLIST)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4’.’IsPartOf’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.RALXT1’.’IsPartOf’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.RALXT2’.’IsPartOf’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.TX02’.’IsPartOf’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.TX12’.’IsPartOf’);

END;

OP DUIFCLRT INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.DEC’

Defining Your Network Configuration to RODM

38 Resource Object Data Manager and GMFHS Programmer’s Guide

(CHARVAR)’Display_Resource_Type_Class.DUIXC_RTN_HOST_AGG’);

OP DUIFCUAP INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Managed_Real_Objects_Class.DECNET.RALV4’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.DEC’);

OP DUIFCUAP INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Managed_Real_Objects_Class.DECNET.RALV4.RALXT1’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.DEC’);

OP DUIFCUAP INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Managed_Real_Objects_Class.DECNET.RALV4.RALXT2’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.DEC’);

OP DUIFCUAP INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Managed_Real_Objects_Class.DECNET.RALV4.TX02’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.DEC’);

OP DUIFCUAP INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Managed_Real_Objects_Class.DECNET.RALV4.TX12’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.DEC’);

The definition of an aggregate object involves two sets of relationships: the

ComposedOfPhysical and IsPartOf relationship, and the AggregationParent and

AggregationChild relationship. The ComposedOfPhysical and IsPartOf relationship

determines which objects are displayed in a view when the operator selects an

object in another view and asks for more detail. The AggregationParent and

AggregationChild relationship determines which real resources are used to

calculate the status of an aggregate resource.

In this example, the ComposedOfPhysical field of the DEC aggregate object is

linked to the IsPartOf fields of the following GMFHS_Managed_Real_Objects_Class

objects:

v DECNET.RALV4

v DECNET.RALV4.RALXT1

v DECNET.RALV4.RALXT2

v DECNET.RALV4.TX02

v DECNET.RALV4.TX12

This ComposedOfPhysical and IsPartOf relationship specifies that GMFHS is to

construct a view consisting of the specified GMFHS_Managed_Real_Objects_Class

objects and display that view at the workstation when the operator selects the DEC

object in a view and asks for more detail.

The DEC aggregate object is assigned a DisplayResourceType of

DUIXC_RTN_HOST_AGG, which indicates that the object represents a non-SNA

aggregate host. The link between an object of the

GMFHS_Aggregate_Objects_Class and an object of the

Display_Resource_Type_Class is created by a RODM load function primitive

statement that triggers the DUIFCLRT method. The DUIFCLRT method is

described in “DUIFCLRT: Link Resource Type Method” on page 488.

The DEC object is an aggregate host that represents the underlying real resources

in the DEC network. An AggregationParent and AggregationChild link is created

between this aggregate parent and its aggregate children by RODM load function

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 39

primitive statements using the DUIFCUAP method. The DUIFCUAP method is

described in “DUIFCUAP: Update Aggregation Path Method” on page 490.

In general, the ComposedOfPhysical and IsPartOf relationship and the

AggregationParent and AggregationChild relationship are used in conjunction;

however, they can be used separately. For example, if you wanted a real resource

to appear in a more detailed view for an aggregate resource but did not want it to

contribute to the status of the aggregate resource, you can define the

ComposedOfPhysical and IsPartOf relationship for the aggregate object and real

object pair, but not define the AggregationParent and AggregationChild

relationship.

As another example, you might want to define a

GMFHS_Managed_Real_Objects_Class object as being composed of other

GMFHS_Managed_Real_Objects_Class objects. Then, when the user selects the first

object and asks for more detail, the objects that are defined as part of the first

object are displayed. Because the first object is not an aggregate object, the

AggregationParent and AggregationChild relationship is not defined in this case.

Defining Connectivity Relationships Between Objects

Connectivity relationships between objects can determine which objects appear in

views and which resources contribute to the status of aggregate objects. With the

exception of relationships involving shadow objects, these connectivity

relationships, described in “Identifying Connectivity Relationships” on page 26, can

be defined when the objects are defined or any time after the objects are defined.

Connectivity relationships that include shadow objects can be defined only after

the shadow objects have been defined. This section illustrates how to define some

of these relationships using examples from the sample network.

Defining Logical Connectivity

Objects can be connected with logical links using the LogicalConnPP field or the

LogicalConnUpstream and LogicalConnDownstream fields of the objects that are to

be connected. In the sample network, the shadow object that represents SNA host

B01MPU is logically connected to the shadow object that represents SNA NCP

B30A54C to create the relationship illustrated in Figure 13 on page 31 by using the

following RODM load function statement:

-- Link Host B01MPU to NCP B30A54C --

OP ’GMFHS_Shadow_Objects_Class’.’NETB.B01MPU’.’LogicalConnPP’

IS_LINKED_TO

’GMFHS_Shadow_Objects_Class’.’NETB.B30A54C’.’LogicalConnPP’;

For each object that is to be linked, the class information for the object, the object

name, and the field that determines the type of link that is being defined needs to

be specified.

Defining Physical Connectivity

Objects can be connected with physical links using the PhysicalConnPP field or the

PhysicalConnUpstream and PhysicalConnDownstream fields of the objects that are

to be connected. In the sample network, non-SNA host RALV4 is physically linked

to link TX-0-2 by using the following RODM load function statements:

-- Link RALV4 to TX-0-2 --

OP ’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4’.’PhysicalConnPP’

IS_LINKED_TO

’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.TX02’.’PhysicalConnPP’;

Defining Your Network Configuration to RODM

40 Resource Object Data Manager and GMFHS Programmer’s Guide

For each object that is to be linked, the class information for the object, the object

name, and the field that determines the type of link that is being defined needs to

be specified.

Defining Parent-Child Relationships

Parent and Child links are defined using the ChildAccess and ParentAccess fields

of the objects that are to be linked. In the sample network, minicomputer RALXT1

is linked to the DEC Host RALV4 in the configuration illustrated in Figure 7 on

page 20 by using the following RODM load function statement:

-- Link RALV4 to RALXT1 --

OP ’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4’.’ChildAccess’

IS_LINKED_TO

’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.RALXT1’.’ParentAccess’;

For each object that is to be linked, the class information for the object, the object

name, and the field that determines whether the object is the parent or the child

needs to be specified.

Defining Views

The following kinds of views can be defined in RODM:

v Exception

v Network

v Configuration

v More detail

When defining view objects, always use the RODM high-level load function

statements. RODM high-level load function statements allow all fields on the object

to be defined before the object is used. If RODM primitive statements are used,

GMFHS might attempt to access information about the view object before all of the

information is defined, and this c result in unexpected errors. For more information

about high-level load function and primitive statements, see to Chapter 10, “Using

the RODM Load Function,” on page 239.

The views that are constructed in RODM are displayed by the NetView

management console. The following sections describe parameters and layout

algorithms that are used by the graphic facility. See Appendix B, “View Layout

Facility,” on page 667 for more information about views.

Defining Exception Views

Exception views are represented by objects in the Exception_View_Class. Create

one object in this class for each exception view you want to display. Use the

NetView management console to display a list of all defined views.

The sample network does not include an exception view. However, sample

DUIFDEXV provides an example of defining exception view objects, and the

RODM load function statements in this section can be used to define an exception

view. Figure 15 on page 42 shows an exception view of all objects in the

GMFHS_Displayable_Objects_Parent_Class that have DisplayStatus of either

severely degraded or unsatisfactory.

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 41

The exception view EXCEPTIONVIEW1 is defined by the following RODM load

function statement:

CREATE INVOKER ::= 0000001;

 OBJCLASS ::= Exception_View_Class;

 OBJINST ::= MyName = (CHARVAR) ’EXCEPTIONVIEW1’;

 ATTRLIST

 Annotation ::= (CHARVAR) ’Monitored by Operator A’,

 ExceptionViewName ::= (CHARVAR) ’EXVIEW1’,

END;

Use the following statement to define all objects of the class

GMFHS_Displayable_Objects_Parent_Class to be in EXCEPTIONVIEW1. Note that

you do not have to define ExceptionViewList fields at the class level. You can also

define the ExceptionViewList field at the object level.

OP ’GMFHS_Displayable_Objects_Parent_Class’..

 ’ExceptionViewList’

HAS_VALUE (INDEXLIST)((CHARVAR) ’EXVIEW1’);

For more information defining objects to exception views, see “Defining Exception

View Objects and Criteria” on page 100.

Defining Network Views

Network views are represented by objects in the Network_View_Class. Create one

object in this class for each network view you want to display. The NetView

management console can display a list of all defined views.

Figure 16 on page 43 shows a network view of the DEC network component of the

sample network. The icon and symbol displayed for each object are determined by

the DisplayResourceType object it is linked to. For example, the resource

DECNET.RALV4.RALXT1 is linked to DUIXC_RTN_MINI. The icon DUIU2N00

and the square-shaped host symbol are specified by DUIXC_RTN_MINI. The name

RALXT1 shown in the view is specified by the DisplayResourceName field of

object DECNET.RALV4.RALXT1.

Figure 15. Exception View of a Network

Defining Your Network Configuration to RODM

42 Resource Object Data Manager and GMFHS Programmer’s Guide

The network view of the DEC network is defined by the following RODM load

function statement:

-- Create Network View for DECNET --

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= Network_View_Class;

 OBJINST ::= MyName = (CHARVAR) ’DECNET’;

 ATTRLIST

 Annotation ::= (CHARVAR) ’DEC NETWORK’,

 LayoutType ::= (INTEGER) 8,

 ConnType ::= (ANONYMOUSVAR) x’80’,

 ContainsObjects ::= (OBJECTLINKLIST)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.RALXT1’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.RALXT2’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.TX02’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4.TX12’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’DECNET.RALV4’.’ContainedInView’);

(’GMFHS_Shadow_Objects_Class’.’NETB.B3088P2’.’ContainedInView’)

END;

In this example, a Network_View_Class object named DECNET is defined to

represent the network view of the DEC network. The Annotation field of the object

is assigned the value DEC NETWORK, which is displayed at the workstation with the

view. The LayoutType field is assigned the value 8, which specifies that the view is

to be displayed in connectivity tree layout. The ConnType field is assigned the

value 80, which specifies that node to node connections are valid for this type of

view, as well as node to link connections. The ContainsObjects field of the

DECNET object is linked to the ContainedInView fields of the managed real objects

that represent the real resources that make up the DEC network.

Defining Configuration Views

Configuration views are created by defining an object to represent the view on one

of the following classes:

View Type Class Defined

Peer Configuration_Peer_View_Class

Physical Configuration_Physical_Connectivity_View_Class

Nu l l connector

B 3 0 8 8 P 2
S e r v i c e p o i n t n o d e

RALV4
Host

Loca l l ink Loca l l ink

T X - 0 - 2

RALXT1
Minicomputer

RALXT2
Minicomputer

T X - 1 - 2

Figure 16. Network View of DEC Network

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 43

Logical Configuration_Logical_Connectivity_View_Class

Backbone Configuration_Backbone_View_Class

Create one object on its respective class for each configuration view you want to

display. Because the sample network contains a configuration peer view, an

example of defining a Configuration_Peer_View_Class object follows. Use a similar

procedure to define objects on any of the other configuration view type classes.

The following configuration views can also be dynamically built views:

v Backbone

v Logical

v Physical

For more information about configuration views, see “Object Discovery Process

Description for Specific Views” on page 94.

Defining Peer Views: Figure 17 is a peer view of the token-ring LAN component.

Peer views are represented by objects in the Configuration_Peer_View_Class.

Create one object in this class for each peer view you want to display.

Figure 17 is a peer view of the token-ring LAN component of the sample network.

The icon and symbol displayed for each object are determined by the

DisplayResourceType object to which it is linked. For example, the aggregate

resource BRIDGE01 is linked to DUIXC_RTN_BRIDGE_AGG. The icon DUIU4N02

and the hexagon-shaped node symbol are specified by

DUIXC_RTN_BRIDGE_AGG. Because BRIDGE01 is an aggregate resource, the

node symbol contains the smaller aggregate symbol as well. The name BRIDGE01

shown in the view is specified by the DisplayResourceName field of object

BRIDGE01.

Note that the sample network defines a real object named LANMGR.BRIDGE01

that also has a DisplayResourceName value of BRIDGE01. The BRIDGE01 in this

view is an object of the GMFHS_Aggregate_Objects_Class.

Null
connec to r

A0488P21
LA N ad ap te r

BRIDGE01
Br idge aggrega te

Nul l connectorNu l l connector

A 04 88P 22
LA N ad ap te r

Nu l l connector

A 0 4 8 8 P 2 3
LA N ad ap te r

TRADPTR
LA N ad ap te r

A 0 4 8 8P 2 5
LA N ad ap te r

A0488P24
LA N ad ap te r

Nu l l connector
Nu l l connector

Nu l l connector

Figure 17. Peer View of Token-Ring Network TRLANNET

Defining Your Network Configuration to RODM

44 Resource Object Data Manager and GMFHS Programmer’s Guide

The configuration peer view of the token-ring LAN network is defined by the

following RODM load function statement:

-- Create Configuration Peer View TRLANNET --

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= Configuration_Peer_View_Class;

 OBJINST ::= MyName = (CHARVAR) ’TRLANNET_Peer’;

 ATTRLIST

 Annotation ::= (CHARVAR) ’Token Ring Network’,

 LayoutType ::= (INTEGER) 4,

 ConnType ::= (ANONYMOUSVAR) x’80’,

 FirstNode ::= (OBJECTLINK)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.10005AC35CA0’.’IsFirstNode’),

 SecondNode ::= (OBJECTLINK)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.10005A95E7CC’.’IsSecondNode’),

 ContainsObjects ::= (OBJECTLINKLIST)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.10005AC35CA0’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.10005A95E7CC’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.10005A89A267’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.10005A966BAB’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.10005A95A08C’.’ContainedInView’)

(’GMFHS_Managed_Real_Objects_Class’.’LANMGR.400076041088’.’ContainedInView’)

(’GMFHS_Aggregate_Objects_Class’.’BRIDGE01’.’ContainedInView’);

END;

In this example, a Configuration_Peer_View_Class object named TRLANNET_Peer

is defined to represent the configuration peer view of the token-ring LAN network.

The Annotation field of the object is assigned the value Token Ring Network; the

LayoutType field is assigned the value 4, which specifies radial layout for

token-ring networks. The ConnType field is assigned value 80, as in the previous

network view example.

When you create a view, you specify the object names of the objects that appear in

the view. The object names in the RODM load function statements in this example

are different from the names shown in Figure 17 on page 44, because the sample

network uses the DisplayResourceName field to specify the name that is displayed

for each resource in the token-ring network. For example, the object

LANMGR.10005AC35CA0 has its DisplayResourceName field set to A0488P21.

The FirstNode field of the TRLANNET_Peer object is linked to the IsFirstNode

field of the object that is to be displayed at the top of the ring in the configuration

peer view. The SecondNode field links to the object that is to be displayed to the

right of the first node in the view. The ContainsObjects field links to the remaining

objects that are to be displayed in the view. These objects are displayed in the view

in the order in which they are defined.

Defining More Detail Views

More detail views are created by defining an object to represent the view on one of

the following classes:

View Type Class Defined

Physical More Detail_Physical_View_Class

Logical More Detail_Logical_View_Class

Create one object on its respective class for each more detail view you want to

display. Note that these views can also be dynamically built views.

The sample network does not include a predefined more detail view. For more

information about more detail views, see “More Detail Views” on page 97.

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 45

Defining Layout Parameters

Layout parameters can be specified for the following types of views:

v Network

v Configuration

v More detail

v Exception

Defining Layout Parameters for Exception Views

The grid layout is the only layout algorithm that can be used with exception

views, and the only view parameter that can be defined for the grid layout

algorithm is layout width. For information about the grid layout algorithm, see

Appendix B, “View Layout Facility,” on page 667.

Defining Layout Parameters for Network, Configuration, and

More Detail Views

When you define a network, configuration, or more detail view, you can specify

the layout algorithm. You do this by specifying a value in the LayoutType field of

the view object you define to represent the view. You can define view objects for

the following classes:

v Network_View_Class

v Configuration_Peer_View_Class

v Configuration_Backbone_View_Class

v Configuration_Logical_Connectivity_View_Class

v Configuration_Physical_Connectivity_View_Class

v More_Detail_Logical_View_Class

v More_Detail_Physical_View_Class

If you do not specify a layout algorithm, the default radial by link type layout

algorithm is used.

For information about choosing the kind of layout algorithm to use and the

advantages and disadvantages of each layout algorithm, see Appendix B, “View

Layout Facility,” on page 667.

Certain layout algorithms require that you provide additional information to help

it lay the view out correctly. Sometimes this information is specified in the fields of

the view object itself; for example, the LinkCrossOptionValue field specifies the

amount of effort the radial layout algorithm is to expend trying to untangle

crossed links. As another example, the FirstNode and SecondNode fields specify

which node is to be placed at the top of the ring, and which node is to be placed

to the right of the top node, in the radial layout algorithm for token rings.

Additional information can also be specified in the fields of

Layout_Parameters_For_Object_Class objects. These objects link a view and an

object that is to be displayed in the view. They specify parameters that apply when

that object is laid out in a particular view by a particular layout algorithm. One

Layout_Parameters_For_Object_Class object can be linked to all objects that have

the same layout parameters.

Examples are the RootNode field, which specifies that the resource linked to this

Layout_Parameters_For_Object_Class object is to be the root node in a connectivity

tree when the connectivity tree layout is used, and the LayoutSequence field,

which specifies for certain layout algorithms where an object linked to this

Layout_Parameters_For_Object_Class object appears in a sequence of objects.

Defining Your Network Configuration to RODM

46 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 3 lists the fields that can be specified on objects of the following classes:

v Network_View_Class

v Configuration_Peer_View_Class

v Configuration_Backbone_View_Class

v Configuration_Logical_Connectivity_View_Class

v Configuration_Physical_Connectivity_View_Class

v More_Detail_Logical_View_Class

v More_Detail_Physical_View_Class

These fields can be optional, required, or not applicable, depending on the layout

algorithm that is being used. Table 3 indicates the optional (O) and required (R)

fields. N/A indicates that the parameter is not applicable for that type of layout

algorithm.

 Table 3. Layout Algorithms and View Parameters

Layout Algorithm

Link

Cross

Option

Value

Bin

Packing

Flag

Bus

Node

First

Node

Second

Node

Layout

Orien-

tation

Default

Row

Spacing

Ellipse

Aspect

Ratio

Width/

Height

Layout

Width

Radial by cluster ID O O N/A N/A N/A N/A N/A N/A N/A

Radial by link type O O N/A N/A N/A N/A N/A N/A N/A

Local area net O O N/A N/A N/A N/A N/A N/A N/A

Token-ring net N/A N/A N/A R R N/A N/A N/A N/A

LAN with central bus N/A N/A R N/A N/A N/A N/A N/A N/A

Hierarchical with

proximity

N/A N/A N/A N/A N/A O O N/A N/A

Single ellipse N/A N/A N/A N/A N/A N/A N/A O N/A

Connectivity tree N/A N/A N/A N/A N/A O O N/A N/A

Grid N/A N/A N/A N/A N/A N/A N/A N/A O

For information about the layout parameters and about the layout algorithms, see

Appendix B, “View Layout Facility,” on page 667.

Layout Parameters: Table 4 lists the layout parameters that can be specified on

Layout_Parameters_For_Object_Class objects and indicates for which type of layout

algorithms the layout parameters are optional (O) or required (R). N/A indicates

that the parameter is not applicable for that type of layout algorithm. For more

information about these layout parameters and the layout algorithms, see

Appendix B, “View Layout Facility,” on page 667.

 Table 4. Layout Algorithms and Layout Parameters

Layout Algorithm

Resource

Layout

Char.

Layout

Sequence

Hierarch.

Priority

Root

Node

Cluster

IDValue

Radial by cluster ID N/A N/A N/A N/A R

Radial by link type O N/A N/A N/A N/A

Local area net N/A O N/A N/A N/A

Token-ring net N/A O N/A N/A N/A

LAN with central bus N/A O N/A N/A N/A

Hierarchical with proximity N/A N/A R N/A N/A

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 47

Table 4. Layout Algorithms and Layout Parameters (continued)

Layout Algorithm

Resource

Layout

Char.

Layout

Sequence

Hierarch.

Priority

Root

Node

Cluster

IDValue

Single ellipse N/A O N/A N/A N/A

Connectivity tree N/A O N/A R N/A

Grid N/A O O N/A N/A

In the sample network, Layout_Parameters_For_Object_Class object LPTRLAN

contains the parameters that specify how aggregate object TRLAN is to be

displayed in network view SAMPNET, as illustrated in Figure 13 on page 31. The

following is the RODM load function statement that defines the LPTRLAN object:

-- Create Layout Parameters for Object TRLAN --

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= Layout_Parameters_For_Object_Class;

 OBJINST ::= MyName = (CHARVAR) ’LPTRLAN’;

 ATTRLIST

 Object ::= (OBJECTLINK)

(’GMFHS_Aggregate_Objects_Class’.’TRLAN’.’LayoutParmList’),

 View ::= (OBJECTLINKLIST)

(’Network_View_Class’.’SAMPNET’.’LayoutParmList’),

 HierarchicalPriority ::= (INTEGER) 4;

END;

The Object field specifies the object to which the layout parameters apply; the

View field specifies the view to which the layout parameters apply. The

HierarchicalPriority field specifies that the TRLAN object is to appear in the fourth

row of the hierarchical layout in the network view.

Layout_Parameters_For_Object_Class object LPB3088P2P contains the parameters

that specify how shadow object NETB.B3088P2 is to be displayed in network view

DECNET, as illustrated in Figure 16 on page 43. The following is the RODM load

function statement that defines the LPB3088P2P layout parameters object:

-- Create Layout Parameters for Object B3088P2 --

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= Layout_Parameters_For_Object_Class;

 OBJINST ::= MyName = (CHARVAR) ’LPB3088P2P’;

 ATTRLIST

 Object ::= (OBJECTLINK)

(’GMFHS_Shadow_Objects_Class’.’NETB.B3088P2’.’LayoutParmList’),

 View ::= (OBJECTLINKLIST)

(’Network_View_Class’.’DECNET’.’LayoutParmList’),

 LayoutSequence ::= (INTEGER) 0,

 RootNode ::= (ANONYMOUSVAR) X’80’;

END;

As in the previous example, the Object and View fields specify the object and the

view to which these parameters are associated. The LayoutSequence field is

assigned the value 0, which specifies that the nodes are to be laid out in no

particular order in the view. The RootNode field specifies that shadow object

NET.B3088P2 is to be displayed as a root node in the connectivity tree.

Defining Layout Parameters for Dynamically Built More Detail

Views

All types of more detail views can be dynamically built. You can specify the layout

of more detail views even though you do not explicitly define the more detail

views. More detail views are created when an NetView management console

Defining Your Network Configuration to RODM

48 Resource Object Data Manager and GMFHS Programmer’s Guide

operator chooses More Detail from a context menu. GMFHS attempts to build the

following more detail views for objects defined in RODM:

v The more detail logical view contains all of the objects specified by the

ComposedOfLogical field of the selected object.

v The more detail physical view contains all of the objects specified by the

ComposedOfPhysical field of the selected object.

v The configuration children II view contains all of the objects specified by the

RelFieldNamesA field of the View_Information_Object_Class object for the

configuration children II view.

v The configuration children III view contains all of the objects specified by the

RelFieldNamesA field of the View_Information_Object_Class object for the

configuration children III view.

If the value of the ComposedOfLogical field or the ComposedOfPhysical field is

null, the corresponding view is not built. Refer to “Understanding Views” in the

IBM Tivoli NetView for z/OS NetView Management Console User’s Guide for

information about displaying more detail views.

You can specify layout parameters for each of the more detail views created from a

selected object. Complete the following steps to specify layout parameters for more

detail views. Figure 18 on page 51 shows the objects (�A�, �B�, and �C�) and links

(�1� and �2�) you create.

1. Select the object for which you want to define more-detail-view layout

parameters. You are defining layout parameters for the more detail views

created when this object is selected in another view.

For this example, select the aggregate object TRLAN (�A�) in the sample

network.

2. Choose the more detail view for which you are defining layout parameters:

more detail logical or more detail physical.

The TRLAN object has valid values for both ComposedOfLogical and

ComposedOfPhysical, so two more detail views are created. For this example,

choose to define layout parameters for the more detail physical view.

3. Create an object of the Layout_Parameters_For_View_Class to represent the

view.

Hint: Layout_Parameters_For_View_Class objects are similar to

Network_View_Class objects.

The following is part of the RODM load function statement that creates the

object (�B�) for this example. The sample member DUIFSNET contains the

complete statements.

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= Layout_Parameters_For_View_Class;

 OBJINST ::= MyName = (CHARVAR)

 ’View_Layout_Parms_For_TRLAN_More_Detail_Physical’;

4. Link the SelectedResource field of the object you created in Step 3 to the

DetailViewLayoutForSelectedResource field of the object you selected in Step 1.

The following is part of the RODM load function statement that creates this

link, shown as �1� in Figure 18 on page 51:

SelectedResource ::= (OBJECTLINKLIST) (’GMFHS_Aggregate_Objects_Class’.

’TRLAN’.’DetailViewLayoutForSelectedResource’),

5. Specify which more detail view type this Layout_Parameters_For_View_Class

object (�B�) represents. You specify the view type by linking the ViewClass field

of this object to the DetailViewLayout field of an object (�C�) in the

View_Information_Reference_Class that represents the view type:

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 49

v More_Detail_Logical_View_Reference

v More_Detail_Physical_View_Reference

v Configuration_Children_II_View_Reference

v Configuration_Children_III_View_Reference

The following is part of the RODM load function statement that creates the link

specifying a more detail physical view, shown as �2� in Figure 18 on page 51:

ViewClass ::= (OBJECTLINKLIST) (’View_Information_Reference_Class’.

’More_Detail_Physical_View_Reference’.’DetailViewLayout’),

6. Specify the layout parameters for the view you are defining. The remaining

fields of the Layout_Parameters_For_View_Class object (�B�) specify the layout

algorithm and other view parameters. Table 3 on page 47 lists the required

parameters for each layout algorithm.

For this example, choose radial layout for token ring networks as the layout

algorithm. Table 3 on page 47 shows that the FirstNode field and SecondNode

field are required for this layout. The following is part of the RODM load

function statement that specifies the layout algorithm and the FirstNode and

SecondNode fields:

LayoutType ::= (INTEGER) 4,

FirstNode ::= (OBJECTLINK) (’GMFHS_Managed_Real_Objects_Class’.

 ’LANMGR.10005AC35CA0’.’IsFirstNode’),

SecondNode ::= (OBJECTLINK) (’GMFHS_Managed_Real_Objects_Class’.

 ’LANMGR.10005A95E7CC’.’IsSecondNode’);

7. If you want to use this same Layout_Parameters_For_View_Class object for

additional objects or views, create additional links. All of the link fields accept

multiple values.

8. If you need to control the layout of individual objects in the more detail view,

define layout parameters for the objects. Some layout algorithms require layout

parameters for the objects: Table 4 on page 47 lists required parameters.

See “Adding Layout Parameters for Objects in More Detail Views” on page 51

for instructions on defining layout parameters.

Defining Your Network Configuration to RODM

50 Resource Object Data Manager and GMFHS Programmer’s Guide

Adding Layout Parameters for Objects in More Detail Views:

Note: You can also define layout parameters for individual objects that appear in

more detail views. You define these layout parameters with

Layout_Parameters_For_Object_Class objects. Links specify which objects

and views the layout parameters apply to. Complete the following steps to

specify layout parameters for more detail views. Figure 19 on page 53 shows

the objects and links you create.

1. Identify the objects in a more detail view that you want to define layout

parameters for. The objects must be specified by the ComposedOfLogical,

the ComposedOfPhysical, or the RelFieldNamesA field of the original

object you specified in Step 1 on page 49 to appear in the more detail

view.

For this example, define layout parameters for the object (�E�)

LANMGR.10005A89A267 of the GMFHS_Managed_Real_Objects_Class.

2. Create an object of the Layout_Parameters_For_Object_Class to represent

the layout parameters for the object when it is in a particular view.

The following is part of the RODM load function statement (not in the

DUIFSNET sample) that creates this object (�D�), shown in Figure 19 on

page 53:

CREATE INVOKER ::= 0000004;

 OBJCLASS ::= Layout_Parameters_For_Object_Class;

 OBJINST ::= Detail_Layout_LANMGR.10005A89A267;

3. Link the Object field of the Layout_Parameters_For_Object_Class object

you created in Step 2 to the DetailLayoutParmList field of the object

represented.

MyName =

More_Detail_Physical_

View_Reference

MyPrimaryParentName =

View_Information_Reference_

Class

DetailViewLayout

MyName = TRLAN

MyPrimaryParentName =

GMFHS_Aggregate_

Objects_Class

DetailViewLayoutFor

SelectedResource

MyPrimaryParentName =

Layout_Parameters_For_

View_Class

SelectedResource

ViewClass

LayoutType = 4

FirstNode

SecondNode

Selected Object New Object

Predefined in GMFHS Data Model

MyName =

View_Layout_Parms_For_

TRLAN_More_Detail_Physical

Figure 18. Defining Layout Parameters for More Detail Views

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 51

In this example, link the Object field of the

Detail_Layout_LANMGR.10005A89A267 object (�D�) to the

DetailLayoutParmList field of the object (�E�) LANMGR.10005A89A267.

The following is part of the RODM load function statement that creates

this link, shown as �3� in Figure 19 on page 53:

Object ::= (OBJECTLINKLIST) (’GMFHS_Managed_Real_Objects_Class’.

’Detail_Layout_LANMGR.10005A89A267’.’DetailLayoutParmList’),

4. Specify the view that these layout parameters apply to:

a. Link the SelectedResource field of the

Layout_Parameters_For_Object_Class object to the

DetailLayoutParmListForSelectedResource field on the object which is

selected to generate this more detail view (the object selected in 1 on

page 49).

In this example, link the SelectedResource field of object (�D�)

Detail_Layout_LANMGR.10005A89A267 to the

DetailLayoutParmListForSelectedResource field of object (�A�)

TRLAN. The following is part of the RODM load function statement

that creates this link, shown as �4� in Figure 19 on page 53:

SelectedResource ::= (OBJECTLINKLIST)

(’GMFHS_Aggregate_Objects_Class’.

’TRLAN’.’DetailLayoutParmListForSelectedResource’),

b. Specify which more detail view type these layout parameters apply

to. You specify the view type by linking the ViewClass field of this

object (�D�) to the DetailLayoutParmList field of an object (�C�) in the

View_Information_Reference_Class that represents the view type:

v More_Detail_Logical_View_Reference

v More_Detail_Physical_View_Reference

v Configuration_Children_II_View_Reference

v Configuration_Children_III_View_Reference

The following is part of the RODM load function statement that

creates the link specifying the more detail physical view, shown as

�5� in Figure 19 on page 53:

ViewClass ::= (OBJECTLINKLIST)

(’View_Information_Reference_Class’.

’More_Detail_Physical_View_Reference’.

’DetailLayoutParmList’),

5. Specify the layout parameters for the object. Table 4 on page 47 lists the

optional and required layout parameters for each layout algorithm.

For this example, the radial layout for token ring algorithm is used.

Table 4 on page 47 shows that the LayoutSequence field is the only

optional parameter you can specify. Specify a value of 3 for the

LayoutSequence field of this object (�D�). The following is part of the

RODM load function statement that sets the value of the

LayoutSequence field:

LayoutSequence ::= (INTEGER) 3;

6. If you want to use this same Layout_Parameters_For_Object_Class object

for additional objects or views, create additional links. All of the link

fields accept multiple values.

For example, use this same object to define the layout parameters for

object LANMGR.10005A89A267 when it is in the more detail physical

view generated when an object of the GMFHS_Aggregate_Objects_Class

named OTHER_AGG is selected (OTHER_AGG is not part of the sample

network). Create a link from the SelectedResource field of object

Defining Your Network Configuration to RODM

52 Resource Object Data Manager and GMFHS Programmer’s Guide

Detail_Layout_LANMGR.10005A89A267 to the

DetailLayoutParmListForSelectedResource field of object OTHER_AGG.

The following is a RODM load function primitive statement that creates

this link:

OP ’Layout_Parameters_For_Object_Class’.

 ’Detail_Layout_LANMGR.10005A89A267’.’SelectedResource’

IS_LINKED_TO ’GMFHS_Aggregate_Objects_Class’.’TRLAN’.

 ’DetailLayoutParmListForSelectedResource’;

MyName =
More_Detail_Physical_
View_Reference

MyPrimaryParentName =
View_Information_Reference_
Class

MyName = TRLAN

MyPrimaryParentName =
GMFHS_Aggregate_
Objects_Class

DetailViewLayoutFor
Selected Resource

MyName =
View_Layout_Parms_For_
TRLAN_More_Detail_Physical

MyPrimaryParentName =
Layout_Parameters_For_
View_Class

SelectedResource

ViewClass

LayoutType = 4

FirstNode

SecondNode

Selected Object New Object

Predefined in GMFHS Data Model

DetailLayoutParmList
ForSelectedResource

DetailViewLayout

New Object

MyName = Detail_Layout_
LANMGR.10005A89A267

MyName =
LANMGR.10005A89A267

MyPrimaryParentName =
GMFHS_Managed_Real
Objects_Class

DetailLayoutParmList

Object in View

MyPrimaryParentName =
Layout_Parameters_For_
Object_Class

Object

DetailLayoutParmList
SelectedResource

ViewClass

LayoutSequence

Figure 19. Defining Layout Parameters for Objects in More Detail Views

Defining Your Network Configuration to RODM

Chapter 2. Defining Your Network to GMFHS 53

Putting It All Together

After you have defined the objects that represent your configurations and

networks, load them into RODM using the RODM load function. Chapter 3,

“Loading the GMFHS Data Model,” on page 55 contains directions for doing this.

You need to load the class definition before you load the definitions of the objects

of that class. By the same token, you need to define objects that are to be linked

before you can actually link them. Use the load function statements in sample

member DUIFSNET as an example of the order to follow. The objects and links in

the sample network are arranged for loading in the following order:

 1. SNA_Domain_Class objects

 2. GMFHS_Shadow_Objects_Class objects

 3. NMG_Class objects

 4. Non_SNA_Domain_Class objects

 5. GMFHS_Managed_Real_Objects_Class objects

 6. GMFHS_Aggregate_Objects_Class objects

 7. Linkages among objects

v Logical links

v Physical links

v Parent/Child links
 8. Exception_View_Class objects

 9. Network_View_Class objects

10. Configuration_Peer_View_Class objects

11. Layout_Parameters_For_View_Class objects

12. Layout_Parameters_For_Object_Class objects

Note: Although the sample network defined in sample load file DUIFSNET does

not include an exception view, it is included in the preceding list in the

position that it must be loaded.

Study the network in the sample load file DUIFSNET carefully before defining

your own network. For information about RODM load function syntax, see

Chapter 10, “Using the RODM Load Function,” on page 239.

Defining Your Network Configuration to RODM

54 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 3. Loading the GMFHS Data Model

This chapter describes how to load the GMFHS and SNA topology manager data

models, your network definition, and methods into RODM. This chapter also

describes how to make additions, changes, or deletions to objects when GMFHS is

active.

The GMFHS class structure is provided in RODM load function input file,

DUIFSTRC, which is shipped with the NetView program.

The class structure for the SNA topology manager is provided in RODM load

function input files, FLBTRDMx, which is also shipped with the NetView program.

For more information about the FLBTRDMx load function input files, refer to IBM

Tivoli NetView for z/OS Installation: Configuring Graphical Components.

DUIFSTRC and all of the FLBTRDMx input files are loaded using sample

CNMSJH12. Both the DUIFSTRC and all of the FLBTRDMx input files must be

loaded for GMFHS operation. Note that input file DUIFSTRC must be loaded

before any FLBTRDMx input files are loaded. This is the order specified in sample

CNMSJH12 and it must not be changed.

Loading the Data Models and Network Definitions

With RODM running, use sample CNMSJH12 to load the GMFHS data model and

your network definition.

1. Create RODM statements to define your non-SNA network. See Chapter 2,

“Defining Your Network to GMFHS,” on page 17 for information about how to

define your network to RODM.

2. Update the sample job CNMSJH12 as follows:

a. Change the JOB statement to specify your installation’s accounting

information.

b. Enter the names of the RODM load files that were created in Step 1 into the

EKGIN1 DD statement on the last line of the sample. For example, if your

object definitions are in the data set NETVIEW.V5R3M0.MYDEFS(OBJECTS),

the last line of CNMSJH12 is:

// DD DSN=NETVIEW.V5R3M0.MYDEFS(OBJECTS),DISP=SHR

c. Replace RODMNAME with the name of your RODM in the EXEC statement.
3. Ensure that RODM is running.

4. Start CNMSJH12.

5. Start GMFHS.

Changing Network Definitions When GMFHS Is Running

If GMFHS is running when non-SNA objects are to be added, changed, or deleted

in the RODM data cache, the GMFHS CONFIG command might be required. The

GMFHS CONFIG command identifies, to GMFHS, the scope of the changes and

the type of processing needed to respond to them.

Subarea resources that are managed by SNA topology manager can be changed

anytime without using the GMFHS CONFIG commands.

© Copyright IBM Corp. 1997, 2007 55

|

Notes:

1. NMGs and domains can be added dynamically without using the GMFHS

CONFIG command. See “Adding NMGs and Domains When GMFHS Is

Active” on page 58 for more information.

2. When you change the GMFHS data stored in RODM while GMFHS is active,

you might get unpredictable results until the appropriate GMFHS CONFIG

command is issued and completes.

The three GMFHS CONFIG command types are: DOMAIN, NETWORK and VIEW.

The following sections list which GMFHS CONFIG command to issue based on the

field and class you are changing:

DOMAIN

Used when the changes include changing the association of

GMFHS_Managed_Real_Objects_Class objects with

Non_SNA_Domain_Class objects, but do not include changes that require

that the GMFHS CONFIG NETWORK command be used. See the NetView

online help for details on the behavior of the CONFIG DOMAIN

command.

NETWORK

Used only when the changes being made include changes to information

that describes the characteristics and structure of the NMGs and domains.

VIEW Not needed, has been left in only for migration purposes.

The GMFHS CONFIG command also has a LOAD parameter. If the default

LOAD=NO is specified with CONFIG VIEW, no operation is performed. For

CONFIG DOMAIN and NETWORK, if the default LOAD=NO is specified, all

command processing is completed except for the invocation of the RODM load

function. For example, if the contents of the cache are changed by running the

RODM load function by job posting or by some RODM application other than

GMFHS, use the GMFHS CONFIG command with LOAD=NO specified. This

causes the processing within GMFHS, required for the changes, to be completed.

If LOAD=YES is specified, the RODM load function is run as part of the command

processing. If the INDD=ddname the data set or sets identified by ddname will be

passed to the RODM load function as the input. If the INDD parameter is not

specified the default is EKGIN3.

Note: Use the GMFHS CONFIG command with caution. This command can

reinitialize some RODM objects that are under one or more non-SNA

domains. This can result in significant CPU utilization depending on the

number of real objects that are defined. The amount of CPU utilization can

be similar to the amount used when GMFHS was initially started.

See the NetView online help for more information about the GMFHS CONFIG

command.

Selecting the Required GMFHS CONFIG Command

The following tables show which GMFHS CONFIG command is required when

objects in the RODM cache have their field values changed. To determine what

CONFIG command must be used, use the first of the following rules that applies:

v If any object field change being made requires a CONFIG NETWORK command,

use that command.

56 Resource Object Data Manager and GMFHS Programmer’s Guide

v If any object field change requires a CONFIG DOMAIN command, use that

command.

v Finally, if the field is not listed, no CONFIG command is required for any of the

object additions or deletions or object field value changes being made. However,

issue the RODM CHKPT command after the completion of the RODM load

function job. This causes a new checkpoint image of the RODM cache to be

written so that it is available for cache recovery if needed.

There is no separate table provided for the addition or deletion of the objects

themselves. This is because, with the exception of SNA Domain objects, a new

object has no effect until it is linked to another object, and an object cannot be

deleted until all of its links to other objects have been deleted. The establishment

and deletion of object links is done by changing field values for fields with data

type OBJECTLINK or OBJECTLINKLIST. Changes to fields of these types are

covered by the tables.

Non_SNA_Domain_Class Changes

Table 5 shows which GMFHS CONFIG command to use when changing a field of

an object in the Non_SNA_Domain_Class.

 Table 5. GMFHS CONFIG Command for Non_SNA_Domain_Class Objects

Field GMFHS CONFIG Command

AlertProc NETWORK

CommandTimeoutInterval NETWORK

ContainsResource NETWORK, DOMAIN (see note)

DomainCharacteristics NETWORK

DomainCharacteristics2 NETWORK

EMDomain NETWORK

InitialResourceStatus NETWORK

PresentationProtocolName NETWORK

ReportsToAgent NETWORK

SessionProtocolName NETWORK

TransactionProgram NETWORK

WindowSize NETWORK

Note: The ContainsResource field of Non_SNA_Domain_Class objects can specify either

GMFHS-managed real resources or GMFHS-NMG objects that belong to the domain. If the

Resources field of the non-SNA Domain object is linked to the Domain field of a

GMFHS-NMG object, use the CONFIG NETWORK command. If only GMFHS-managed real

resources are being linked to or unlinked from non-SNA domain objects, the CONFIG

DOMAIN command can be used. See the NetView online help for a complete description of

the CONFIG DOMAIN command before you use it.

SNA_Domain_Class Changes

Table 6 shows which GMFHS CONFIG command to use when changing a field of

an object in the SNA_Domain_Class. Issue the GMFHS CONFIG NETWORK

command when you create or delete an object of the SNA_Domain_Class.

 Table 6. GMFHS CONFIG Command for SNA_Domain_Class Objects

Field GMFHS CONFIG Command

ContainsResource NETWORK

Chapter 3. Loading the GMFHS Data Model 57

Table 6. GMFHS CONFIG Command for SNA_Domain_Class Objects (continued)

Field GMFHS CONFIG Command

SNANet NETWORK

NMG_Class Changes

Table 7 shows which GMFHS CONFIG command to use when changing a field of

an object in the NMG_Class.

 Table 7. GMFHS CONFIG Command for NMG_Class Objects

Field GMFHS CONFIG Command

AgentStatusEffect NETWORK

CommandRouteLUName NETWORK

Domain NETWORK

NMGCharacteristics NETWORK

ReportsOnDomain NETWORK

TransportProtocolName NETWORK

WindowSize NETWORK

GMFHS_Managed_Real_Objects_Class Changes

Table 8 shows which GMFHS CONFIG command to use when changing a field of

an object in the GMFHS_Managed_Real_Objects_Class.

 Table 8. GMFHS CONFIG Command for GMFHS_Managed_Real_Objects_Class Objects

Field GMFHS CONFIG Command

Domain DOMAIN (see note)

Note: If only GMFHS-managed real resources are being linked to or unlinked from

non-SNA domain objects, the CONFIG DOMAIN command can be used. See the NetView

online help for a complete description of the CONFIG DOMAIN command before you use

it.

Adding NMGs and Domains When GMFHS Is Active

NMGs and non-SNA domains can be added to RODM while GMFHS is running

without using the GMFHS CONFIG command. Use the following guidelines when

defining the objects in RODM.

v Set the appropriate bit to indicate that you want to dynamically add an NMG or

non-SNA domain.

v Set the appropriate bit in the DomainCharacteristics field to indicate that you do

not want GMFHS to apply initial or unknown status to resources under a

non-SNA domain.

Note: This only applies when GMFHS initially processes the NMG or non-SNA

domain. GMFHS applies initial and unknown status normally for all

subsequent processing.

v If you do not want GMFHS to solicit resource status for a non-SNA domain, set

the appropriate bit in the DomainCharacteristics field.

v Link an NMG to a non-SNA domain after the NMG and domain have been

defined in RODM. GMFHS uses this link as a signal to start processing a new

NMG or domain.

58 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 4. Communicating with Network Management

Gateways

This chapter describes how GMFHS communicates with network management

gateways (NMGs). The NMGs send status information about non-SNA networks to

GMFHS. GMFHS sends commands for the non-SNA networks to the NMGs.

Non-SNA resources are associated with a non-SNA domain in GMFHS. When you

define non-SNA domains to GMFHS, you specify the NMG that owns each

non-SNA domain and its associated resources. You also specify how GMFHS

communicates with the NMG.

The clock on the workstation on which the NMG is running needs to be

synchronized with the clock on which the host GMFHS is running. The DOMP010

presentation protocol synchronizes these clocks. For other presentation protocols,

create your own routine to synchronize the clocks. If the NMG is running on the

OS/2® operating system with Remote Operations Service installed, issue a

RUNCMD from NetView to set the workstation clock using the ROP services.

Refer to the Service Point Application Router and Remote Operations Service Guide for

information about using the ROP services. If the clocks are not synchronized,

GMFHS might not process alerts correctly.

Use this chapter to help you select the correct values for the following GMFHS

fields:

v PresentationProtocolName

v SessionProtocolName

v TransportProtocolName

This chapter also helps you select the correct values for some of the bits of the

DomainCharacteristics field.

You can also use this chapter to understand what GMFHS expects from an NMG.

You need this information to create your own service points or NMGs.

Finally, this chapter describes the differences between NETCENTER protocols and

GMFHS protocols. If you are migrating from NETCENTER, use this chapter to

understand how to use your existing NMGs with GMFHS.

Table 9 shows the values for the three GMFHS protocol fields for typical NMGs.

 Table 9. GMFHS Protocol Values for Typical NMGs

NMG name

Presentation

ProtocolName

Session

ProtocolName

Transport

ProtocolName

LAN Network

Manager

DOMP020 PASSTHRU COS

NAP DOMP010 DOMS010 COS

NetView OST1 DOMP020 PASSTHRU OST

NetView OST PASSTHRU PASSTHRU OST

NetView/PC DOMP010 DOMS010 COS

© Copyright IBM Corp. 1997, 2007 59

Table 9. GMFHS Protocol Values for Typical NMGs (continued)

NMG name

Presentation

ProtocolName

Session

ProtocolName

Transport

ProtocolName

NetView PPI NONE NONE PPI

NetView/6000 V1 DOMP020 PASSTHRU COS

NetView/6000 V2 DOMP010 DOMS0102 COS

NetView for AIX V3 DOMP010 DOMS0102 COS

NetView for AIX V4 DOMP010 DOMS0102 COS

Open Topology

Interface Agent3

DOMP010 NONE COS

PPI DOMP020 PASSTHRU PPI

:

1 Use the DOMP020 presentation protocol if you want to use parameter substitution.

2 See “Session Establishment for NetView/6000 V2, NetView for AIX V3, NetView for

AIX V4, and DOMS010” on page 77 for more information.

3 IBM Tivoli NetView for z/OS Open Topology Interface Agent.

Remember that this table lists typical values for the protocol parameters. Other

combinations of parameter values are possible and the values you use depend on

what your NMGs support.

Defining Non-SNA Presentation Protocol

The presentation protocol translates commands to and from the syntax used by the

element management system. The translation is done according to the rules for the

domain associated with the resource that is the target of the command.

The PresentationProtocolName field of the Non_SNA_Domain_Class object

specifies which protocol is used for the non-SNA domain. The valid protocol

names are:

v DOMP010

v DOMP020

v PASSTHRU

v NONE

DOMP010 Presentation Protocol

The DOMP010 protocol enables generic commands to be translated for delivery to

the gateway associated with the domain and also enables the responses to

commands formatted using the DOMP010 protocol to be translated to

DisplayStatus. The DisplayStatus is reflected in the appearance of objects in the

views. Native and resource-specific commands can also be delivered using the

DOMP010 protocol supported by the native-element manager or transaction

program associated with the domain.

The DOMP010 presentation protocol specifies that the command messages and

command response messages from the NMG are formatted according to the rules

described in “DOMP010 Formatting Rules” on page 63.

The DOMP010 protocol provides translation of the following types of commands:

v Generic commands:

– Activate

– Display Abnormal Status

60 Resource Object Data Manager and GMFHS Programmer’s Guide

– Display Status

– Inactivate

– Reconfigure

– Recycle
v Session protocol commands

v Native and resource-specific command text

The DOMP010 protocol also provides for the translation of command responses

from native element managers for any command.

For native commands, DOMP010 performs parameter substitution on the

command entered by the operator. GMHFS replaces the tokens in the command as

follows:

Token Action taken by GMFHS

%APPL%

Replace with the value of the TransactionProgram field of the

Non_SNA_Domain_Class object.

%DOMAIN%

Replace with the value of the EMDomain field of the

Non_SNA_Domain_Class object.

%RESOURCE%

Replace with the value of the MyName field of the resource.

%SPNAME%

Replace with the value of the MyName field of the NMG_Class object.

%TYPE%

Replace with the value of the TypeName field of the

Display_Resource_Type_Class object associated with the resource.

GMFHS accepts the following parameters in native OST text:

v %RESPONSE%

v %NORESPONSE%

The %RESPONSE% parameter forces all valid command responses to be returned

to the workstation. The %RESPONSE% parameter overrides the Response Expected

bit of the Non_SNA_Domain_Class DomainCharacteristics field. The

%NORESPONSE% parameter forces the native command to be issued at the OST

console, and no response is returned to the workstation.

The DOMP010 protocol is similar to the NETCENTER NSI1 presentation protocol,

but the DOMP010 protocol provides some enhancements. If you do not want to

use these enhancements, set bit 13 on in the DomainCharacteristics field of the

Non_SNA_Domain_Class object. GMFHS does not support the NETCENTER

generic Enable and Disable commands. For a more complete description of the

differences between GMFHS and NETCENTER, see “Migrating from NETCENTER

Protocols to GMFHS Protocols” on page 85.

The DOMP010 presentation protocol is only applicable on COS and

program-to-program interface NMGs.

DOMP020 Presentation Protocol

The DOMP020 protocol enables generic commands to be translated for delivery to

the NMG associated with the domain. The DOMP020 protocol supports native and

Chapter 4. Communicating with Network Management Gateways 61

resource-specific command text. Responses to these commands are returned

unchanged to the command response window of the originating workstation.

GMFHS does not extract status information from these responses.

The text of generic commands is retrieved from RODM. GMFHS requests the

command text from the GMFHS_Managed_Real_Objects_Class object that

represents the target of the command. If this object does not define the command

text, GMFHS then requests the command text from the Non_SNA_Domain_Class

object that represents the domain of the command’s target. The Display Abnormal

Status and Reconfigure generic commands are valid only if the target of the

command is an object of the Non_SNA_Domain_Class. The fields used for generic

commands follow:

Generic Command GMFHS Field

Activate ActivateCommandText

Deactivate DeactivateCommandText

Display Abnormal Status DisplayAbnormalStatusCommandText

Display Status DisplayStatusCommandText

Reconfigure ReconfigureCommandText

Recycle RecycleCommandText

When GMFHS locates the command, it performs parameter substitution. GMFHS

looks for any of the following tokens in the command, and replaces them as

follows:

Token Action taken by GMFHS

%APPL% Replace with the value of the TransactionProgram field of the

Non_SNA_Domain_Class object.

%DOMAIN%

Replace with the value of the EMDomain field of the

Non_SNA_Domain_Class object.

%RESOURCE%

Replace with the value of the MyName field of the resource.

%SPNAME%

Replace with the value of the MyName field of the NMG_Class object.

%TYPE%

Replace with the value of the TypeName field of the

Display_Resource_Type_Class object associated with the resource.

Note: Display Abnormal Status and Reconfigure commands pertain only to

domains; therefore only the domain object is searched for the command text.

The DOMP020 protocol is used with all NMG types. The gateways allow

commands to be delivered to the OST associated with a workstation operator or to

the central site NetView primary program operator interface task (PPT) if the

command is from GMFHS. The command procedure or processor that is run for

the command might directly or indirectly generate an alert. The alert reports the

resulting resource status.

PASSTHRU Presentation Protocol

The PASSTHRU protocol specifies that native network command text entered by a

workstation operator passes directly to the native element management system

unchanged, and that native network command response text returns to the

workstation operator without interpretation by GMFHS.

62 Resource Object Data Manager and GMFHS Programmer’s Guide

The PASSTHRU presentation protocol specifies that the actual text of the

commands is retrieved from RODM. The differences between PASSTHRU and

DOMP020 are that PASSTHRU does not support generic commands and does not

perform parameter substitution.

NONE Presentation Protocol

Specify NONE for the PresentationProtocolName value for a domain if commands

are not sent to the NMG associated with the domain. For example, specify NONE

when domains are defined to only receive alerts for the resources they contain.

Output Formatting For All Presentation Protocols

This section describes output formatting for the DOMP020 and PASSTHRU

protocols and for the DOMP010 protocol.

DOMP020 and PASSTRU Output Formatting

If the NMG is using the COS transport protocol, the subvector 31 contains the

response to a RUNCMD. The response in subvector 31 is formatted as follows:

when the native element manager sends multiple lines of response text to GMFHS,

each line of response text must be put in a separate subvector 31. This ensures that

each separate line of response text is displayed in the workstation’s Command

Responses window as a separate line of text.

DOMP010 Output Formatting

Each separate line of text in a multiple line response is preceded by a separate text

keyword (TX). See “Text—TX” on page 71 for more information about the use of

the TX keyword for the DOMP010 protocol.

DOMP010 Formatting Rules

This section describes the format of the textual data contained in either the

commands for COS NMGs or the data delivered to program-to-program interface

NMGs. In this section, the term packet refers to the information in these subvectors.

General Packet Format

A packet is made up of one or more comma-delimited keyword parameters. These

parameters perform such functions as identifying the command or response. All

values in the text packet are displayable characters.

v In the NetView/PC API/CS environment, the displayable characters are coded

in ASCII.

v In the SNA network, the characters are coded in displayable EBCDIC.

NetView/PC API/CS performs the necessary code set translations.

Each parameter has the following general format:

keyword=value

Each keyword is 2 - characters long, and the equal sign is always present. The

value is of variable length. For example, if CP is a keyword that has the value

MINIA, the keyword parameter is:

CP=MINIA

Keyword values can be made up of more than one data item, delimited with

commas and surrounded by one set of parentheses, for example:

CP=(MINIA,MINIB)

Chapter 4. Communicating with Network Management Gateways 63

In a typical packet, several keyword parameters are specified. The keyword

parameters are also delimited by commas, for example:

CM=AE,SQ=10,DM=DOMAIN,CP=(MINIA,MINIB)

RP=AE,SQ=10,DM=DOMAIN,CP=MINIA,ST=U,TM=930601120000,CP=MINIB,ST=U,TM=930601120000,

In most cases, the order of the individual parameters is unimportant. Exceptions to

this rule are noted in the descriptions of the keywords.

Keyword and Value Definitions

The packet keywords and their descriptions follow:

Keyword Description

CE Command execution

CM Command identifier, required for commands

CP Component identifier

DM Domain identifier

PT Protocol text

RN Reason

RP Response identifier, required for responses

SN Command sender identifier

SQ Message sequence number, required for commands and responses

ST Status identifier

TM Time stamp

TX Native command or response text

The following sections describe each keyword and its values.

Command Execution—CE

The command execution status keyword (CE) indicates a failure to successfully run

a command. It differs from a negative response (RP=X) in that the negative

response applies to the entire command. A command execution failure applies to a

subset of the command.

The keyword values for CE are value lists contained in a text string. The values are

the same as those for the reason (RN) keyword. See “Reason—RN” on page 67 for

these values.

When the command is Display Status (CM=D) or Display Abnormal Status

(CM=A), and the statuses of more than one component are carried in the response,

a command execution failed for any one of the components. This is indicated by

the following:

CP=component_name,ST=X,CE=(reason text)

The same command response carries the status of those components for which the

command was successful. If command execution fails for each component

individually, the CE keyword and ST=X are returned for each component.

Note: The use of ST=X, is required, and indicates that any status already reported

for this component is still in effect.

The CE keyword is position dependent. CE must follow the CP keyword for its

subject component, and precede any other components. That is, the CP and CE

pair for a given component must not be split by another CP keyword.

The CE keyword is supported for Display Status and Display Abnormal Status

commands (CP=A and CP=D).

64 Resource Object Data Manager and GMFHS Programmer’s Guide

Command—CM

The command keyword, CM, is the command issued to the element manager. This

keyword is required on any packet sent from the host to an element manager.

CM values have a two-part definition:

v The first byte of the value is the command type. The command type classifies

the type of command you issue to the non-SNA device. The following list

describes the command types.

Value Description

A Display abnormal status

C Reconfigure domain

D Display status for a named resource or resources

I Inactivate resource

N Native command

P Protocol message

R Recycle resource

V Activate resource

X Negative response
v The second byte is the continuation.

The continuation byte is used in conjunction with command types that can

require multiple responses.

Value Description

E This is either an initial request or the last response to an initial request.

M This is either a continuation request or not the last response when

multiple responses are required to service an initial request.
For more information about the importance of the continuation byte, see

“Multiple-Response Protocol” on page 73.

Component ID—CP

The component ID provided by the CP keyword must match the resource portion

of the MyName value of a GMFHS_Managed_Real_Resource object in the RODM

data cache. For example, if the MyName of the resource is OTTAWA.MINIA,

specify CP=MINIA.

You can specify multiple resources with one CP keyword by using a value list. For

example, if three resources are included in one command, the CP keyword is:

CP=(MINIA,MINIB,MINIC)

Note: Command responses use multiple CP values, rather than a component ID

list, if the response is for multiple resources.

The size of the CP keyword value depends on the following:

v The type of NMG containing the element manager

v The size of required keywords in the command

v The size of optional keywords in the command

The maximum command size depends on the NMG type. The maximum size can

be one of the following:

v 240 characters for the COS gateway

v 256 characters for OST gateways

v 253 characters for program-to-program interface gateways

Chapter 4. Communicating with Network Management Gateways 65

To determine the valid maximum size of the resource names in the CP keyword,

do the following:

1. Add the number of characters in the base command and the number of

characters in the CP keyword syntax.

2. Subtract that total from the maximum length that the NMG supports.

For example, the following command contains 24 characters:

CM=DE,SQ=5,DM=DOMAIN,CP=aaa

Therefore, the maximum size of the resource name aaa is 216 characters for the

COS gateway, 232 characters for OST gateways, and 229 characters for

program-to-program interface gateways.

The following command contains 28 characters:

CM=DE,SQ=5,DM=DOMAIN,CP=(aaa,bbb,ccc)

Therefore, the maximum size of the resource names aaa, bbb, and ccc is 212

characters for the COS gateway, 228 characters for OST gateways, and 225

characters for program-to-program interface gateways.

If you specify multiple components in the command and the size of the command

exceeds the maximum, GMFHS automatically reduces the number of resources in

the command to reduce the command size.

Domain—DM

The domain keyword, DM, specifies the non-SNA domain of a resource when

multiple non-SNA domains are supported. The domain keyword is optional.

DM signifies the domain in which the GMFHS associates a resource specified with

the CP keyword. DM needs to match the EMDomain field of the

Non_SNA_Domain_Class object. For example, if the MyName of the resource is

OTTAWA.MINIA, the keyword parameter format is:

DM=OTTAWA

The DM value can be up to 8 characters in length.

Protocol—PT

The protocol keyword, PT, is used when a command identifier (CM) or response

identifier (RP) command type equals protocol command (P); for example, CM=PE

(E is the continuation byte).

The PT values are protocol commands that control the communication session

between two cooperating processes: on the host, and on the target of the command

(the native element manager). Because all commands require responses, any

protocol command request must have a protocol-type response.

Table 10 lists the defined PT values and displays the session protocol commands

used for the DOMS010 protocol.

 Table 10. Protocol Command Values

Protocol Command Meaning

SESSION_REQUEST Sent by GMFHS to the element manager to request that a

session be established.

66 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 10. Protocol Command Values (continued)

Protocol Command Meaning

SESSION_REQUEST_ACCEPT A response acknowledging a SESSION_REQUEST protocol

command. This command does not indicate that a session is

established.

INIT_ACCEPT Returned by GMFHS to acknowledge receipt of the INIT

alert.

INIT_ACCEPT_ACCEPT A response acknowledging the INIT_ACCEPT protocol

command.

SET_CLOCK Sent by GMFHS after it receives the

INIT_ACCEPT_ACCEPT protocol command and if the

SET_CLOCK protocol command is supported by the

domain’s native element manager. This message is sent only

if the support set clock bit is set to ″on″ in the

DomainCharacteristics field.

SET_CLOCK provides the current local time in its TM

parameter value. This message is issued every 24 hours for

as long as the session remains active.

SET_CLOCK_ACCEPT Returned by the native element manager to acknowledge

the SET_CLOCK protocol command.

Note: The values for the PT keyword in commands coming from GMFHS are lowercase.

GMFHS is not case-sensitive on the response values.

For example, if the GMFHS is responding to an INIT alert from the NMG, the

format of the packet is:

CM=PE,DM=DURHAM,SQ=7,PT=(INIT_ACCEPT)

The response to the INIT_ACCEPT is:

RP=PE,DM=DURHAM,SQ=7,PT=(INIT_ACCEPT_ACCEPT)

If the SET_CLOCK protocol command is supported, GMFHS sends it to the NMG

every 24 hours, allowing the NMG to set its clock to the correct time. The current

time is carried by the TM keyword and accounts for the NMG’s offset specified in

the INIT alert. For example:

CM=PE,SQ=8,DM=DURHAM,PT=(SET_CLOCK),TM=930101120000

RP=PE,SQ=8,DM=DURHAM,PT=(SET_CLOCK_ACCEPT)

See “Session Establishment for DOMS010” on page 76 for more information about

these protocols.

Reason—RN

The reason keyword (RN) indicates why a request was not honored. RP=XE is

always used with the RN keyword.

The reason value is a text string in value list format. For example:

RN=(execution node inaccessible)

Chapter 4. Communicating with Network Management Gateways 67

Table 11 lists the supported text values.

 Table 11. Reason Values

Value Description

Aborted An error occurred prohibiting the completion of a request

(failure in memory, CPU, disk, and so on).

Canceled The request was canceled before it can be completed.

Component unknown The target component is unknown.

Currently not allowed The command type is supported but cannot be run by the

target component at this time.

Execution node inaccessible The target node that runs the requested command is not

accessible.

Failed The command processing completed, but failed to achieve

the expected results (ACTIVATE did not result in the

component becoming active).

Invalid command ID The command type is not valid.

Invalid parameter A keyword parameter was incorrect and prohibited the

execution of the command.

No resources There were insufficient resources available to run the request

(memory, CPU, disk, and so on).

Not allowed The command type is supported but is not allowed for the

target component.

Not supported The command type is not supported by the entity

processing the command.

Preempted The request was preempted by another process before it can

be completed.

Timed out The request timed out before a valid response can be

processed.

Note: GMFHS is not case-sensitive on the response values.

Response—RP

The response keyword, RP, identifies a command response packet. The response

keyword values are the same as described for the command keyword, CM, under

“Command—CM” on page 65. RP values also use the continuation byte as

described in the CM values.

For example, if you issue a Display Status command for a single component, the

response is positive and no continuation message is required. The format of the

keyword parameter is:

RP=DE,SQ=5,DM=DOMAIN,CP=MINIA

If the response to a request is negative (request cannot be successfully completed),

an X is placed in the first byte for the command type. For example:

RP=XE,SQ=5,DM=DOMAIN,RN=(no resources)

Command Sender ID—SN

The command sender ID keyword, SN, identifies the sender of the command. The

SN keyword is included in all commands. The keyword value is always GMFHS:

SN=GMFHS

68 Resource Object Data Manager and GMFHS Programmer’s Guide

Message Sequence Number—SQ

The message sequence number keyword, SQ, contains a unique message sequence

number that identifies either the request or response. The message sequence

number of a response is identical to the sequence number used in the original

request. For example, if you issue a Display Status command for one component

with a sequence number of 6, the response to that request also has a sequence

number of 6.

SQ provides a correlation for the continuation responses. If a single request

requires multiple responses, the message sequence number is used to correlate all

of the responses to the original request. For example, if you issue a Display

Abnormal Status COMPONENTS command with a message sequence number of

35, the first response in a series of responses has a message sequence number of 35

and the continuation byte set to more (M). For example:

CM=AM,SQ=35

The originator can send another request with the continuation byte set to M and a

message sequence number of 35. When the responder receives this request, it

knows to continue sending the data that does not fit in the previous response

packet. This multiple exchange continues until the original request is satisfied with

the continuation byte in the response being set to end (E).

Message sequence numbers roll over after reaching 999.

Status—ST

The status keyword, ST, can be used to describe either of the following:

v The status of a component in response to a display status (CM=A or CM=D)

command

v The resulting component status in response to an activate (CM=V), deactivate

(CM=I), or recycle (CM=R) command

The value for a status keyword can be the resource’s GMFHS external status or the

NETCENTER internal status.

v A 1-byte value is used to describe the GMFHS external status of a resource.

v A value list is used to describe the NETCENTER internal status of a resource.

Only one status value type is enabled for any given resource in a response

message.

When status is reported on multiple resources, the ST keyword parameter and

value must immediately follow each associated component ID keyword (CP). If the

ST and TM keywords are sent together, their specific order does not matter, as long

as they both follow the associated CP keyword.

Table 12 on page 70 shows the single-byte external statuses and the NETCENTER

equivalents.

Note: You can define your non-SNA domain to recognize either type of status. If

bit 13 of the DomainCharacteristics field is turned on in the object of the

Non_SNA_Domain_Class, GMFHS translates the NETCENTER status

keywords to the GMFHS equivalent.

Chapter 4. Communicating with Network Management Gateways 69

Table 12. NETCENTER to NetView Status Keyword Conversions and Description

GMFHS Status NETCENTER Status NETCENTER Description

U (unsatisfactory) A Abnormal—the device is running but there

is an abnormal condition.

U (unsatisfactory) B Disabled—intentional deactivation by the

operator or system

? (unknown) C Not configured—the device is not part of

the network definition.

U (unsatisfactory) D Down

S (satisfactory) N Normal

I (intermediate) P Performance—performance problem

I (intermediate) T Transient—device is currently changing

status.

? (unknown) U Unavailable—no status is available.

No change X Request for status cannot be run—any status

previously reported is to be regarded as still

in effect.

If the GMFHS external status of a resource is unsatisfactory, the format of the ST

keyword parameter is:

ST=U

If the GMFHS external statuses of components NODE1 and NODE2 are being

reported, and their respective statuses are satisfactory and unsatisfactory, the

format of the ST keyword parameter is:

CP=NODE1,ST=S,TM=890315120801,CP=NODE2,ST=U,TM=890315120814

GMFHS supports all NETCENTER status values for migration purposes. It

automatically converts the NETCENTER internal resource status values to GMFHS

status values.

The three NETCENTER categories of internal status (configuration, operation, and

utilization) are placed in a value list. For example:

ST=(configuration,operation,utilization)

Each position within the list defines the status for that category of the component

and is 1 byte in length. The values used to describe the status of the different

resources of each list element are described in Table 13.

 Table 13. Resource Status Values

Category Value Meaning

Configuration C

 U

 V

 X

 Nonconfigured

 Unavailable

 Active

 Inactive

Operation A

 L

 O

 U

 Abnormal

 Nonoperational

 Operational

 Unavailable

70 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 13. Resource Status Values (continued)

Category Value Meaning

Utilization N

 R

 U

 Normal

 Overload

 Unavailable

When the GMFHS displays resource status in a view or generic command

response, it consists of the three internal status values.

For example, if the three categories for a resource are configuration=unavailable,

operation=operational, and utilization=normal, the ST keyword parameter format

is:

ST=(U,O,N)

Time Stamp—TM

The time-stamp keyword, TM, describes the local date and time. The TM value

and keyword are required whenever a command response provides a component,

and for each component status provided in the response. This includes D, A, I, V,

and R commands. The time-stamp keyword can be in other responses but is

ignored. The TM keyword is also included on a SET_CLOCK session protocol

command to specify the element manager’s clock setting.

When time is reported on multiple resources, the TM keyword parameter and

value must immediately follow each associated component ID keyword (CP). If the

TM and ST keywords are sent together, their specific order does not matter, as long

as they both follow the associated CP keyword. The format of the time stamp is:

TM=yymmddhhmmss

The time stamp variables are defined as:

yy year

mm month (01 - 12)

dd day (01 - 31)

hh hour (00 - 23)

mm minute (00 - 59)

ss second (00 - 59)

For example, if a status is being reported as of 3:58:21 p.m. local time on 28 May,

1993, the TM keyword parameter is:

TM=930528155821

Text—TX

The text keyword, TX, provides support for native commands and their responses.

The value for TX is a string of text.

For commands, the TX value is the text of a native network command, such as a

command entered at the native element manager’s console. The following is the

data item format for the SHOW CIRCUIT A native command:

TX=(SHOW CIRCUIT A)

For responses, TX is the response text received at the native element manager’s

console. Command responses are shown in the Command Response window, if the

command was issued by the operator. Each occurrence of the TX keyword results

in one line of text displayed at the NetView workstation. The following is the

Chapter 4. Communicating with Network Management Gateways 71

format of the response keyword parameter, if the response to the command is

CIRCUIT A CONFIGURED AND OPERATIONAL:

TX=(CIRCUIT A CONFIGURED AND OPERATIONAL)

If the response to the command is a multiple line response, the format of the

response keyword parameters is:

TX=(COMMAND FAILURE STATISTICS),

TX=(ROUTES ERRORS HITS MISSES),

TX=(40 250 2000 4)

Commas separate the individual parameter lines. In the case of text responses, the

order of the parameter lines is important, and each separate TX keyword results in

a separate line of text in the Command Response window.

A) character (right parenthesis) ends the TX text string. If the text includes an

imbedded) character, precede the) with a second) character. The following is the

format of the response keyword parameter, if the response to the command is

CIRCUIT (A) CONFIGURED AND OPERATIONAL:

TX=(CIRCUIT (A)) CONFIGURED AND OPERATIONAL)

Command Formatting and Protocol Examples

This section provides examples of the required presentation processing protocol.

Functionally, there are two protocols:

v Single-response protocol

v Multiple-response protocol

See “Keyword and Value Definitions” on page 64 for a description of the various

keywords and values that make up the command and response packets of the

command. See “Command—CM” on page 65 for a list of the command types and

continuation bytes.

Single-Response Protocol

The single-response protocol consists of a command designated as an initial

command and a response designated as a last response. Figure 20 shows the

packets exchanged for a Display Status command and response.

 The command, sent from GMFHS, contains the CM keyword. Maintaining the

protocol, the first character of the CM value, D, is interchangeable. It signifies the

display status command type. This value can also be any command type valid for

the command.

Network
Management
Gateway

(RP=DE)

(CM=DE)

GMFHS

Display Status Command

Display Status Response

Figure 20. Single-Response Protocol

72 Resource Object Data Manager and GMFHS Programmer’s Guide

However, the E value in the continuation character specifies an initial command.

This character must always be in the first occurrence of a command packet,

regardless of whether or not additional command packet continuations

(continuation value = M) are required.

In the response from the native element manager, the RP keyword has the value

DE. The command type character is interchangeable. The E value in the

continuation character specifies that the response is the last response generated.

The protocol has an additional check in the SQ keyword. The SQ value for a

response must equal the SQ value for the command.

As the following example shows, the single-response protocol allows for a

response containing data for more than a single resource.

The command requests the status of three resources, RALV4.RALXT1,

RALV4.RALXT2, and RALV4.TX02, in a single CP keyword parameter.

CM=DE,DM=EASTSIDE,CP=(RALV4.RALXT1,RALV4.RALXT2,RALV4.TX02),SQ=1

The response contains separate CP keywords for each requested resource.

RP=DE,DM=EASTSIDE,CP=RALV4.RALXT1,ST=N,TM=901201135901,

CP=RALV4.RALXT2,ST=N,TM=901201135912,

CP=RALV4.TX02,ST=D,TM=901201135914,SQ=1

Note: The CM and SQ keyword parameters are in the command. RP and SQ

parameters are in the response.

Multiple-Response Protocol

When the response data is too large to fit in a single response, GMFHS and the

NMG use the multiple-response protocol.

The multiple-response protocol consists of:

v A command designated as an initial command

v An unlimited number of continuation responses and commands

v A last response

Figure 21 shows the packets exchanged for a Display Status command and the

response in the simplest multiple-response case.

 The initial command, sent from the NetView program, contains the CM keyword

with the continuation character set to E (CM=AE). The NMG response indicates

Network
Management
Gateway

(CM=DE)

(RP=DE)

(RP=DM)

(CM=DM)

GMFHS
Display Status

Display Status Response

Display Status

Display Status Response

Figure 21. Multiple-Response Protocol

Chapter 4. Communicating with Network Management Gateways 73

that the response does not contain all of the data by including the value M as the

RP keyword continuation parameter (RP=AM).

To get more of the response data, GMFHS reissues the request. All request

parameters are the same as the initial request except for the continuation

parameter, which is set to M (CM=DM). The NMG sends the remaining data and

indicates that no more data will be sent by setting the continuation parameter to E

(RP=AE).

The following initial command calls for a display of all resources in the non-SNA

domain B3088P2 that have a status of abnormal:

CM=AE,DM=B3088P2,SQ=44

The following response results:

RP=AM,DM=B3088P2,SQ=44,CP=TIM,ST=A,TM=911231235959,

CP=A0488P23,ST=C,TM=920101000000,

CP=A0488P24,ST=U,TM=920101000001

This response indicates that there is a continuation of the response (RP = AM) and

provides the statuses of three resources, A0488P22, A0488P23, and A0488P24.

The command is sent again:

CM=AM,DM=B3088P2,SQ=44

The continuation character is set to M (CM = AM), indicating that the command is

a continuation of the previous command with sequence number 44 (SQ=44).

Finally, another response ends the exchange:

RP=AE,DM=B3088P2,SQ=44,CP=RALV4.TX02,ST=A,TM=920101000002

The continuation character is set to E (RP=AE), indicating that this is the last

response.

Timing Considerations

Because status information is contained in both generic alerts and command

responses, GMFHS provides a time stamp at the time it processes the alert or

response. The date and time of an alert, are provided by the native element

manager or its agent in the NMG.

Alerts

The NetView program assumes that the effective time of an alert when the alert is

received by the NetView program.

This standard presents problems for non-SNA alerts reported through an NMG.

The alert can be delayed significantly in the non-SNA network and in the NMG

before it is delivered to the VTAM program and then to GMFHS. Delays can result

in inaccurate alert time-stamping that complicates or defeats efforts at network

problem resolution. GMFHS uses the following rules to overcome these

shortcomings:

v The alert originator can include a date/time subvector in the alert. It overrides

the time that the NetView program receives the alert. The Greenwich mean time

(GMT) offset in the subvector is used, if in the optional GMT offset subfield.

v If the alert date/time subvector does not include the GMT offset and the native

element manager reported its GMT offset at session establishment, the native

element manager’s offset is used.

74 Resource Object Data Manager and GMFHS Programmer’s Guide

v If the alert date/time subvector does not include the GMT offset, and session

establishment does not provide an offset, the time in the date/time subvector is

used and normalized with the NetView program’s local GMT offset.

Command Responses

GMFHS requires that the time-stamp keyword parameter (TM) be included in any

command response containing a component status. However, a status response can

arrive at GMFHS after a more recent alert for the same component. This happens if

the native element manager is assembling a response with statuses from multiple

components, and the status of one component changes after it is in the response,

but before the response is sent. If the native element manager sends an alert for

this component before it sends the command response, GMFHS receives the status

indications in the wrong order.

GMFHS recovers from this situation by comparing time stamps. If a status update

(either an alert or a command response) is time stamped earlier than the most

recent status reported, GMFHS does not apply the new status. GMFHS logs an

audit message and a console message.

The time-stamp keyword does not include the GMT offset. GMFHS normalizes

time stamps to compare them. If the INIT alert used to establish the session

between GMFHS and the native element manager contains the native element

manager’s GMT offset, this offset is used. Otherwise, the GMFHS local GMT offset

is used.

Defining Non-SNA Session Protocols

The session protocol you specify for a non-SNA domain indicates how GMFHS

establishes, maintains, and ends command and response communication sessions

for that domain. The presentation protocol used for a domain is specified in the

SessionProtocolName field of the non-SNA domain object in RODM. The valid

session protocol names are:

v DOMS010

v PASSTHRU

v NONE

GMFHS is also responsible for establishing, maintaining, and ending

communication sessions with the element managers. GMFHS uses the value of the

SessionProtocolName field of the Non_SNA_Domain_Class object to determine

how to establish a session with the element manager.

DOMS010

The DOMS010 protocol specifies a set of rules and a command syntax that

coordinate the establishment of a command session between GMFHS and the

non-SNA domain.

The DOMS010 session protocol specifies that GMFHS and the element manager

must verify each other’s identities before GMFHS determines that a session exists.

The commands GMFHS sends the element manager, and the responses it expects,

are described in “Protocol—PT” on page 66. In addition, “Session Establishment

for DOMS010” on page 76 contains examples of the identification sequence.

If the domain specifies DOMS010, the commands are formatted according to the

DOMP010 formatting rules, regardless of the values in the

PresentationProtocolName field.

Chapter 4. Communicating with Network Management Gateways 75

PASSTHRU

The PASSTHRU protocol specifies that a command session is to exist between

GMFHS and the non-SNA domain without any exchange of session establishment

information. GMFHS assumes the command session is active immediately upon

GMFHS initialization.

NONE

The NONE protocol indicates that there is no command support for the domain.

Session Establishment for DOMS010

The DOMS010 session protocol stipulates that GMFHS must acquire a session with

the domain before any other commands are available. Sessions are initiated by

GMFHS, or from the element manager. Figure 22 shows a session establishment

initiated from the element manager.

To view what GMFHS is reporting as the status of a domain, use the GMFHS

SHOW DOMAIN command. Refer to NetView online help for information about

the SHOW command.

 The element manager can initiate a session with GMFHS by sending an INIT

generic alert. When GMFHS receives the alert, it does the following:

v Responds to the NMG with an INIT_ACCEPT protocol command. The INIT alert

is described in “INIT Generic Alert for Session Establishment” on page 78.

v Sends a SET_CLOCK protocol command, if supported.

v Sends one or more Display Abnormal Status or Display Status generic

commands to retrieve the current status of all the resources. If Display Abnormal

Status is not supported, GMFHS issues a Display Status generic command, if

supported, for every resource. Whether these commands are supported is

specified by the DomainCharacteristics field of the Non_SNA_Domain_Class

object that defines the domain to GMFHS.

INIT Alert

INIT ACCEPT Protocol Command

INIT ACCEPT ACCEPT Protocol Command

SET CLOCK Protocol Command

SET CLOCK ACCEPT Protocol Command

GMFHS

Network
Management
Gateway

Display Abnormal Status Command

Display Abnormal Status Response

Figure 22. Session Establishment at the Request of the NMG. The commands shown in this

figure are described in “Protocol—PT” on page 66.

76 Resource Object Data Manager and GMFHS Programmer’s Guide

Session Establishment for NetView/6000 V2, NetView for AIX

V3, NetView for AIX V4, and DOMS010

NetView/6000 Version 2 (V2), NetView for AIX Version 3 (V3), and NetView for

AIX Version 4 (V4) provide direct support for NETCENTER only. Because GMFHS

has different domain naming conventions than NETCENTER, NetView supplies

the sample CNMS4406 to facilitate session establishment between GMFHS and

NetView/6000 V2, NetView for AIX V3, and NetView for AIX V4.

This sample provides the INIT and DOWN alert portion of DOMS010 session

establishment. The sample allows the user to specify:

v The three named elements of a non-SNA domain (see “Defining Non-SNA

Domains” on page 35). In sample CNMS4406 the service point (SP) is sp_name,

the transaction program (TP) is tp_name, and the element management

subsystem (EMS) is domain_name.

v Whether to send an INIT or DOWN alert. This alert then matches a similarly

named domain object in RODM with the NetView/6000 V2 service point.

Sample CNMS4406 is a NetView command processor coded in the C language. To

use it, it must first be compiled using C with the LONGNAME compile option and

placed in an executable NetView library.

Note: For information about how to compile samples, refer to the IBM Tivoli

NetView for z/OS Programming: PL/I and C. For information about the

LONGNAME compile option, refer to OS/390 C/C++ Programming Guide

(SC09-2362).

You must also place the following CMDDEF statements in DSIPARM member

CNMCMD (use included file CNMCMDU for migration purposes):

CMDDEF.CNMS4406.MOD=CNMS4406

CMDDEF.CNMS4406.RES=N

The following is a syntax diagram for the sample:

�� CNMS4406 DOWN

INIT
 sp_name tp_name domain_name ��

For example, to run sample CNMS4406 for a NetView/6000 V2 domain object

named A0488P31.A94306F8.NETVIEW, an INIT alert can be sent using the following

command from either the NetView command facility or the NetView automation

table:

CNMS4406 INIT A0488P31 A94306F8 NETVIEW

To establish a session between GMFHS and NetView/6000 or NetView for AIX

when both are active, place this sample in your automation table to always send

the appropriate INIT and DOWN alerts.

GMFHS-Initiated Session Establishment

Although GMFHS is a passive session partner, it can prompt the element manager

to initiate a session. The DomainCharacteristics field of a Non_SNA_Domain_Class

object confirms that a GMFHS session has been established and solicits status from

the NMG for the domain. This prompting can occur:

v At GMFHS startup, and at user-defined time intervals until the session is

acquired

Chapter 4. Communicating with Network Management Gateways 77

v When GMFHS detects an NMG status change to satisfactory, and GMFHS does

not have a session with an element manager under the NMG

The DOMS010 protocol uses the same protocol commands shown in Table 10 on

page 66 for the DOMP010 protocol. The exchange occurs as illustrated in Figure 23.

 GMFHS initiates a session with an element manager by sending a

SESSION_REQUEST protocol command. When the element manager receives this

command, it responds with SESSION_REQUEST_ACCEPT protocol command and

generates the generic INIT alert. The rest of this process is described in “Session

Establishment for DOMS010” on page 76.

INIT Generic Alert for Session Establishment

In addition to protocol commands, the DOMS010 protocol includes the INIT alert.

An element manager generates an INIT alert to establish a session with GMFHS.

Table 14 lists the subvectors and data that need to appear in the INIT generic alert.

Note: Unless noted as optional, all subvectors and data are required.

 Table 14. Generic Alert Subvectors

Subvector Description

Generic alert data subvector Alert Type: X'12' (unknown)

Alert description code: X'FE00' (undetermined error)

Probable cause subvector Probable cause code point: X'1001' (application program)

Cause undetermined

subvector

Recommended action code point: X'0700' (no action

necessary)

GMFHS

SESSION REQUEST Protocol Command

SESSION REQUEST ACCEPT Protocol Command

INIT Alert

INIT ACCEPT Protocol Command

INIT ACCEPT ACCEPT Protocol Command

SET CLOCK Protocol Command

SET CLOCK ACCEPT Protocol Command

Network
Management
Gateway

Display Abnormal Status Command

Display Abnormal Status Response

Figure 23. Session Establishment at the Request of GMFHS

78 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 14. Generic Alert Subvectors (continued)

Subvector Description

First product set ID subvector Product classification: X'xC' (non-IBM software)

Software product common name: Identifier of the NMG

application (in the non-SNA network) that communicates

across the NMG API.

Software product common level: 000000

Software product program number: USER0

Note: The first product set ID subvector is included to

comply with SNA but does not carry significant

information.

Second product set ID

subvector

Product classification: X'xC' (non-IBM software)

Software product common name: name of the native

element manager that receives commands

Software product common level: 000000

Software product program number: USER0

Note: The second product set ID subvector is included to

comply with SNA but does not carry significant

information.

Date/Time subvector

(optional)

An X'01' subvector containing date and time information.

Hierarchy resource list

subvector

First resource name (mandatory): Name of the service point

First resource type identifier (mandatory): X'81' (service

point)

Transaction program resource (optional):

Transaction program identifier (optional): X'18' (transaction

program)

Additional resource name (optional): As required, to

uniquely identify the domain

Additional resource type identifier (optional): Any

Note: The concatenation of resource names, beginning with

the service point, with a period (.) as a delimiter between

names, needs to be identical to the MyName field of an

object in the RODM Non_SNA_Domain_Class object.

Chapter 4. Communicating with Network Management Gateways 79

Table 14. Generic Alert Subvectors (continued)

Subvector Description

Self-defining text message

subvector

Text message: INIT[,GMT=chhmm]

The optional GMT keyword parameter describes the offset

to Greenwich mean time (GMT) for all alerts and command

responses that contain status information. The keyword

value is formatted as follows:

c is the GMT time modifier code: +, -, or Z.

v Specify + to add the GMT modifier to the local time.

v Specify - to subtract the GMT modifier from the local

time.

v Specify Z if the local time is already GMT. In this case

hhmm is 0000.

hhmm is the GMT modifier in hours and minutes:

v For hh, the valid range in 24-hour format is 00—23 .

v For mm The valid minute range is, 00—59.

Session Termination

Figure 24 shows the alert exchange during session termination.

Note: The session termination alert is identical to the alert described in “INIT

Generic Alert for Session Establishment” on page 78, except that the

self-defining text message subvector contains the text DOWN.

After GMFHS receives this alert, it considers the session down, and sends no

commands to the NMG until the session is re-established.

GMFHS also ends the session if it detects a down state for one of the following

reasons:

v The status of an NMG changes to Unsatisfactory.

v An alert reports a status change of the element manager to Unsatisfactory.

v GMFHS receives an INIT alert from the element manager.

If an INIT alert is received, the session is ended and immediately re-established.

Network
Management
Gateway

Down Alert

GMFHS

Figure 24. Session Termination

80 Resource Object Data Manager and GMFHS Programmer’s Guide

Defining Non-SNA Transport Protocols

The transport protocol definitions control how network control commands are

transported to their non-SNA resource destinations. Depending on the transport

protocol you define, you can issue commands at the workstation to control

non-SNA resources.

The transport protocol field specifies how GMFHS communicates with the network

management gateway (NMG) when delivering commands and accepting responses

to commands. The valid protocol names are:

v COS indicates that the NMG is a service point and that GMFHS use RUNCMDs

to communicate with the service point.

v PPI indicates that the NMG uses a program-to-program interface (PPI) and that

GMFHS use the PPI to communicate with a system or network management

transaction program running in another address space on the focal point host

comunicating with the NetView management console.

v OST specifies that the NMG is the NetView program and that commands are

delivered to a NetView OST.

v NONE specifies that this NMG does not accept commands.

Note: If the NMG represents a service point, its name must be the SNA name of

the service point. If the NMG uses the PPI, its name must be the PPI

receiver ID used by the NMG. If the NMG is an OST, its name can be any

1-to 8-character name.

COS Gateway Support

The NetView common operations services (COS) gateway support uses the

RUNCMD command to deliver network control commands to, and receive

command responses from, service points owned by the central site SSCP or remote

SSCPs on distributed hosts. Because these service points are accessed by the service

point command service (SPCS) of the NetView program, GMFHS does not directly

use the communications network management interface (CNMI) of VTAM for this

communication.

When you issue a network control command, the transport layer checks the

network management gateway (NMG) object TransportProtocolName field. If the

field value is COS, the GMFHS host delivers the command to the GMFHS scope

checker OPT running in the NetView address space. The scope checker passes the

command to the GMFHS COS command processor running on a separate autotask.

The COS command processor saves some context information for the command,

and creates and issues a RUNCMD command containing the command. The

responses to the RUNCMD command are received by GMFHS COS command

processor, are correlated to the outstanding command, and are returned to

GMFHS. The command list issues the RUNCMD command and obtains responses

for it. When all responses are available, they are returned to the COS command

processor. The command processor correlates the responses to the command

context it retained and returns the responses to GMFHS.

If the service point resides in a distributed NetView system, the COS command

processor routes the command over an LU 6.2 session using the MS transport. The

NetView program routes the command to the distributed NetView system, runs

the command on a distributed router autotask, and returns the responses to the

central site NetView program where they are delivered to the COS command

Chapter 4. Communicating with Network Management Gateways 81

processor. The command responses are returned to GMFHS the same way they are

returned for responses from a local service point.

To use the COS transport protocol, set the value of the TransportProtocolName

field to COS in the NMG_Class object for that gateway.

If the NetView program is communicating with a service point using LU 6.2 and

the service point LU has a different NETID than the NetView program that issues

the RUNCMD, a bit in the NMGCharacteristics field must specify that the SNA

network name be included in the NETID= keyword parameter of the RUNCMD.

If the NetView program is communicating with a service point using an SSCP-PU

session and the NetView program that issues the RUNCMD does not own the

CNMI that communicates with the service point PU, specify the domain name of

the NetView program that owns the CNMI on the CommandRouteLUName field

of the NMG_Class object for the service point.

Program-to-Program Interface Gateway

The program-to-program interface (PPI) for gateway transport allows a process in

an address space other than GMFHS or NetView to receive generic and native

network commands from GMFHS, and to return command responses. To use the

PPI transport type, define an NMG object with a TransportProtocolName field

value of PPI. The MyName field of this NMG object must be the PPI receiver name

to which GMFHS will send commands for this gateway.

The messages exchanged through the program-to-program interface use the

execute run major vector and the reply-to-execute major vector, except as follows:

v If you specified on the DomainCharacteristics field that command responses are

expected from the native element manager, the execute major vector must

include a supporting data correlation MS common subvector. The PCID in the

supporting data correlation subfield contains the command correlator.

v If GMFHS can not deliver the execute command, the sense data subvector

contains the PPI return code that describes why the PPI send request failed.

Refer to the IBM Tivoli NetView for z/OS Application Programmer’s Guide for

information about PPI return codes.

OST/PPT Gateway

The NetView OST/PPT provides a gateway transport facility that allows network

control commands to be issued using the NetView operator station task (OST)

associated with the workstation originating the command, or using the primary

program operator interface (POI) task (PPT), if there is no associated workstation

operator. NetView command lists and command processors are initiated in

response to commands entered by workstation operators. The following

characteristics are in effect for this gateway:

v Some OST/PPT commands do not produce a command response, even if the

expect responses bit of the DomainCharacteristics field is on.

v Command lists or command processors initiated by this gateway can use the

NetView GENALERT facility to report current or resulting resource status so

that is reflected in the views. If a command initiated by this facility causes a

change that otherwise results in an alert being generated for the target resource,

the use of the GENALERT is not necessary.

82 Resource Object Data Manager and GMFHS Programmer’s Guide

Monitoring Non-Network Devices

The NetView program enables you to monitor non-network devices, such as a line

printer. You can write a command list that issues a GENALERT command that

generates a generic alert. Define the names of your RODM real resources

representing non-network devices and your RODM non-SNA domain objects that

report on these devices, so that they follow the naming conventions used by the

GENALERT alert resource hierarchy.

Types of NMGs

GMFHS can communicate with three types of NMGs:

v Common operations services NMGs

v Operator station task NMGs

v Program-to-program interface NMGs

The type of NMG is determined by the TransportProtocol field of the NMG_Class

object. All domains managed by an NMG must be of the same type.

Common Operations Services NMGs

GMFHS communicates with common operations services (COS) NMGs with the

NetView RUNCMD command. The network command manager task creates the

command text according to the presentation and session protocols, then uses the

COS gateway command processor autotask to issue the RUNCMD command and

wait for the response. For more information about RUNCMD, see NetView online

help.

COS NMGs provide the following benefits:

v GMFHS can receive command responses.

v Depending on the presentation protocol, the command responses can contain

status information that the network command manager task can interpret.

v Several current service point applications conform to this architecture.

v The responses to operator-initiated commands are displayed in the Non-SNA

Command Response window.

The maximum size of a command to a COS NMG is 240 bytes. If the command

text length for a presentation or session protocol command exceeds 240 bytes after

substitution of any command variables, GMFHS rejects the command.

Operator Station Task NMGs

GMFHS communicates with operator station task (OST) NMGs by sending the

command to the requesting operator’s OST, or to the PPT for GMFHS-initiated

commands. The network command manager task creates the command text

according to the presentation and session protocols, then uses the host task

manager OPT message queuing service to send the command to the operator’s

OST or PPT. GMFHS cannot interpret OST command responses, so all status

changes must be reported to GMFHS as alerts.

The maximum size of a command to an OST NMG is 256 bytes. If the command

text length for a presentation or session protocol command exceeds 256 bytes after

substitution of any command variables, GMFHS rejects the command.

Program-to-Program Interface NMGs

GMFHS communicates with program-to-program interface NMGs by exchanging

information with another application registered to the program-to-program

interface. Commands are formatted within an execute command major vector

Chapter 4. Communicating with Network Management Gateways 83

(X'8061'). Command responses are returned in two response major vectors (X'0061'

and X'1300'). The network command manager task creates the command text

according to the presentation and session protocols, and sends it across the

program- to-program interface to the element manager. The element manager

responds to GMFHS over the program-to-program interface.

Program-to-program interface NMGs provide the following benefits:

v GMFHS can receive command responses.

v Depending on the presentation protocol, the command responses can contain

status information that the network command manager task can interpret.

v The responses to operator-initiated commands are displayed in the Non-SNA

Command Response window.

The maximum size of a command to a program-to-program interface NMG is 253

bytes. If the command text length for a presentation or session protocol command

exceeds 253 bytes after substitution of any command variables, GMFHS rejects the

command.

PPI Command Transport Envelope

The text of GMFHS commands is transported to the program-to-program interface

NMG in the execute command major vector (X'8061'). This major vector is

described in the System Network Architecture Formats. However, because GMFHS

must have a correlator in command responses, and the architecture of the execute

command major vector does not include a correlator subvector, GMFHS departs

from the architecture by including a subvector that contains a correlator. This

additional correlator is the supporting data correlation subvector (X'48').

Table 15 shows the subvectors and subfields that are included in the execute

command major vector.

 Table 15. Subvectors and Subfields in the Execute Command Major Vector

Subvector Subfield Description

Name list Destination

application name

Value of TransactionProgram field in

Non_SNA_Domain_Class object.

Self-defining text

message

Coded character set

ID

X'00000037'

Self-defining text

message

Text message Command text created by the presentation

layer

Supporting data

correlation

Fully qualified session

PCID

PCID: GMFHS internal correlator

Network-qualified CP name:

GMFHS.NETCMD

The command response consists of two major vectors:

v Reply to execute command

v Text data parameter

GMFHS ignores all subvectors in the reply-to-execute-command major vector; no

subvectors are required. Table 16 on page 85 shows the subvectors and subfields of

the text data parameter major vector.

84 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 16. Subvectors and Subfields in the Text Data Parameter Major Vector

Subvector Subfield Description

Supporting data

correlation

Fully qualified session

PCID

Must be identical to the subvector in the

command

PCID: GMFHS internal correlator

Network-qualified CP name:

GMFHS.NETCMD

Self-defining text

message

Text message Command response text

Self-defining text

message

Other subfields GMFHS ignores all other subfields in this

subvector.

Migrating from NETCENTER Protocols to GMFHS Protocols

The protocols used by GMFHS are similar to the protocols used by NETCENTER.

Table 17 shows the values specified for NETCENTER protocols and the

corresponding values you can specify for GMFHS protocols.

 Table 17. Conversion of Definition Names from NETCENTER to GMFHS

Field NETCENTER GMFHS

SessionProtocolName NSI1

 PASSTHRU

 NONE

 DOMS010

 PASSTHRU

 NONE

PresentationProtocolName NSI1

 No equivalent

 PASSTHRU

 NONE

 DOMP010

 DOMP020

 PASSTHRU

 NONE

TransportProtocolName CNMI

 No equivalent

 No equivalent

 NONE

 COS

 PPI

 OST

 NONE

Table 18 shows the names of the NETCENTER attributes used to specify protocols,

and the corresponding names of GMFHS fields you use to specify protocols.

 Table 18. Conversion of NETCENTER Attribute Names to GMFHS Field Names

Protocol

NETCENTER

Attribute GMFHS Field GMFHS Object

Session SESS SessionProtocolName Non-SNA domain

Presentation FORMAT PresentationProtocolName Non-SNA domain

Transport TRAN TransportProtocolName Network management

gateway

The differences between the NETCENTER NSI1 protocol and the GMFHS

DOMP010 protocol are:

v GMFHS conditionally sends a SET_CLOCK protocol command to the element

manager every 24 hours (depending on the contents of the

DomainCharacteristics field).

v GMFHS includes the sender ID keyword (SN=GMFHS) on all commands.

Chapter 4. Communicating with Network Management Gateways 85

v GMFHS recognizes new status values that are mnemonically related to the

GMFHS DisplayStatus values. GMFHS converts NETCENTER type status to one

of these values if specified in the DomainCharacteristics field.

v GMFHS does not support the NETCENTER generic Enable and Disable

commands.

v GMFHS allows resource names to be as many characters as possible (depending

on the gateway used). NETCENTER limits the resource names to a maximum of

8 characters.

v GMFHS allows the use of a) character (right parenthesis) in the TX text string.

See “Text—TX” on page 71 for more information.

Migrating from NETCENTER

86 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 5. How GMFHS Uses RODM

The Graphic Monitor Facility host subsystem (GMFHS) works with RODM and a

NetView management console (NetView management console) to display graphic

views of networks and issue commands to resources that you select from the view.

The views contain both status and configuration information about network

resources. This chapter describes how GMFHS uses RODM. Using this information,

you can then modify the contents of RODM to change how GMFHS and NetView

management console perform.

GMFHS Initialization

GMFHS can be started with either of two options:

v Aggregation warm start

v Resource status warm start

The default is that the options are not run and GMFHS is started normally.

Aggregation Warm Start

An aggregation warm start is caused by coding the AGGRST=YES parameter in

the GMFHS startup procedure, CNMGMFHS. An object-independent method,

DUIFFAWS, is run to initialize the fields related to status aggregation in the real

and aggregate objects in the RODM data cache. See “DUIFFAWS: Aggregation

Warm Start Method” on page 494 for more information.

Resource Status Warm Start

A resource status warm start is caused by coding the RESWS=YES parameter in

the GMFHS startup procedure, CNMGMFHS.

Resource status warm start provides a mechanism for quickly restoring GMFHS.

Use the resource status warm start option if GMFHS has been abnormally ended,

and the status of the resources in RODM that were managed by GMFHS are still

accurate. GMFHS bypasses the normal resource status initialization process for all

domain resources and uses the existing status information in RODM instead.

GMFHS sets the status of resources on a domain basis. For a resource status warm

start to occur, a domain must meet one of the following conditions:

v Status solicitation of resources was completed successfully the last time GMFHS

was initialized.

v Status solicitation is not supported.

v Skip Status solicitation is indicated.

Resource status warm start requires current status data in RODM. To ensure the

current status is maintained in RODM, periodic checkpoints of RODM are required

to save the current domain and resource values. RODM can then be loaded using

the data sets containing the previous checkpoint data.

Notes:

1. All status updates are lost for the period between the last checkpoint of RODM

and when GMFHS was reinitialized.

© Copyright IBM Corp. 1997, 2007 87

2. If GMFHS and RODM are warm started on a backup host, the DASD that

contains the checkpoint file must be accessible by the backup host.

GMFHS Initialization Process Overview

Normal GMFHS initialization has two subprocesses:

v Setup

v Session Establishment

These subprocesses determine the initial status of the resources in each non-SNA

domain. However, under certain circumstances GMFHS does not perform these

steps; this is determined by the values of the following GMFHS start option and

RODM fields:

v GMFHS warm start option (resws=yes|no)

v The AgentStatus field defined on a NMG_Class object

v The AgentStatusEffect field defined on a NMG_Class object

v The DomainCharacteristics field defined on a Non_SNA_Class object

v The DomainCharacteristics2 field defined on a Non_SNA_Class object

Setup Subprocess

Resources under each domain will be set to initial, or unknown, status except

under the following conditions:

v GMFHS is started with the resource status warm start option (resws=yes) and

the status complete bit is turned on in the DomainCharacteristics2 field.

v The skip status setup bit of the DomainCharacteristics field is turned on.

Session Establishment Subprocess

The status of the resources within each domain is solicited if status solicitation is

supported. For more information about status solicitation, see Chapter 4,

“Communicating with Network Management Gateways,” on page 59.

GMFHS does not perform the session-establishment subprocess for a domain if

GMFHS is started with the resource status warm-start option (resws=yes), and the

status complete bit of the DomainCharacteristics2 field is turned on. However, if

GMFHS is started with the resource status warm start option (resws=yes), and the

status complete bit of the DomainCharacteristics2 field is turned off, GMFHS

performs the session-establishment subprocess for the domain.

If status solicitation is not supported for a domain, resource status is set according

to the following conditions:

v If the value of the AgentStatusEffect field is X'80' and the status complete bit is

turned on in the DomainCharacteristics2 field, the status of the resources will

not be changed.

v If the value of the AgentStatusEffect field is X'80' and the status complete bit is

turned off in the DomainCharacteristics2 field:

– If the value of the AgentStatus field is either 1 or 3, the status of the resources

is set to the status that is indicated by the value of the InitialResourceStatus

field.

– If the value of the AgentStatus field is either 0 or 2, the status of the resources

is set to Unknown.
v If the value of the AgentStatusEffect field is X'00', the status of the resources is

set to the status that is indicated by the value of the InitialResourceStatus field.

88 Resource Object Data Manager and GMFHS Programmer’s Guide

Monitoring Topology Managers

GMFHS can monitor the status of topology managers and indicate this status to

operators. Create one object under the Topology_Manager class to represent each

topology manager. Note that the SNA topology manager automatically creates this

object for you.

Using fields on the Topology_Manager class object, each manager can specify:

v Its status

v The interval within which it must indicate its status before GMFHS assumes it is

unavailable

v Its command indicator range

Each manager must periodically update the StatusIndicator field on its object to

notify GMFHS that it is active. If this field is not updated within the interval

specified by StatusInterval field, GMFHS reports that the manager is unavailable.

Topology manager status is displayed in the status area in a NetView management

console business view, and is summarized on the status bar for open views.

Building Views

GMFHS builds all views using a 2-step process:

v Object discovery

v Object connectivity

Object discovery is the process used to determine the list of objects to display in a

view. This process varies depending on the type of view that is requested.

Object connectivity is the process used to determine how the objects in the list are

interconnected in a view. This process is the same for each type of view. See

“Object Connectivity Process” on page 100 for a description of this process.

Object Discovery Process

All of the views that GMFHS builds can be classified in two categories:

v Predefined

v Dynamically built

Predefined Views

Predefined views are represented by a view object in RODM. The view object

contains links to each resource that are in the view. The only object discovery

processing needed is to query the list of objects currently linked to the view object.

Note that objects in exception views are not linked.

Dynamically Built Views

Dynamically built views are not represented by a view object in RODM.

Dynamically built views are selected by either choosing an object on an open view

and issuing an action against it or by issuing a Locate Resource request for a

specific object. In either case, GMFHS receives the request and determines which

field on the specified object is queried to find the set of objects necessary to build

the view. The fields that are queried depend on the type of view.

For some dynamically built views, GMFHS uses a recursive process to determine

the complete list of objects that will be displayed in a view. For example, when a

configuration parent view is requested for an object, GMFHS determines the parent

of the object. It then determines whether this parent has a parent. This process is

Chapter 5. How GMFHS Uses RODM 89

repeated until a parent object is found that has no parent. See “Restricting

Recursive Views” on page 114 for more information. The views that use this

process are identified in “Object Discovery Process Description for Specific Views”

on page 94.

The following objects have important roles in the view building process:

v Display_Resource_Type_Class objects

v View_Information_Object_Class objects

The following overview describes these objects, and “Object Discovery Process

Description for Specific Views” on page 94 contains a description of how these

objects are used for each type of view.

Display_Resource_Type_Class Object: A Display_Resource_Type_Class object is

used to associate an icon with the resource when it is displayed. Displayable

objects that can be placed in a view must be linked to an object of the

Display_Resource_Type_Class. Linking the displayable object to the

Display_Resource_Type_Class object can be done two ways, which are described

and illustrated in the following figures:

Note: A displayable object can be linked to a Display_Resource_Type_Class object

both ways. When GMFHS encounters this situation, the technique shown in

Figure 25 is used.

Prior to NetView Version 3, method DUIFCLRT was usually run to perform the

link. DUIFCLRT links the DisplayResourceType field of the displayable object to

the Resources field of the Display_Resource_Type_Class object as shown in

Figure 25. The disadvantage of this is that you have to run this method for each

object.

 You can now associate a Display_Resource_Type_Class object with an object class

in RODM as shown in Figure 26 on page 91. This is done by creating a

View_Information_Reference_Class object, and placing its object ID in the

ViewInfoRefObjDRT field on the object class. The DisplayResourceType field of the

View_Information_Reference_Class object is then linked to the ResourceClasses

field of the Display_Resource_Type_Class object using method DUIFCLRT. The

View_Information_Reference_Class object is used, because links cannot be defined

at the class level. The ViewInfoRefObjDRT field is inherited by all objects of the

class. The advantage to this technique is that the link is defined only once at the

class level instead of individually for each object.

DisplayResourceType Resources

Displayable Object Display_Resource_Type_Class Object

Figure 25. Technique for Linking Display_Resource_Type_Class Objects Prior to NetView

Version 3

90 Resource Object Data Manager and GMFHS Programmer’s Guide

View_Information_Object_Class object: GMFHS uses

View_Information_Object_Class objects for the following purposes:

v To determine which fields on an object to query to find all other related objects

when building some dynamically built views.

v To determine how objects in a view are connected. See “Object Connectivity

Process” on page 100 for more information.

For both purposes, however, GMFHS uses a common technique to determine

which View_Information_Object_Class object to use. There is one

View_Information_Object_Class object for every resource-type and view-type pair

that GMFHS defines. All resource types ultimately point to the

View_Information_Object_Class objects that represent in which types of views they

can be displayed in.

All view types ultimately point to the View_Information_Object_Class objects that

represent the resource types that can be displayed in a particular type of view. For

each object-type and view-type pair, there is only one valid

View_Information_Object_Class object to represent the combination. Two

techniques can be used to determine the View_Information_Object_Class object,

�A�, for a resource:

1. The first technique was the only technique available prior to NetView Version

3. The objects and fields used by this technique are illustrated in Figure 27 on

page 92.

2. Starting with NetView Version 3, the second technique is available. The objects

and fields used by this technique are illustrated in Figure 28 on page 93.

ViewInfoRefObjDrt

RefClass
Display ResourceType

ResourcesClasses

Displayable Object

View_Information_
Reference_Class Object

Legend:

Real link
Pseudo link

Display_Resource_Type_
Class Object

Figure 26. Technique for Linking Display_Resource_Type_Class Objects Now

Chapter 5. How GMFHS Uses RODM 91

DisplayResourceType ViewInfoRefObject

Displayable Object View Class Object
Display_Resource_Type_
Class Object

View_Information_Object_
Class Object

View_Information_Object_
Class Object

View_Information_Object_
Class Object

View_Information_Object_
Class Object

View_Information_Object_
Class Object

View_Information_
Reference_Class Object

RefClass

ViewInfoList

DisplayResourceType

ViewTypeClass

DisplayResourceType

ViewTypeClass

DisplayResourceType

ViewTypeClass

DisplayResourceType

ViewTypeClass

DisplayResourceType

ViewTypeClass
Legend:

Real link
Pseudo link

RefClass

ViewInfoList

Figure 27. View_Information_Object_Class Object Determination Technique One

92 Resource Object Data Manager and GMFHS Programmer’s Guide

A displayable object can specify a View_Information_Object_Class object using

both the DisplayResourceType field (as shown in Figure 27 on page 92) and the

ViewInfoRefObjVIO field (as shown in Figure 28). When GMFHS encounters this

situation, it uses the View_Information_Object_Class object pointed to by the

ViewInfoRefObjVIO field.

Either of two scenarios can occur where GMFHS cannot find a valid

View_Information_Object_Class object for a displayable object:

v A View_Information_Object_Class object is not found when an operator selects a

view type that is not defined for a resource object, called the root object. In this

case, GMFHS displays a message stating that the view type is not enabled for

this type of object.

v If an object other than a root object is to be in a view but GMFHS cannot find its

View_Information_Object_Class object, GMFHS omits the object and builds the

view. Prior to NetView Version 3, if GMFHS cannot find a

View_Information_Object_Class object for a resource object, it cannot build the

view.

ViewInfoRefObjVIO ViewTypeClass ViewInfoRefObject

Displayable Object View Class Object
View_Information_
Reference_Class Object

View_Information_Object_
Class Object

ObjectClass

ViewTypeClass

ObjectClass

ObjectClass

View_Information_Object_
Class Object

View_Information_Object_
Class Object

View_Information_Object_
Class Object

View_Information_Object_
Class Object

View_Information_
Reference_Class Object

RefClass
ViewInfoList

RefClass
ViewInfoList

Legend:

Real link
Pseudo link

ViewTypeClass

Figure 28. View_Information_Object_Class Object Determination Technique Two

Chapter 5. How GMFHS Uses RODM 93

Object Discovery Process Description for Specific Views

This section describes how GMFHS determines which objects to include in a view.

Network and exception views are opened by selecting them from the NMC tree

view. All other types of views are opened by selecting an object rather than a view

name.

The following information is provided for each view:

v Whether the view is predefined or dynamically built. Note that some views can

be either predefined or dynamically built.

v A high level description of the logic that GMFHS uses to discover all of the

objects.

v The fields that are used by the object discovery process.

Network Views: Network views are predefined views. Each view is represented

by a Network_View_Class object in RODM. Every object under this class is queried

when the NetView management console server establishes a session with GMFHS,

and will be displayed in the NMC tree view. Whenever you add or delete network

views, this list of views is automatically refreshed. The name of the view that is

displayed in the list is the value of the MyName field of the Network_View_Class

object.

When a network view is opened, the request is passed to GMFHS. GMFHS queries

the ContainsObjects field of the Network_View_Class object. The list of objects that

is returned is used by the GMFHS connectivity process. See “Object Connectivity

Process” on page 100 for a description of this process.

Configuration Peer Views: Configuration peer views are predefined views. Each

view is represented by a Configuration_Peer_View_Class object in RODM.

Configuration peer views are similar to network views, but there are two

significant differences:

v Configuration views are not available in the NMC tree view.

v A configuration view is called by object, not by name.

When a configuration peer view is opened, the request is passed to GMFHS.

GMFHS queries the ContainedInView field on the selected resource object. This

field points to every predefined view to which this resource is currently defined.

For each of these view objects, GMFHS determines its view type by finding the

class on which the object was created. For each Configuration_Peer_View_Class

object, GMFHS queries the ContainsObjects field on the specified view object to get

the list of objects that are to be placed in the view. The list of objects that is

returned is used by the GMFHS connectivity process. See “Object Connectivity

Process” on page 100 for a description of this process.

NMC Locate Failing Resources Views: NMC locate failing resources views are

dynamically built views which are requested by selecting an aggregate object in an

open view and requesting an NMC locate failing resources view.

When an NMC locate failing resources view is opened, NMC passes the request to

GMFHS. GMFHS queries the AggregationChild field of the selected aggregate

object to get a list of all aggregate children objects and real children objects of the

aggregate object. For each aggregate child object, GMFHS queries the

AggregationChild field of that object to get its children objects. This process is

repeated until GMFHS has the complete list of all real objects under the original

aggregate.

94 Resource Object Data Manager and GMFHS Programmer’s Guide

GMFHS removes all aggregate objects from the list and real objects that meet any

of the following criteria:

v Does not map to an exception state (ResourceTraits contains NOXCPT).

v Has a UserStatus that indicates the object is suspended from aggregation

(UserStatus bit 0x40 is on).

v Has an AggregationPriorityValue that indicates aggregation is not in use

(AggregationPriorityValue = -1).

A list of objects that do not meet any of these criteria is passed to the GMFHS

connectivity process. See “Object Connectivity Process” on page 100 for a

description of this process.

Customizing Fast Path to Failing Resource Views: You can determine which objects

appear in an NMC locate failing resources view by customizing how the

DisplayStatus of an object maps to the exception state of an object. See “Defining

Exception View Objects and Criteria” on page 100 for more information about

mapping display status to exception state.

Configuration Children Views: The configuration children view is a dynamically

built view which is requested by selecting an object in an open view and selecting

a configuration children view. This view shows the operator all children defined to

the selected object. To find the children objects of the selected object, GMFHS uses

the following process:

v Find the View_Information_Object_Class object.

v Query the RelFieldNamesA field of the View_Information_Object_Class object.

For the base GMFHS data model, this field specifies the ChildAccess field. Note

that the RelFieldNamesA field is user modifiable and can contain other values.

v The ChildAccess field contains a pointer to all objects that are children of the

object.

This process is repeated for each child object of the selected object until the

complete list of children is identified. The list of objects is passed to the GMFHS

connectivity process. See “Object Connectivity Process” on page 100 for a

description of this process.

Configuration Parent Views: The configuration parent view is a dynamically

built view which is requested by selecting an object from an open view and

selecting a configuration parent view. This view shows the selected object,

connection to intermediate parents, and connection to the ultimate parent of the

selected object. To find the parent objects of the selected object, GMFHS uses the

following process:

v Find the View_Information_Object_Class object.

v Query the RelFieldNamesA field of the View_Information_Object_Class object.

For the base GMFHS data model, this field specifies the ParentAccess field. Note

that the RelFieldNamesA field is user modifiable, and can contain other values.

v The ParentAccess field contains a pointer to all objects that are parent objects of

the selected object.

This process is repeated for each parent object of the selected object until the

complete list of parent objects is identified. The list of objects is passed to the

GMFHS connectivity process. See “Object Connectivity Process” on page 100 for a

description of this process.

Chapter 5. How GMFHS Uses RODM 95

Configuration Logical Views: The configuration logical view is requested by

selecting an object in an open view and then selecting a configuration logical view.

This view shows the selected object and all resource objects that are logically

connected to it. Configuration logical views can be dynamically built or

predefined.

For dynamically built configuration logical views, GMFHS uses the following

process to find the objects that are logically connected to the selected object:

v Find the View_Information_Object_Class object.

v Query the following fields for the base GMFHS data model:

– RelFieldNamesA, which specifies the LogicalConnUpstream field

– RelFieldNamesB, which specifies the LogicalConnDownstream field

– RelFieldNamesAB, which specifies the LogicalConnPP field.

Note that the RelFieldNamesA, RelFieldNamesB, and RelFieldNamesAB fields

are user modifiable and can contain other values.

v These fields contain pointers to the objects that are logically connected to the

selected object.

This process is repeated for each resource object that is logically connected to the

selected object until the complete list of objects is identified.

For predefined configuration logical views, the request is passed to GMFHS.

GMFHS queries the ContainedInView field on the selected resource object. This

field points to every predefined view to which this resource is currently defined.

For each of these view objects, GMFHS determines its view type by finding the

class on which the object was created. For each Configuration_Logical_View_Class

object, GMFHS queries the ContainsObjects field on the specified view object to get

the list of objects that are to be placed in the view.

For both dynamically built and predefined configuration logical views, the list of

objects is passed to the GMFHS connectivity process. See “Object Connectivity

Process” on page 100 for a description of this process.

Configuration Physical Views: The configuration physical view is requested by

selecting an object from an open view and then selecting a configuration physical

view. This view shows the selected object, and all resource objects that are

physically connected to it. Configuration physical views can be dynamically built

or predefined.

For dynamically built configuration physical views, GMFHS uses the following

process to find the objects that are physically connected to the selected object:

v Find the View_Information_Object_Class object.

v Query the following fields for the base GMFHS data model:

– RelFieldNamesA, which specifies the PhysicalConnUpstream field

– RelFieldNamesB, which specifies the PhysicalConnDownstream field

– RelFieldNamesAB, which specifies the PhysicalConnPP field

Note that the RelFieldNamesA, RelFieldNamesB, and RelFieldNamesAB fields

are user modifiable and can contain other values.

v These fields contain pointers to the objects that are physically connected to the

selected object.

This process is repeated for each resource object that is physically connected to the

selected object until the complete list of objects is identified.

96 Resource Object Data Manager and GMFHS Programmer’s Guide

For predefined configuration physical views, the request is passed to GMFHS.

GMFHS queries the ContainedInView field on the selected resource object. This

field points to every predefined view to which this resource is currently defined.

For each of these view objects, GMFHS determines its view type by finding the

class on which the object was created. For each Configuration_Physical_View_Class

object, GMFHS queries the ContainsObjects field on the specified view object to get

the list of objects that are to be placed in the view.

For both dynamically built and predefined configuration physical views, the list of

objects is passed to the GMFHS connectivity process. See “Object Connectivity

Process” on page 100 for a description of this process.

Configuration Backbone Views: The configuration backbone view is requested by

selecting an object from an open view and selecting a configuration backbone view.

This view shows the subarea backbone. Configuration backbone views can be

dynamically built or predefined.

For dynamically built configuration backbone views, GMFHS uses the following

process to find the backbone objects that are related to the selected object:

v Find the View_Information_Object_Class object.

v Query the RelFieldNamesA field of the View_Information_Object_Class object.

For the base GMFHS data model, this field specifies the BackboneConnPP field.

Note that the RelFieldNamesA field is user modifiable and can contain other

values.

v The BackboneConnPP field contains a pointer to all objects that are part of the

SNA backbone.

This process is repeated for each backbone object that is related to the selected

object until the complete list of backbone objects is identified.

For predefined configuration backbone views, the request is passed to GMFHS.

GMFHS queries the ContainedInView field on the selected resource object. This

field points to every predefined view to which this resource is currently defined.

For each of these view objects, GMFHS determines its view type by finding the

class on which the object was created. For each

Configuration_Backbone_View_Class object, GMFHS queries the ContainsObjects

field on the specified view object to get the list of objects that are to be placed in

the view.

For both dynamically built and predefined configuration backbone views, the list

of objects is passed to the GMFHS connectivity process. See “Object Connectivity

Process” on page 100 for a description of this process.

More Detail Views: More detail views display the next lower layer of child

resources for the selected object. There are four types of more detail views:

v More detail logical

v More detail physical

v Configuration child II

v Configuration child III

One or more of these views can be displayed for the selected resource depending

on its resource type.

Chapter 5. How GMFHS Uses RODM 97

If any of these views yield a view with no objects, the view is not returned to the

workstation. If no views can be built, a message is displayed at the workstation

saying the view cannot be found.

The following topics describe how GMFHS builds the four types of more detail

views:

More Detail Logical: A more detail logical view can be dynamically built or

predefined. When a more detail logical view is opened, the request is passed to

GMFHS. To determine which objects are in the view, GMFHS performs the

following:

v Query the ContainsLogical field of the selected object to find the name of the

field that are queried to get the list of objects. For the base GMFHS data model,

this field specifies the ComposedOfLogical field. The ComposedOfLogical field

contains the list of objects that comprise the next lower layer of the selected

object.

v Pass the list of objects to the GMFHS connectivity process. See “Object

Connectivity Process” on page 100 for a description of this process.

More Detail Physical: A more detail physical view can be dynamically built or

predefined. When a more detail physical view is opened, the request is passed to

GMFHS. To determine which objects are in the view, GMFHS performs the

following:

v Query the ContainsPhysical field of the selected object to find the name of the

field that are queried to get the list of objects. For the base GMFHS data model,

this field specifies the ComposedOfPhysical field. The ComposedOfPhysical field

contains the list of objects that comprise the next lower layer of the selected

object.

Pass the list of objects to the GMFHS connectivity process. See “Object

Connectivity Process” on page 100 for a description of this process.

Configuration Child II View: A configuration child II view is a dynamically built

view, which shows a subset of the children defined to the selected logical unit

object. To find the subset of children of the selected object, GMFHS uses the

following process:

v Find the View_Information_Object_Class object.

v Query the RelFieldNamesA field of the View_Information_Object_Class object.

This field specifies the list of fields to query to determine the list of the

first-level children.

This process is repeated for each child object of the selected object until the

complete list of children objects is identified. The list of objects is passed to the

GMFHS connectivity process. See “Object Connectivity Process” on page 100 for a

description of this process.

If one or more of the fields specified by the RelFieldNamesA field is present on the

selected object, the view is displayed even if there are no children. In this case,

only the selected object will be displayed. This view is displayed with a radial

layout with the selected object as the root node.

The following SNA topology manager resource classes use this view type to

display the LU-type objects attached to the selected object:

v appnEN

v appnNN

v crossDomainResource

98 Resource Object Data Manager and GMFHS Programmer’s Guide

v interchangeNode

v logicalLink

v logicalUnit

v luGroup

v migrationDataHost

v snaNode

v t5Node

Configuration Child III View: A configuration child III view is a dynamically built

view, which shows a subset of the children defined to the selected definition group

object. To find the subset of children of the selected object, GMFHS uses the

following process:

v Find the View_Information_Object_Class object.

v Query the RelFieldNamesA field of the View_Information_Object_Class object.

This field specifies the list of fields to query to determine the list of the

first-level children.

This process is repeated for each child object of the selected object until the

complete list of children objects is identified. The list of objects is passed to the

GMFHS connectivity process. See “Object Connectivity Process” on page 100 for a

description of this process.

If one or more of the fields specified by the RelFieldNamesA field is present on the

selected object, the view is displayed even if there are no children. In this case,

only the selected object will be displayed. This view is displayed with a

hierarchical layout with the selected object as the root node.

The following SNA topology manager resource classes use this view type to

display the definition group objects attached to the selected object:

v t5Node

v interchangeNode

v migrationDataHost

v appnEN

v appnNN

v definitionGroup

Exception Views: Exception views are predefined views. Each view is represented

by an object created on the Exception_View_Class in RODM. Every object in this

class is queried when the NetView management console graphic data server or

NMC server establishes a session with GMFHS, and will be displayed in the NMC

tree view. When you add or delete an exception view, this list of views is

automatically refreshed. The view name displayed is the value of the MyName

field of the Exception_View_Class object.

The object discovery process for exception views is different from other predefined

views because the view object does not contain links to each resource in the view.

For exception views, object discovery is accomplished by defining a list of

candidate objects that can be in an exception view and a series of filters that is

constantly applied to that list. These filters reduce the list to include only those

objects that you want to be displayed in the exception view. For example, you can

define all of your NCPs to an exception view, and set it up so that the only ones

displayed in the view are the ones having problems that need attention.

When an exception view is opened, the request is passed to GMFHS, which

determines the list of candidate objects. The list of candidate objects is found by

first querying the ExceptionViewName field of the Exception_View_Class object.

Chapter 5. How GMFHS Uses RODM 99

Then GMFHS issues a locate request for the value of that field against the

ExceptionViewList field in RODM. All objects that are defined as candidates are

returned with this locate request.

The ExceptionViewFilter field of the Exception_View_Class object contains the

filters used to reduce this list. For example, using these filters you can filter out

objects that are currently suspended or marked, or objects whose status is not

considered a problem. This yields a list of resources that are in a problem state.

The list of objects, even if empty, is then passed to the NetView management

console to be displayed.

GMFHS keeps all open exception views current. This is done by determining

whether views specified in the ExceptionViewList of the resource are open. After

comparing the filter for each view to the resource, GMFHS determines if the

resource is either added to, or deleted from, an open exception view.

Object Connectivity Process

After the object determination process has determined the list of objects that are in

a view, the list is passed to the object connectivity process. GMFHS must now

determine how the objects that are listed are interconnected in the view. GMFHS

does this by performing the following process, sequentially, for each object listed.

For each object, GMFHS performs the following:

v Find the View_Information_Object_Class object.

v Query the RelFieldNamesx field. This field specifies which fields are queried on

the object.

v Query those fields on the object.

v Compares the object list returned by the query request to the initial object list

that was passed to the connectivity process. All objects that are contained in

both lists are connected.

v Pass the view to the NetView management console.

Notes:

1. For exception views, GMFHS does not use this process. All objects are

displayed in a grid, and there is no connectivity relationship among these

objects.

2. If GMFHS determines that a node is connected to another node, it inserts a null

connector link between the two nodes.

3. If a link does not have real nodes as end points, GMFHS inserts null connector

nodes.

Defining Exception View Objects and Criteria

To define an exception view complete the following tasks:

1. Create an exception view object and define the criteria for what is considered

an exception. This step provides the filters that are applied to the exception

view candidate list, which ultimately defines the object to be displayed in a

view.

2. Define the objects in RODM that are candidates for exception views.

All exception views are defined on the NetView host; you cannot customize these

views from the NetView management console.

Sample DUIFDEXV, Define Exception Views, provides examples for creating four

exception view objects and setting two ExceptionViewList values for both the

100 Resource Object Data Manager and GMFHS Programmer’s Guide

GMFHS_Managed_Real_Objects_Class and the GMFHS_Aggregate_Objects_Class.

The prologue of sample DUIFDEXV contains information about how to define an

exception view for GMFHS objects.

Defining Exception Criteria

You can define what constitutes an exception for any given exception view and

resource, thus determining when an object is placed in an exception view. The

following fields are used to determine when a resource is displayed in an

exception view:

v The value of the UserStatus field of the object

v The value of the DisplayStatus field of the object

v The value of the ResourceTraits field of the object

v The ExceptionViewFilter field of the Exception_View_Class object

The UserStatus field of an object allows you to specify whether an object is

displayed in an exception view based on an operator entry or an automation

program. For example, operators can mark the objects on which they are working,

and you can choose to exclude the marked objects from exception views. Or, if

your automation routine is trying to recover a failed resource, the automation

routine can set the automation-in-progress bit of the object, and you can choose to

exclude these objects from exception views. Use the ExceptionViewFilter to

customize the processing of these UserStatus values for each exception view.

The DisplayStatus field of an object contains the basic status information used to

decide whether an object is placed in an exception view. For example, if the

DisplayStatus value is 129 (satisfactory), you probably do not want to display the

object in an exception view. If the DisplayStatus value changes to 130

(unsatisfactory), you probably do want to display the object. However, you might

want to display some objects with a DisplayStatus value of 132 (unknown) but not

display others.

NetView supplies a sample table, DUIFSMT, that maps the DisplayStatus of objects

and classes to exceptions or non-exceptions. This mapping is referred to as the

exception state of an object.

Chapter 5. How GMFHS Uses RODM 101

You can customize how the DisplayStatus is interpreted by modifying the

DUIFSMT table. See “Customizing the DisplayStatus Mapping Table for Exception

Views” on page 104 for more information.

You can also create a RODM user method, which allows you to access RODM data

and override the table. See “Creating a DisplayStatus Method for Exception Views”

on page 111 for more information.

Note: The exception state of an object is one of the criteria used to determine

which real objects are included in an NMC Locate Failing Resources view.

Only real objects that map to an exception state are included in an NMC

Locate Failing Resources view. See “NMC Locate Failing Resources Views”

on page 94 for more information.

The ResourceTraits field of an object contains the value of how DisplayStatus has

been interpreted and the state of all UserStatus bits. The ResourceTraits field of an

object is used when an exception view is built to determine when an object meets

the criteria for inclusion in an exception view.

The ExceptionViewFilter field of an object is defined on all objects of the

Exception_View_Class. This field defines the state an object must be in to be

displayed in an exception view. The value of the ExceptionViewFilter field is

compared to the values for the DisplayStatus and UserStatus fields of the resource

object as reflected in the ResourceTraits field. If the values of the

ExceptionViewFilter field and ResourceTraits field match, the object is considered

an exception and is placed in the defined exception view. See “Defining the

ExceptionViewFilter Field” on page 103 for a complete description of

ExceptionViewFilter customization.

DUIFSMT CSECT

 DUIFSMTE CLASS=APPNNN, C

 XCPT=(UNSAT,UNKWN,DS152,DS153,DS154,DS155,DS156,DS157,DSC

 158,DS159,MEDUN,LOWUN)

 DUIFSMTE CLASS=INTERCHANGENODE, C

 XCPT=(UNSAT,UNKWN,DS152,DS153,DS154,DS155,DS156,DS157,DSC

 158,DS159,MEDUN,LOWUN)

 DUIFSMTE CLASS=MIGRATIONDATAHOST, C

 XCPT=(UNSAT,UNKWN,DS152,DS153,DS154,DS155,DS156,DS157,DSC

 158,DS159,MEDUN,LOWUN)

 DUIFSMTE CLASS=T5NODE, C

 XCPT=(UNSAT,UNKWN,DS152,DS153,DS154,DS155,DS156,DS157,DSC

 158,DS159,MEDUN,LOWUN)

 DUIFSMTE CLASS=APPNTRANSMISSIONGROUP, C

 XCPT=(UNSAT,UNKWN,DS152,DS153,DS154,DS155,DS156,DS157,DSC

 158,DS159,MEDUN,LOWUN)

 DUIFSMTE CLASS=APPNTRANSMISSIONGROUPCIRCUIT, C

 XCPT=(UNSAT,UNKWN,DS152,DS153,DS154,DS155,DS156,DS157,DSC

 158,DS159,MEDUN,LOWUN)

 DUIFSMTE CLASS=T4NODE, C

 XCPT=(UNSAT,UNKWN,DS152,DS153,DS154,DS155,DS156,DS157,DSC

 158,DS159,MEDUN,LOWUN)

 DUIFSMTE CLASS=GMFHS_Managed_Real_Objects_Class, C

 XCPT=(UNSAT,DS152,DS153,DS154,DS155,DS156,DS157,DS158,DSC

 159,MEDUN,LOWUN)

 DUIFSMTE CLASS=ALL, C

 XCPT=(UNSAT,DEGRD,SDGRD,DS152,DS153,DS154,DS155,DS156,DSC

 157,DS158,DS159)

LAST DUIFSMTE END

Figure 29. Sample Table DUIFSMT

102 Resource Object Data Manager and GMFHS Programmer’s Guide

Defining Candidates for Exception Views

The following fields are used to define in which exception views an object can be

displayed:

v The ExceptionViewName field of the Exception_View_Class object

v The ExceptionViewList field of the object

The ExceptionViewName field contains the unique name of the

Exception_View_Class object that you created. You must create one

Exception_View_Class object for each exception view that you define, and the

name of each object must be unique.

The ExceptionViewList field of a resource object contains a list of

ExceptionViewNames. You must specify the ExceptionViewName of each exception

view in which you want this resource to be displayed when the resource has an

exception state. Because a resource can be displayed in more than one exception

view, the ExceptionViewList field can contain a list of names.

If you create a resource object to be displayed in an open exception view, one of

the following tasks is required:

v Change the ExceptionViewList field from a null value to the list of candidate

views.

v Close and then reopen the exception view.

If you want to delete a resource object from RODM that is in an open exception

view, remove the ExceptionViewName from the ExceptionViewList before you

delete the resource object. If you delete the resource object from RODM before you

remove it from the ExceptionViewList, the resource object will remain in the view

until it is closed because GMFHS cannot send updates for deleted objects.

For SNA resources managed by SNA topology manager, the ExceptionViewList

field is set by NetView when the object is created. The NetView program

determines the value of this field based on the class of the object. You can change

the default mapping of classes to exception views by customizing the FLBEXV

table. For more information about customizing the FLBEXV table, refer to the IBM

Tivoli NetView for z/OS SNA Topology Manager Implementation Guide.

Defining the ExceptionViewFilter Field

The ExceptionViewFilter field is used to define the state that an object must be in

to be placed in an exception view. There are 5 values in the field; each represents a

different status filter. Filter 1 is for DisplayStatus, and the remaining 4 filters are

for UserStatus.

The default for the ExceptionViewFilter is X'4000' (bit value ’0100 0000 0000 0000’),

which indicates that:

v Only objects in an exception state are candidates for the view. Objects in an

exception state are those objects that have the value XCPT in the ResourceTraits

field.

v No filtering is done on UserStatus.

This means that if an object maps to an exception state, it will be displayed in an

exception view regardless of its UserStatus. The default value of the

ExceptionViewFilter can be changed at either the class or object level.

DisplayStatus Filter: Set the ExceptionViewFilter for DisplayStatus to 0 (zero) if

you want all objects to be considered candidates for an exception view regardless

Chapter 5. How GMFHS Uses RODM 103

of the DisplayStatus. If you want only objects that are in an exception state to be

considered candidates for an exception view, leave the ExceptionViewFilter for

DisplayStatus set to 1, which is the default value.

Shadow objects do not have a DisplayStatus field, so they are not considered to be

monitorable objects. However, if you set the filter for DisplayStatus in the

ExceptionViewFilter field to 0 (zero), shadow objects are candidates for the view.

Shadow objects must adhere to all of the criteria specified in the

ExceptionViewFilter field of the view object and the ExceptionViewList field of the

shadow object must contain the ExceptionViewName of the view.

UserStatus Filters: Set the UserStatus filters in the ExceptionViewFilter to indicate

which UserStatuses are filtered out of the exception view. For example, if you want

to filter out objects that have a UserStatus of “mark” set the mark UserStatus filter

in the ExceptionViewFilter field to bit value X'01'. If you want to filter all objects

that are not marked, set the mark UserStatus filter in the ExceptionViewFilter field

to bit value X'10'.

An object will not be displayed in an exception view if the following bits for

UserStatus are on:

v X'02' (not monitored)

v X'40' (aggregation is suspended)

This means that you cannot filter on these bits, because they are automatically

filtered from an exception view.

Use the “List Suspended Resources” at the NetView management console to

determine which objects have been suspended from aggregation.

Table 19 contains examples of alternate values for the ExceptionViewFilter field and

the resultant exception view:

 Table 19. Examples of ExceptionViewFilter Field Values and Resultant Views

Value Objects in View

'0000 0000 0000 0000' (X'0000') All objects defined to the view regardless of the

DisplayStatus or UserStatus.

'0101 0000 0000 0000' (X'5000') All objects in an exception state defined to the view

that are not marked. All marked objects are filtered

out of the view.

'0110 0000 0000 0000' (X'6000') All objects in an exception state defined to the view

that are marked. All objects that are not marked are

filtered out of the view.

Customizing the DisplayStatus Mapping Table for Exception

Views

You can customize the mapping of DisplayStatus values using the table DUIFSMT.

This table consists of statements created by the DUIFSMTE macro.

To customize the table, change the DUIFSMTE statements in sample DUIFSMT to

reflect the desired DisplayStatus mapping and then use sample CNMSJH13 to:

v Assemble and link-edit the table to create a load module.

v Refresh the DisplayStatus change method.

v Trigger a recalculation of the DisplayStatus mapping for all real and aggregate

objects in RODM.

104 Resource Object Data Manager and GMFHS Programmer’s Guide

Recalculate the DisplayStatus mapping so that the new status is immediately

available for exception views. If you do not want to recalculate until the

DisplayStatus of the object is changed, comment out the following statement in

sample CNMSJH13:

OP DUIFRFDS INVOKED_WITH;

Figure 30 shows the syntax of the DUIFSMTE macro. You specify the default

values for classes not included in the DUIFSMT table using the value ALL for

class_name.

The macro format is shown in Figure 30.

 More than one keyword can be specified, but no keyword can be specified more

than once.

Where:

CLASS=class_name

The name of the class in RODM for which you are customizing DisplayStatus

mapping. If you want to specify the default values for classes not included in

the DUIFSMT table, use the value ALL for class_name.

 To customize the DisplayStatus mapping for all of the objects of a class, one

statement for that class is necessary. To customize the DisplayStatus mapping

for specific objects, or groups of objects, of a class, multiple statements are

required. Each statement with the same value for class_name requires a

different value for the RESOURCE or MYNAME keyword.

Note: RODM names are case-sensitive.

For classes managed by SNA topology manager, you can use alias values for

class. Table 20 on page 106 lists the aliases you can enter and their

corresponding actual class names as known to RODM; both are accepted by

the DUIFSMTE macro.

DUIFSMTE

�� DUIFSMTE Class

END
 ��

Class:

 CLASS=class_name

�

,

,XCPT=(

value

)

,MYNAME=resource_name

,RESOURCE=resource_name

 �

�

�

,

,STGRPn=(

value

)

,USRXMETH=method_name

Figure 30. Macro DUIFSMTE Syntax

Chapter 5. How GMFHS Uses RODM 105

Table 20. Aliases for RODM Class Names

 Alias for Class MyName Value for Class

 APPNEN 1.3.18.0.0.1821

 APPNNN 1.3.18.0.0.1822

 APPNTRANSMISSIONGROUP 1.3.18.0.0.1823

 APPNTRANSMISSIONGROUPCIRCUIT 1.3.18.0.0.2058

 CROSSDOMAINRESOURCE 1.3.18.0.0.2281

 CROSSDOMAINRESOURCEMANAGER 1.3.18.0.0.2278

 DEFINITIONGROUP 1.3.18.0.0.2267

 INTERCHANGENODE 1.3.18.0.0.1826

 LENNODE 1.3.18.0.0.1827

 LOGICALLINK 1.3.18.0.0.2085

 LOGICALUNIT 1.3.18.0.0.1829

 MIGRATIONDATAHOST 1.3.18.0.0.2155

 PORT 1.3.18.0.0.2089

 T2-1NODE 1.3.18.0.0.1843

 T4NODE 1.3.18.0.0.1844

 T5NODE 1.3.18.0.0.1845

 VIRTUALROUTINGNODE 1.3.18.0.0.1845

See “Implementing Exception View Processing for MultiSystem Manager” on

page 112 for information on exception view processing.

XCPT=value

Specifies DisplayStatus values of objects considered to be in an exception state.

More than one value can be specified, but no value can be specified more than

once. Objects with these DisplayStatus values are added to an exception view

if the UserStatus and ExceptionViewList criteria are also met.

Note: If XCPT is not specified, or if the value for XCPT is null, the object will

not be included in an exception view that is defined to only include

106 Resource Object Data Manager and GMFHS Programmer’s Guide

exception objects. CrossDomainResourceManager in Figure 34 on page

111 will not be displayed in an exception view that has an

ExceptionViewFilter of X'4000'.

The following are possible XCPT values:

DEGRD

Specifies objects with a DisplayStatus value of 133 (degraded).

INTER

Specifies objects with a DisplayStatus value of 131 (intermediate).

LOWSA

Specifies objects with a DisplayStatus value of 145 (low satisfactory).

LOWUN

Specifies objects with a DisplayStatus value of 161 (low unsatisfactory).

MEDSA

Specifies objects with a DisplayStatus value of 144 (medium

satisfactory).

MEDUN

Specifies objects with a DisplayStatus value of 160 (medium

unsatisfactory).

SATIS Specifies objects with a DisplayStatus value of 129 (satisfactory).

SDGRD

Specifies objects with a DisplayStatus value of 134 (severely degraded).

UNKWN

Specifies objects with a DisplayStatus value of 132 (unknown).

UNSAT

Specifies objects with a DisplayStatus value of 130 (unsatisfactory).

 There are 16 possible user-defined DisplayStatus values that are reserved for

customer use only. Possible user-defined values for XCPT are:

DS136 Specifies objects with a user-defined DisplayStatus value of 136.

DS137 Specifies objects with a user-defined DisplayStatus value of 137.

DS138 Specifies objects with a user-defined DisplayStatus value of 138.

DS139 Specifies objects with a user-defined DisplayStatus value of 139.

DS140 Specifies objects with a user-defined DisplayStatus value of 140.

DS141 Specifies objects with a user-defined DisplayStatus value of 141.

DS142 Specifies objects with a user-defined DisplayStatus value of 142.

DS143 Specifies objects with a user-defined DisplayStatus value of 143.

DS152 Specifies objects with a user-defined DisplayStatus value of 152.

DS153 Specifies objects with a user-defined DisplayStatus value of 153.

DS154 Specifies objects with a user-defined DisplayStatus value of 154.

DS155 Specifies objects with a user-defined DisplayStatus value of 155.

DS156 Specifies objects with a user-defined DisplayStatus value of 156.

DS157 Specifies objects with a user-defined DisplayStatus value of 157.

DS158 Specifies objects with a user-defined DisplayStatus value of 158.

Chapter 5. How GMFHS Uses RODM 107

DS159 Specifies objects with a user-defined DisplayStatus value of 159.

STGRPn=value, where n is a number from 1 to 8

Specifies a group of DisplayStatus values for status group aggregation (see

“Status Groups” on page 142). More than one value can be specified, but no

value can be specified more than once per status group. If the DisplayStatus

value of a real object matches a DisplayStatus value in a status group, any

parent aggregate objects will be assigned the DisplayStatus value from the

same status group if the status group is defined for the parent aggregate object.

If more than one DisplayStatus value is defined in the status group for the

aggregate object, the first DisplayStatus value is used.

 The groups are prioritized from 1 (high) to 8 (low). For any STGRPn, if the

keyword is not specified or is null on either a real or aggregate object then

there can be no status override for that status group.

 The possible STGRPn values are the same as those listed for the XCPT

keyword.

RESOURCE=resource_name

The DisplayResourceName of the specific resource or group of resources to

which these values apply. You can use the wildcard character * (asterisk) at the

end of the resource name to specify groups of resources. You cannot use a

wildcard character * embedded in a resource name. See “Specifying Resource

Names for DisplayStatus Mapping” on page 109 for more information.

Note: The RESOURCE and MYNAME keywords cannot both be specified in

the same DUIFSMTE statement.

MYNAME=resource_name

The MyName of the resource or group of resources to which these values

apply. You can use the wildcard character * (asterisk) at the end of the resource

name to specify groups of resources. You cannot use a wildcard character *

embedded in a resource name.

Note: The MYNAME and RESOURCE keywords cannot both be specified in

the same DUIFSMTE statement.

USRXMETH=method_name

The name of a RODM user method to be triggered for objects in this class; if

specified, the method might override the DisplayStatus mapping. See

“Creating a DisplayStatus Method for Exception Views” on page 111 for more

information.

END

This keyword ends table processing. DUIFSMTE END must be the last

statement in your source for the table.

Usage Notes:

1. In sample DUIFSMT, DUIFSMTE must start in column 10. You can code the

keywords in the columns following DUIFSMTE, separated by a space.

2. If a statement exceeds 71 characters, put a continuation character in column 72

and continue the statement in column 16 of the next line.

3. If you enter more than one statement with the same class_name and

resource_name values, the first statement is used and the other statements are

ignored; a warning message is issued.

108 Resource Object Data Manager and GMFHS Programmer’s Guide

Default Values for Classes

To specify the default values for all classes not defined in the DUIFSMT table, use

the value ALL for class_name. For example:

DUIFSMTE CLASS=ALL,XCPT=(DEGRD,INTER,SDGRD,UNSAT)

These values apply to all classes unless they are overridden by other statements.

You only need to code the specific classes that differ from the values you specify

for CLASS=ALL.

Specifying Resource Names for DisplayStatus Mapping

You can specify the DisplayStatus mapping for specific resources or groups of

resources within a class. To specify the resource name, use the RESOURCE or

MYNAME keyword of the DUIFSMTE macro. You can use an asterisk (*), the

wildcard character, at the end of the resource name to specify groups of resources.

You cannot embed wildcard characters in the resource name.

If you want to customize a specific resource, code the statement for that resource

before other generic statements that match in its class. (See Usage Note 3 on page

108.) For example, assume that you have a resource in the

GMFHS_Managed_Real_Objects_Class whose DisplayResourceName is RALV4 and

MyName is DECNET.RALV4. If you want resource DECNET.RALV4 to map to

XCPT if it has an unsatisfactory status, but you do not want other resources in that

class to do the same, code the statement for the resource first as shown in

Figure 31:.

 If, in Figure 31, the second DUIFSMTE statement had been coded before the first

DUIFSMTE statement, resource DECNET.RALV4 and all other objects in the

GMFHS_Managed_Real_Objects_Class map to an exception only when they have

an intermediate status.

The rules for the RESOURCE keyword are the same as the rules for the

RESOURCE keyword in the customization tables of the SNA topology manager.

Refer to the IBM Tivoli NetView for z/OS SNA Topology Manager Implementation

Guide for more information.

Figure 32 on page 110 illustrates an example of coding both a MYNAME keyword

and a RESOURCE keyword for the same class. Assume that you have a resource

object in the GMFHS_Managed_Real_Objects_Class whose MyName is

DECNET.RALV4 and DisplayResourceName is RALV4. If you coded DUIFSMTE

entries as shown in Figure 32 on page 110, the resource matches against all 3 of the

DUIFSMTE entries. However, because the order in which the statements are coded

is important, the first DUIFSMTE entry is the one that matches the exception state.

This object is an exception only if its DisplayStatus is intermediate.

DUIFSMTE CLASS=GMFHS_Managed_Real_Objects_Class, C

 RESOURCE=RALV4,XCPT=(UNSAT)

DUIFSMTE CLASS=GMFHS_Managed_Real_Objects_Class, C

 XCPT=(INTER)

DUIFSMTE CLASS=ALL, C

 XCPT=(UNSAT,UNKWN)

Figure 31. Customizing a Resource

Chapter 5. How GMFHS Uses RODM 109

Examples of Customizing DisplayStatus Mapping

The examples in this topic are provided to give you a better understanding of

mapping DisplayStatus to an exception state. In the first example (shown in

Figure 33), assume the following conditions:

v You want to display all objects of the t4Node (1.3.18.0.0.1844) class with a

DisplayStatus of unsatisfactory or unknown in an exception view. (Use the alias

from Table 20 on page 106 for the class name.)

v You want to display all objects of the appnEN (1.3.18.0.0.1821) class with a

DisplayStatus of unsatisfactory, intermediate, or unknown in an exception view.

(Use the actual MyName value from Table 20 on page 106 for the class name.)

v You want to display all objects of the GMFHS_Aggregate_Objects_Class in an

exception view if their DisplayStatus value is severely degraded.

v For objects in all other classes, you want to place them in exception views only

if their DisplayStatus is unsatisfactory or severely degraded.

Using the previously listed conditions, Figure 33 shows the coding of the

DisplayStatus mapping table. Note that the fourth statement sets the defaults.

 For the second example (shown in Figure 34 on page 111), assume the following

conditions:

v You have created a RODM method named CUSTMTH1 to decide whether

objects of the t2-1Node are to be displayed in exception views based on the

values of other fields in RODM.

v You do not want objects of the crossDomainResourceManager class to be

displayed in any exception view that has an ExceptionViewFilter value of

X'4000'.

v You want the object in the appnEN class with a DisplayResourceName of

USIBMNT.NCPPU1 to be displayed in an exception view regardless of its status.

No user-defined DisplayStatus values are defined.

v You want objects in the appnEN class with the SNA network ID portion of the

DisplayResourceName of USIBMNT to be displayed in exception views if their

status is not satisfactory. No user-defined DisplayStatus values are defined.

Using the previously listed conditions, Figure 34 on page 111 shows the coding for

the DisplayStatus mapping table.

DUIFSMTE CLASS=GMFHS_Managed_Real_Objects_Class, C

 MYNAME=DECNET.*, C

 XCPT=(INTER)

DUIFSMTE CLASS=GMFHS_Managed_Real_Objects_Class, C

 RESOURCE=RALV*, C

 XCPT=(SATIS)

DUIFSMTE CLASS=ALL, C

 XCPT=(UNSAT)

DUIFSMTE END

Figure 32. Example of a MYNAME and RESOURCE Keyword in the Same DUIFSMTE Entry

DUIFSMTE CLASS=T4NODE,XCPT=(UNSAT,UNKWN)

DUIFSMTE CLASS=1.3.18.0.0.1821,XCPT=(UNSAT,INTER,UNKWN)

DUIFSMTE CLASS=GMFHS_Aggregate_Objects_Class,XCPT=(SDGRD)

DUIFSMTE CLASS=ALL,XCPT=(UNSAT,SDGRD)

Figure 33. DisplayStatus Mapping Table Coding Example 1

110 Resource Object Data Manager and GMFHS Programmer’s Guide

Creating a DisplayStatus Method for Exception Views

You can code an object independent method to provide an extra level of

DisplayStatus exception processing in addition to what is provided by the

DUIFSMT table. A sample user method, DUIFCUXM, is provided for this purpose.

Refer to this sample when writing your user method.

If you specify a method name with the USRXMETH keyword in the DUIFSMT

table, that method is triggered asynchronously each time the DisplayStatus of the

specified object changes. This method must follow the guidelines for RODM

methods. For more information about writing RODM methods, see Chapter 13,

“Writing RODM Methods,” on page 339.

The method is triggered asynchronously from the DUIFCRDC method and is

passed the object ID for which a DisplayStatus change has occurred. The following

are the input parameters for this method:

 Smallint Total_length;

 Smallint Data_Type;

 Smallint Data_Length;

 ObjectID Resource_Object_ID;

 Integer Requested_exception_status;

Because the user method is asynchronous, the original conditions that cause it to

be driven might not be true when the user method gains control. Therefore, no

prequeried field values are passed to the user method from method DUIFCRDC.

Be aware that timing and error handling problems can occur. For example, the

mapping of exception state from DUIFSMT can cause an object to be added to an

exception view, but the user method can change the exception state of the same

object so that it is removed a second later. Errors in the user method must be

resolved by the user method. For more information about asynchronous error

handling in RODM, see to Chapter 11, “Writing Applications that Use RODM,” on

page 301.

If you are receiving unexpected results from your user method and suspect that it

is not being triggered, the user method might be installed incorrectly. In this case,

RODM issues a return code and reason code in the transaction information block.

This error will be written to the RODM log as a UAPI trace entry, depending on

the values of LOG_LEVEL and MLOG_LEVEL that are set in the customization

file. The log entry contains the following information:

v Return code: 8

v Reason code: 81

v Function ID: 1416 (Trigger an Object Independent Method)

v Data: your user method name

DUIFSMTE CLASS=T2-1NODE,USRXMETH=CUSTMTH1

DUIFSMTE CLASS=CROSSDOMAINRESOURCEMANAGER

DUIFSMTE CLASS=APPNEN, C

 RESOURCE=USIBMNT.NCPPU1, C

 XCPT=(DEGRD,INTER,SATIS,SDGRD,UNKWN,UNSAT,MEDSA,MEDUN,LOC

 WSA,LOWUN)

DUIFSMTE CLASS=APPNEN, C

 RESOURCE=USIBMNT.*, C

 XCPT=(DEGRD,INTER,SDGRD,UNKWN,UNSAT,MEDSA,MEDUN,LOWSA,LOC

 WUN)

Figure 34. DisplayStatus Mapping Table Coding Example 2

Chapter 5. How GMFHS Uses RODM 111

Note: To test the installation of your user method, you can trigger it using

RODMVIEW.

The user method accepts any criteria, including information in RODM, to

determine the exception state of an object. When the exception state is determined,

method DUIFVCFT, which is provided by IBM, is triggered from the user method

to implement the status in the ResourceTraits field of the specified object.

Case 1: Change exception state of an object to XCPT.

1. From the user method, pass Requested_exception_status=1 to method

DUIFVCFT.

2. DUIFVCFT will change the ResourceTraits field to XCPT.

Case 2: Change exception state of an object to NOXCPT.

1. From the user method, pass Requested_exception_status=0 to method

DUIFVCFT.

2. DUIFVCFT will change the ResourceTraits field to NOXCPT.

In either case, the setting of the ResourceTraits field can result in an object being

added to, or deleted from, an open exception view. This determination is made by

method DUIFVCFT.

The input parameters to method DUIFVCFT are the same as the input to the user

method, except Requested_exception_status is filled in only when you trigger

DUIFVCFT. Trigger DUIFVCFT only if the user method determines that the

exception state of the input object needs to change.

You can also write a user method to filter resources from a view that are marked

as failing because of a higher-level resource failure. Method DUIFCUX2 is

provided as a sample method that performs this function.

Implementing Exception View Processing for MultiSystem

Manager

An exception view is a graphic list of objects that can be filtered by the value of

the object’s DisplayStatus or UserStatus fields. Enabling exception view processing

for MultiSystem Manager objects enables you to recognize failing resources in a

timely manner.

To implement exception view processing:

1. Modify NetView part DUIFSMT to include the statements from sample

FLCSSMT. DUIFSMT is an assembler part and does not support the

%INCLUDE statement. As a result, you must include these statements into

DUIFSMT by manually editing the file.

Sample FLCSSMT is the sample table that maps the DisplayStatus of

MultiSystem Manager objects and classes to exceptions or non-exceptions.

FLCSSMT is shipped in the CNMSAMP data set.

2. Run the NetView JCL sample CNMSJH13 to assemble and link-edit DUIFSMT.

This results in:

v Assembling and link-editing the table to create a load module.

v Refreshing the DisplayStatus change method.

v Recalculating the DisplayStatus mapping for all real and aggregate objects in

RODM.
3. Modify the MultiSystem Manager exception view file.

112 Resource Object Data Manager and GMFHS Programmer’s Guide

The MultiSystem Manager exception view table lists the names of the exception

views that a RODM object will be associated with when the RODM object is

created by MultiSystem Manager.

If you have already implemented exception view processing for MultiSystem

Manager, modify the existing MultiSystem Manager exception view table.

If you have not already implemented exception view processing for

MultiSystem Manager, copy sample FLCSEXV to a data set accessible from the

DSIPARM DD concatenation defined in your NetView start procedure. Rename

the sample file to a name appropriate for your environment. Sample FLCSEXV

resides in the CNMSAMP data set.

FLCSEXV contains sample exception view statements for all of the MultiSystem

Manager real object classes. There is a section for each of the MultiSystem

Manager features. You can add exception views for aggregate objects. You can

also create an object in the Exception_View_Class (see sample FLCSDM6 for an

example) and then use the MyName field of the Exception_View_Class object

as the value for the EXVWNAME keyword.

All of the statements are commented in the sample. If you want to perform

exception view processing for a particular object class, uncomment the

statements associated with that object class.

FLCSEXV does support the %INCLUDE statement. Refer to the prologue of

sample FLCSEXV for information regarding the syntax of the table.

4. Specify the name of the MultiSystem Manager exception view table on the

(MSM)COMMON.FLC_EXCEPTION_VIEW_FILE statement in CNMSTYLE

%INCLUDE member CNMSTUSR or CxxSTGEN.

5. The MultiSystem Manager data model is loaded using NetView sample

CNMSJH12. The prologue of each of these samples contains a short description

of the data model members shipped with MultiSystem Manager.

Each of the sections in FLCSEXV correlate to a data model sample.f

In JCL sample CNMSJH12, uncomment the statement for the appropriate

function data model sample:

 Feature Data Model Sample

IP FLCSDM6I

LAN Network Manager FLCSDM6L

Open FLCSDM6O

TMR FLCSDM6T

 If you want information about... Refer to...

Exception view processing IBM Tivoli NetView for z/OS Resource Object

Data Manager and GMFHS Programmer’s Guide

DUIFSMT IBM Tivoli NetView for z/OS Resource Object

Data Manager and GMFHS Programmer’s Guide

Locate Resource Function

The locate resource function enables the operator to display a resource when the

name of the view that contains it is unknown. Multiple types of views can be

searched and built when the object is found in RODM.

When the locate resource function is selected, the request is passed to GMFHS.

GMFHS issues a locate request for the LocateName field and the

Chapter 5. How GMFHS Uses RODM 113

DisplayResourceName field for the uppercase version of the entry. Objects in either

list will have the requested views built. Note that the LocateName field is of type

IndexList and can have multiple values. Therefore, you can have multiple aliases

for the object, and locate the object using any of them. Remember that the locate is

on an uppercase string, so the values in LocateName must also be uppercase. The

value of DisplayResourceName field does not have to be uppercase.

Restricting Recursive Views

While building some types of views, GMFHS queries a large number of objects to

find all of the objects that belong in a view. This can result in views that are

unusable because they have too many objects in them. You can use the HopCount

field to restrict the number of objects that GMFHS queries. For example, if you set

the value of the HopCount field to 3, GMFHS will only query up to 3 levels of

objects from the selected object. If you want GMFHS to query all objects, set the

value of the HopCount field to 0 (zero).

Refreshing Open Views

GMFHS sends a view change notification to the workstation when an object, or

connectivity field, used in building the view has changed in RODM. This is done

by a notification method, DUIFVNOT, that is installed on all connectivity fields as

well as fields on objects or classes that control how views are built. The method is

installed by sample FLBTRDME when the data model is loaded. FLBTRDME calls

an object independent method, DUIFVINS, which installs DUIFVNOT on each

field.

Note that the notification method is inherited by the objects of a class. For a list of

all the fields on which GMFHS installs DUIFVNOT, see sample FLBTRDME.

Method DUIFVINS must be run for each new class or connectivity field that is

added to the data model. See “DUIFVINS: Install View Granularity Method

(DUIFVNOT)” on page 498 for a description of method DUIFVINS.

Applying Span-of-Control to Views

This section shows how GMFHS determines which resource and view names are

used to check span authorization when building span-restricted views.

This section often refers to the NGMFVSPN and CTL attributes. These are not

RODM attributes. They are attributes defined in either the NetView operator

profiles in the DSIPRF data set or the NETVIEW segment of the USER profiles in a

system authorization facility (SAF) product, such as RACF®. Refer to the IBM Tivoli

NetView for z/OS Security Reference for more information about these attributes.

Spans can be used to restrict operators from seeing views and resources within

views. To apply span-of-control to views:

v Use the NGMFVSPN attribute to specify whether each operator is subject to

span checking for views and resources within views.

v Use the NetView span table to define views and resources within views to

spans.

v Use the CTL attribute to specify that span checking must be done for this

operator.

For more information about defining resources and views to spans in the NetView

span table, refer to the IBM Tivoli NetView for z/OS Security Reference.

114 Resource Object Data Manager and GMFHS Programmer’s Guide

Before you can use spans to restrict views and resources within views, you need to

understand the naming convention used by RODM to identify views and

resources. Resource and view names are represented in the NetView span table as

resource and view identifiers. These identifiers, which can contain wildcard

characters, must match exactly the names used by GMFHS during the view

building process. The GMFHS rules for determining resource and view names are

described in this section.

Views

As described in “Object Discovery Process” on page 89, all of the views built by

GMFHS can be classified as either predefined or dynamically built. GMFHS uses a

different procedure to determine the view name, depending on whether the view

is predefined or dynamic.

Defining Predefined Views to Spans

Predefined views are defined by the customer. Each predefined view is represented

by a view object in RODM. The following types of views can be predefined to

RODM:

v Network

v Exception

v Configuration peer

v Configuration backbone

v Configuration logical

v Configuration physical

v More Detail logical

v More Detail physical

Network, exception, and configuration peer views can only be predefined; they are

never dynamically built by RODM. The other views in the above list can be either

predefined or dynamically built.

When you define a predefined view to a span in the NetView span table, the view

identifier must be equal to the MyName attribute of the view object. To see how

predefined views can be defined to spans, consider this example. Suppose a

network view is predefined to RODM and the MyName field is equal to

MY_NETWORK_VIEW. If the span_level position of the NGMFVSPN attribute specifies

that view names will be checked for span authorization, GMFHS verifies that the

operator requesting the view has span authorization for view name

MY_NETWORK_VIEW.

If the following statement is defined in the NetView span table, an operator, with

span SPAN1 started, can access the view:

SPANDEF SPAN=SPAN1,VIEW=MY_NETWORK_VIEW;

Alternatively, a SPANDEF statement can be defined using wildcard characters that

matches the MY_NETWORK_VIEW view name. Following are some examples:

v SPANDEF SPAN=SPAN1,VIEW=*VIEW;

v SPANDEF SPAN=SPAN1,VIEW=M*;

v SPANDEF SPAN=SPAN1,VIEW=*NETWORK*;

Defining Dynamically Built Views to Spans

Dynamically built views are not represented by a view object in RODM. When you

define a dynamically built view to a span in the NetView span table, the view

identifier must be equal to the DisplayResourceName field of the selected resource,

appended with a three or four character suffix designating the type of view.

Chapter 5. How GMFHS Uses RODM 115

The following types of views can be dynamically built by GMFHS:

View Type Suffix

Configuration Backbone -BAK

Configuration Child -CHD

Configuration Child II (More Detail LU)

-MLU

Configuration Child III (More Detail Definition Group)

-MDF

Configuration Logical -LOG

Configuration Logical/Physical

-LP

Configuration Parent -PAR

Configuration Physical -PHY

Fast Path -FP

More Detail Logical -MDL

More Detail Physical -MDP

Note: The hyphen is part of the suffix.

This example shows how a dynamically built view can be defined to a span.

Suppose an NMC locate failing resource view is selected for an aggregate resource

whose DisplayResourceName field is equal to MyAggResource. If the span_level

position of the NGMFVSPN attribute specifies span checking for view names,

GMFHS verifies that the operator requesting the view has span authorization for

view name MyAggResource-FP.

As another example, suppose a configuration parent view is selected for a real

resource whose DisplayResourceName field is equal to NETA.NCP1. If the span_level

position of the NGMFVSPN attribute specifies span checking for view names,

GMFHS will verify that the operator requesting the view has span authorization

for view name NETA.NCP1-PAR.

When you are defining views to spans, especially dynamically built views, it can

be advantageous to use wildcard characters. For more information about wildcard

characters, refer to the IBM Tivoli NetView for z/OS Security Reference.

Examples of Defining Views to Spans

The following examples are provided to help you understand how to define views

to spans. The examples assume:

v CTL=SPECIFIC has been defined for the operator requesting the view.

v The span_level position of NGMFVSPN specifies span checking for view names.

v The operator requesting the view has span SPAN1 started.

v There are no other SPANDEF statements defined in the span table that matches

the view names other than those that are defined in the examples.

Example 1: SPANDEF statements that define view identifiers to spans do not exist

in the NetView span table. The operator will be unable to open any views until

one or more view identifiers have been defined to span SPAN1 with SPANDEF

statements in the NetView span table.

Example 2: Because dynamically built views derive their view names from the

resource by which they were selected, resource identifiers can be defined to spans

based on the name of the resource. For example, assume all resource names in

network A begin with the characters NETA and the following statement is defined in

the NetView span table:

116 Resource Object Data Manager and GMFHS Programmer’s Guide

v SPANDEF SPAN=SPAN1,VIEW=NETA*;

An operator with span SPAN1 started can display any view whose view name

begins with NETA, such as NETA.NCP-FP, NETA_NETWORK_VIEW, NETA.HOST-MDL or NETA.

Example 3: If restricting operators by resource name is not feasible, perhaps

access to views are restricted by view type. For example, to authorize an operator

to see only NMC locate failing resource or more detail views, define the following

statement in the NetView span table:

v SPANDEF SPAN=SPAN1,VIEW=(*-FP,*-MD*);

An operator with span SPAN1 started can display any NMC locate failing resource

or more detail view.

Example 4: To give an operator span authorization for all NMC locate failing

resource views except those that are generated by resources in network A, define

the following statement in the NetView span table:

v SPANDEF SPAN=SPAN1,VIEW=(*-FP<NETA*-FP>);

An operator with span SPAN1 started can display any NMC locate failing resource

view except those that are generated by a resource whose DisplayResourceName

begins with the characters NETA.

Example 5: To give an operator span authorization for all views except more

detail views, define the following statement in the NetView span table:

v SPANDEF SPAN=SPAN1,VIEW=*<*-M*>;

An operator with span SPAN1 started can display any view except for any type of

more detail view.

Example 6: View names are truncated at a maximum of 32 characters. If you have

a resource whose DisplayResourceName field is greater than 32 characters, for

example, a DisplayResourceName value of NETWORKA.OPCENTER22.OPERATOR.SHIFT1.

If this resource is selected and a configuration parent view is requested, the

resulting dynamic view name sh be NETWORKA.OPCENTER22.OPERATOR.SHIFT1-PAR.

However, the view name is truncated to 32 characters which results in

NETWORKA.OPCENTER22.OPERATOR-PAR. Even though the DisplayResourceName is 32

characters, it is truncated because the suffix must be contained within the 32

character view name. The suffix is never truncated from the view name.

Depending on your SPANDEF definitions, this truncation might cause you

problems in your span table. Assume that you have set the DisplayResourceName

of a group of resources to indicate which shift of operators are responsible for

monitoring them. To give an operator span authorization for all resources

designated as SHIFT1 resources, you defined the following statement in the

NetView span table:

v SPANDEF SPAN=SPAN1,VIEW=*SHIFT1*;

View name NETWORKA.OPCENTER22.OPERATOR-PAR will not match this SPANDEF

statement and the operator will be unable to display the view. You must either set

the value of DisplayResourceName so the length of the value is less than 28

characters or define SPANDEF statements that do not reference truncated

characters of the DisplayResourceName.

Chapter 5. How GMFHS Uses RODM 117

Resources

If the span_level position of the NGMFVSPN attribute specifies span checking for

resource names, only those resources that are authorized to a span started for the

operator requesting the view are displayed in the view. Before you define resource

identifiers to spans in the NetView span table, understand which resource names

are used by GMFHS to determine span authorization.

A resource is monitorable if it can be displayed in a view and is not a shadow

object. For example, all resources defined in the GMFHS data model under class

GMFHS_Monitorable_Objects_Parent_Class are monitorable objects. All

monitorable objects in RODM have the following fields:

v MyName

v DisplayResourceName

v UserSpanName

You can assign a value to the MyName field when you create an object in RODM,

but you cannot modify the MyName value after the object is created.

You can assign and modify the DisplayResourceName field. This field is used to

create the resource names displayed in NetView management console views.

The DisplayResourceName can be set by GMFHS method DUIFCLRT. This method

is used to link the DisplayResourceType field of a resource object to the Resources

field of an object of the Display_Resource_Type_Class. If the DisplayResourceName

is null when the method is triggered, the method sets the value of the

DisplayResourceName field equal to the value of the MyName field. If the

DisplayResourceName is not null when the method is triggered, no change is

made to the DisplayResourceName.

Note: Remember that MultiSystem Manager, SNA topology manager, and other

user applications can modify the DisplayResourceName.

You can also create and modify the UserSpanName field. MultiSystem Manager, as

well as other user applications, can modify the UserSpanName field. For more

information about how MultiSystem Manager uses this field, refer to the IBM Tivoli

NetView for z/OS MultiSystem Manager User’s Guide.

SNA objects defined in RODM as shadow objects, that is, objects defined in the

GMFHS_Shadow_Objects_Class, do not have a UserSpanName field. To ensure

consistency across RODM-based and workstation-based views, only the MyName

field is used to determine span authorization for shadow objects. Even though the

DisplayResourceName field can be defined for a shadow object and this name is

displayed in a view, the name is not used to determine span authorization.

Depending on how you use RODM, you can assign a different value to each of

these fields for a given resource object. For example, when defining a given

workstation in your network, you can define the MyName field as

netid.resource_type.real_resource_name and use this field to keep track of the

resources in your network.

You can then define DisplayResourceName for that workstation as the userid of the

user who owns the workstation. Because the DisplayResourceName value is

displayed as the resource identifier in views, this can make it easier for operators

to determine the office in which a failing resource is located.

118 Resource Object Data Manager and GMFHS Programmer’s Guide

Similarly, you can define the UserSpanName as the netid for the network that

contains the workstation. You can then use the UserSpanName to define a group of

workstations that are all in the same netid.

GMFHS uses the following logic to determine span authorization for a resource in

a view:

v If the resource is a shadow object, the MyName field is always used to

determine span authorization.

v If the resource is not a shadow object:

– If a value exists for UserSpanName, the UserSpanName field is used to

determine span authorization.

– If a value does not exist for UserSpanName, but a value does exist for

DisplayResourceName, the DisplayResourceName field is used to determine

span authorization.

– If a value does not exist for UserSpanName or DisplayResourceName, the

MyName field is used to determine span authorization.

Examples of Restricting Resources Within Views Using Spans

The following examples are provided to help you understand how to restrict

resources within views. The examples assume the following:

v CTL=SPECIFIC was defined for the operator requesting the view.

v The span_level position of NGMFVSPN specifies span checking for resource

names.

v The operator requesting the view started span SPAN1.

v There are no other SPANDEF statements defined in the span table that match

the resource name.

Note: If a CHARVAR field has a zero (0) length, it is considered to be null.

MyName, DisplayResourceName, and UserSpanName are all CHARVAR

fields.

Example 1: If DisplayResourceName and UserSpanName are both null, the

MyName field determines span authorization for the resource. For example, a

monitorable resource in RODM has a MyName value of DECNET.RALV4. The

DisplayResourceName and UserSpanName are null. The following statement is

defined in the NetView span table:

v SPANDEF SPAN=SPAN1,RESOURCE=DECNET.RALV4;

Thus, an operator with span SPAN1 started can display resource DECNET.RALV4 in a

view.

Example 2: If UserSpanName is null and DisplayResourceName has a value (in

other words, DisplayResourceName is not null), the DisplayResourceName field

determines span authorization for the resource. For example, a monitorable

resource in RODM has a MyName value of DECNET.RALV4 and a

DisplayResourceName value of RALV4. The UserSpanName is null. The following

statement is defined in the NetView span table:

v SPANDEF SPAN=SPAN1,RESOURCE=RALV4;

An operator with span SPAN1 started can display this resource in a view. Because

DisplayResourceName is not null and the resource is not a shadow object, the

DisplayResourceName field determines span authorization.

Chapter 5. How GMFHS Uses RODM 119

In this situation, it is useful to use a wild card in the resource definition. If the

statement is defined in the NetView span table instead of the previous statements,

an operator with span SPAN1 started can display this resource whether or not the

DisplayResourceName value is RALV4. If the DisplayResourceName is null, the

MyName value of DECNET.RALV4 is used to determine span authorization. For

example:

v SPANDEF SPAN=SPAN1,RESOURCE=*RALV4;

Example 3: The DisplayResourceName is used to create the resource names

displayed in views. While the DisplayResourceName value can be useful to

describe resources displayed within views, it might not be useful when

determining span authorization. This value can be overridden by setting the

UserSpanName field. The DisplayResourceName is still displayed in views, but the

UserSpanName value is used for span authorization.

For example, a monitorable resource in RODM has:

v A MyName value of DECNET.RALV4

v A DisplayResourceName value of RALV4

v A UserSpanName value of BUILDING500.RALV4

In this example, the following statement is defined in the NetView span table:

v SPANDEF SPAN=SPAN1,RESOURCE=BUILDING500.*;

An operator with span SPAN1 started can display resource DECNET.RALV4 in a view.

Now suppose one of the following statements was defined in the NetView span

table instead of the previous statement:

v SPANDEF SPAN=SPAN1,RESOURCE=DECNET.RALV4;

v SPANDEF SPAN=SPAN1,RESOURCE=RALV4;

In this case, the operator is denied span authorization to the resource. Because

UserSpanName has a value, it is used to determine span authorization for the

resource. DisplayResourceName and MyName are not used to determine span

authorization when UserSpanName has a value.

Helpful Hints

Occasionally, your resource, view, and span definitions do not yield the results you

expect. The following sections describe some helpful hints that you can use in

debugging unexpected conditions.

No Views in the View List Are in the Operator’s Span-of-Control

If span-of-control is applied to views at the view level, all views are span checked

before they are opened and in most cases, before they are put in a view list. If

none of the views in the view list are in the operator’s span-of-control, depending

on the NGMFVSPN value, an informational message is issued that indicates why a

view list is not returned.

No Resource in the View Is in the Operator’s Span-of-Control

If span-of-control is applied to views at the resource level, all resources in a view

are span checked before the view is opened. If none of the resources in the view

are in the operator’s span-of-control, an informational message is issued that

indicates why the view is not opened.

120 Resource Object Data Manager and GMFHS Programmer’s Guide

Selected Object Is Not in the Operator’s Span-of-Control

If a locate resource is requested for a resource that is not in the operator’s

span-of-control, an informational message is issued that indicates why a view is

not opened.

Similarly, if views (such as, more detail views) are requested for a selected resource

in an open view but that resource is no longer in the operator’s span-of-control, an

informational message is issued that indicates why the view is not opened. This

situation can only occur when one of the following is true:

v The operator stopped the span to which the resource had been defined in the

NetView span table.

v The NetView span table was changed (and subsequently refreshed) such that the

resource is no longer defined to a span the operator has started.

Resources are not removed from open views when the NetView span table is

changed or because spans are started or stopped. These changes are made when

the open view is refreshed.

Changing the NGMFVSPN Attribute

The NGMFVSPN attribute assigned in the NMC operator’s profile remains in effect

for the duration of that NMC operator’s session. A changed NGMFVSPN attribute

is retrieved only if the NetView operator signs off and signs back on with the new

NGMFVSPN attribute and the NMC operator signs off and signs back on after the

NetView operator is signed back on.

Because of this restriction, a change to the NGMFVSPN attribute does not affect

open NetView management console views. All NetView management console

views are refreshed after the operator signs back on.

RACF Is Used for RODM Security

If you are using RACF for RODM security, ensure that the NetView domain name

is defined to RACF and has a minimum of RODM security level 2. If these security

requirements are not satisfied, RODM queries can fail, resulting in span

authorization errors.

Applying Span-of-Control to Set and Clear Operator Status

Span of control is applied to the following subset of Set operator status and Clear

operator status actions:

v Marker

v Suspended, manually clear

v Suspended, automatically clear

If the operator has an access level of UPDATE(U) to a span-of-control, a marker or

suspend action for a selected resource in the span is completed and the operator

status is set or cleared as requested by the operator. An access level of UPDATE(U)

is required for marker and suspend actions for resources in a span-of-control.

If the operator has only an access level of READ(R) to a span-of-control containing

the resource or if the resource is not in a span accessed by the operator, the marker

or suspend action for the selected resource is ignored.

Marker or suspend actions against VTAM resources, including shadow objects, is

span checked similar to the way they are for commands. If you are using the

Chapter 5. How GMFHS Uses RODM 121

NetView span table, span checking for marker and suspend actions for RODM

objects utilizes the hierarchy of the UserSpanName, DisplayResourceName and

MyName fields.

Marker and suspend actions are not optional for span-of-Control. If span-of-control

is implemented, an active span for an operator must contain UPDATE(U) access

for the resource receiving the marker or suspend action.

v For more information about the hierarchy of the UserSpanName,

DisplayResourceName, and MyName fields, see “Resources” on page 118.

v For more information about using spans to protect resources, refer to the IBM

Tivoli NetView for z/OS Security Reference.

Applying Policy to Views

Using NMCSTATUS policy definitions, you can define time schedules for resources

in NMC views. With these schedules, policy is applied to views to specify when

the displayable status of one or more resources in a view is disabled at the NMC

console or when one or more resources in a view is suspended from aggregation.

When your NMCSTATUS policy definitions are processed, CHRON timers are set

to indicate when the policy is activated and deactivated. Each policy definition

specifies a group of resources and actions to be applied to that group of resources

during the specified time period.

When the beginning timer pops, the policy is activated. The NMCSTATUS policy

code creates a RODM object in the Aggregate_Collection_Class to represent the

policy definition. This triggers the RODM Collection Manager to create an

aggregate object in the GMFHS_Aggregate_Objects_Class to represent the collection

of resource objects based on the RODM field values of the object in the

Aggregate_Collection_Class. Resources belonging to the collection are linked to the

aggregate by way of the AggregateParent/AggregateChild and

ComposedOfLogical/IsPartOf fields. The actions specified on the policy definition

are applied to all resources in the collection.

When the ending timer pops, the policy is deactivated. The NMCSTATUS policy

code deletes the RODM object from the Aggregate_Collection_Class. This triggers

the RODM Collection Manager to delete the corresponding aggregate object in the

GMFHS_Aggregate_Objects_Class representing the collection of resource objects

belonging to the policy. Any resource object matching the collection is removed

from the collection. Status updates are resumed and suspended resources are

unsuspended based on the policy definition. If the resource object belongs to

another active policy it is not removed from the collection. See “Resources

Belonging to Multiple Policies” on page 124 for more information.

Representing Policy Definitions in RODM

Each active policy is represented in RODM by an object in the

Aggregate_Collection_Class. Values from the NMCSTATUS keywords are used to

set RODM fields on the object. The following is a list of the key fields on the object

and how the value is derived from the policy definition.

MyName The name of the object is created by concatenating the timer

handle of the CHRON timer that popped, to indicate the beginning

of the policy, with the name of the policy definition. For example,

if timer handle NMC1 is the beginning timer for policy definition

POLICY1, the MyName field of the RODM object is set to

NMC1POLICY1.

122 Resource Object Data Manager and GMFHS Programmer’s Guide

CollectionSpec1

The RODM Collection Manager language that specifies the

collection of resources is generated from the CLASS, MYNAME

and RESOURCE keywords or the BLDVIEWSSPEC keyword or the

COLLECTIONSPEC keyword. CollectionSpec1 contains 32K of

data. If the value is greater than 32K, the additional data is stored

in RODM fields CollectionSpec2, CollectionSpec3, or

CollectionSpec4, as needed. Each of these fields also contain 32K of

data and are defined in the GMFHS data model (DUIFSTRC).

RequestFlags Indicates which actions apply to the policy. If keyword

SUSPENDAGG=YES is specified, the action suspends all the

resources in the collection. If keyword STOPUPDATE=YES is

specified, the action disables system status updates at the NMC

console for resources in the collection. Both actions can be applied

to the same collection of resources.

CollectionLocateName

Value of ’NMCSTATUS’ is added to this indexed list field to

indicate the object represents a policy definition.

 Example 1: At 6:00 a.m., a RODM object is created in the

Aggregate_Collection_Class with field values as shown in this example. The timer

handle is NMC1.

Policy definition:

 NMCSTATUS POLICY1

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 TIME=(06.00.00,18.00.00)

 STOPUPDATE=YES

RODM field values:

 MyName=’NMC1POLICY1’

 CollectionSpec1=’|GMFHS_Managed_Real_Objects_Class|MyName|*|.CONTAINS.’

 RequestFlags=’80000000’x

 CollectionLocateName=’NMCSTATUS’

Example 2: At 6:00 a.m., a RODM object is created in the

Aggregate_Collection_Class with field values as shown in this example. The timer

handle is NMC1.

Policy definition:

 NMCSTATUS POLICY2

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(RALV4)

 TIME=(06.00.00,18.00.00)

 STOPUPDATE=YES

 SUSPENDAGG=YES

RODM field values:

 MyName=’NMC1POLICY2’

 CollectionSpec1=’|GMFHS_Managed_Real_Objects_Class|

 DisplayResourceName|RALV4|.EQ.’

 RequestFlags=’C0000000’x

 CollectionLocateName=’NMCSTATUS’

Example 3: At 6:00 a.m., a RODM object is created in the

Aggregate_Collection_Class with field values as shown in this example. The timer

handle is NMC1.

Policy definition:

 NMCSTATUS POLICY3

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 MYNAME=(DEC*)

 TIME=(06.00.00,18.00.00)

Chapter 5. How GMFHS Uses RODM 123

SUSPENDAGG=YES

RODM field values:

 MyName=’NMC1POLICY3’

 CollectionSpec1=’|GMFHS_Managed_Real_Objects_Class|MyName|DEC*|.CONTAINS.’

 RequestFlags=’40000000’x

 CollectionLocateName=’NMCSTATUS’

Example 4: At 6:00 a.m., a RODM object is created in the

Aggregate_Collection_Class with field values as shown in this example. The timer

handle is NMC1.

FILE1 contains the following BLDVIEWS statements:

 Majnode=NETA.A01M,

 Type=XCA

Policy definition:

 NMCSTATUS POLICY4

 BLDVIEWSSPEC=(QSAMDSN,USER.INIT(FILE1))

 TIME=(06.00.00,18.00.00)

 STOPUPDATE=YES

RODM field values:

 MyName=’NMC1POLICY4’

 CollectionSpec1=’|1.3.18.0.0.3315.8.3.7|MyName|1.3.18.0.2.4.6=*;

 1.3.18.0.0.2032=*;1.3.18.0.0.2032=XCA.NETA.A01M|.CONTAINS.’

 RequestFlags=’80000000’x

 CollectionLocateName=’NMCSTATUS’

Example 5: At 6:00 a.m., a RODM object is created in the

Aggregate_Collection_Class with field values as shown in this example. The timer

handle is NMC1.

DDFFILE2 is a data definition file allocated with command

 ALLOCATE FILE(DDFFILE2) DATASET(USER.INIT(FILE2)) SHR

DDFFILE2 contains the following BLDVIEWS statements:

 NONSNA=*

Policy definition:

 NMCSTATUS POLICY5

 BLDVIEWSSPEC=(QSAMDD,DDFFILE2)

 TIME=(06.00.00,18.00.00)

 STOPUPDATE=YES

RODM field values:

 MyName=’NMC1POLICY5’

 CollectionSpec1=’|GMFHS_Managed_Real_Objects_Class|MyName|*|.CONTAINS.’

 RequestFlags=’80000000’x

 CollectionLocateName=’NMCSTATUS’

Resources Belonging to Multiple Policies

A resource can be defined to multiple policy definitions. A count of the number of

active policies the resource belongs to is saved in a counter field. Each displayable

resource object has two counter fields defined:

PolicyCtrSU Represents the number of active policies this resource belongs to

where the action applied to the resource is stop updates.

PolicyCtrSA Represents the number of active policies this resource belongs to

where the action applied to the resource is suspend aggregation.

 These fields ensure that actions are not removed from a resource belonging to

other active policies. When a resource is removed from a policy, the applicable

124 Resource Object Data Manager and GMFHS Programmer’s Guide

counter is decremented by one. When the counter is zero, the action is removed

from the resource. If the counter is not zero, the resource belongs to another active

policy and the action remains in place.

Example 1: POLICY1 specifies status updates sh not be sent to resource ABC on

Saturdays. POLICY2 specifies status updates sh not be sent to real resources

beginning with the letter A, i.e. RESOURCE=A* from 8 a.m. to 10 a.m. every day,

including Saturdays.

Policy definitions:

 NMCSTATUS POLICY1

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(ABC)

 DAYOFWEEK=(SAT)

 TIME=(00.00.00,23.59.59)

 STOPUPDATE=YES

 NMCSTATUS POLICY2

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(A*)

 TIME=(08.00.00,10.00.00)

 STOPUPDATE=YES

1. Saturday at 12:00 a.m., a timer pops and POLICY1 is activated. The

PolicyCtrSU field of resource ABC is incremented by one. PolicyCtrSU=1 for

resource ABC and status updates are not sent to the resource.

2. Saturday at 8 a.m., a timer pops and POLICY2 is activated. The PolicyCtrSU

field of all real resources A* in the collection is incremented by one.

PolicyCtrSU=2 for resource ABC because the resource belongs to both

collections. PolicyCtrSU=1 for the resources belonging only to the POLICY2

collection. Status updates are not sent for any resource whose PolicyCtrSU field

is not zero.

3. Saturday at 10 a.m., a timer pops and POLICY2 is deactivated. The PolicyCtrSU

field of all real resources A* in the collection is decremented by one.

PolicyCtrSU=1 for resource ABC since the resource still belongs to the POLICY1

collection. PolicyCtrSU=0 for the resources belonging only to the POLICY2

collection. Status updates are sent for these resources but not for resource ABC.

4. Saturday at 11:59 p.m., a timer pops and POLICY1 is deactivated. The

PolicyCtrSU field of resource ABC is decremented by one. PolicyCtrSU=0 for

resource ABC. Status updates are now sent.

Example 2: POLICY1 specifies aggregation is suspended for resource ABC on

Saturdays. POLICY2 specifies aggregation is suspended for real resources

beginning with the letter A, i.e. RESOURCE=A* from 8 a.m. to 10 a.m. every day,

including Saturdays.

Policy definitions:

 NMCSTATUS POLICY1

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(ABC)

 DAYOFWEEK=(SAT)

 TIME=(00.00.00,23.59.59)

 SUSPENDAGG=YES

 NMCSTATUS POLICY2

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(A*)

 TIME=(08.00.00,10.00.00)

 SUSPENDAGG=YES

1. Saturday at 12:00 a.m., a timer pops and POLICY1 is activated. The

PolicyCtrSA field of resource ABC is incremented by one. PolicyCtrSA=1 for

resource ABC and aggregation is suspended for resource ABC.

Chapter 5. How GMFHS Uses RODM 125

2. Saturday at 8 a.m., a timer pops and POLICY2 is activated. The PolicyCtrSA

field of all real resources A* in the collection is incremented by one.

PolicyCtrSA=2 for resource ABC because the resource belongs to both

collections. PolicyCtrSA=1 for the resources belonging only to the POLICY2

collection. Aggregation is suspended for any resource whose PolicyCtrSA field

is not zero.

3. Saturday at 10 a.m., a timer pops and POLICY2 is deactivated. The PolicyCtrSA

field of all real resources A* in the collection is decremented by one.

PolicyCtrSA=1 for resource ABC since the resource still belongs to the POLICY1

collection. PolicyCtrSA=0 for the resources belonging only to the POLICY2

collection. Aggregation is no longer suspended for these resources but

continues to be suspended for resource ABC.

4. Saturday at 11:59 p.m., a timer pops and POLICY1 is deactivated. The

PolicyCtrSA field of resource ABC is decremented by one. PolicyCtrSA=0 for

resource ABC. The resource is no longer suspended from aggregation.

Example 3: An NMC operator can resume aggregation for a resource that is

currently suspended from aggregation by a policy. Setting or clearing the suspend

flag from NMC overrides any policy that is active. However, the PolicyCtrSA field

is incremented and decremented only when the resource is added or removed from

a collection. In this example, POLICY1 specifies that resource PC1 is suspended

from aggregation on Saturdays. POLICY2 specifies that resource PC1 is suspended

from aggregation from 8 a.m. to 10 a.m. every day, including Saturdays. An

operator can change the value of the suspend flag of a resource; however, policy

will continue to update the suspend flag when policies are activated and

deactivated.

Policy definitions:

 NMCSTATUS POLICY1

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(PC1)

 DAYOFWEEK=(SAT)

 TIME=(00.00.00,23.59.59)

 SUSPENDAGG=YES

 NMCSTATUS POLICY2

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(PC1)

 TIME=(08.00.00,10.00.00)

 SUSPENDAGG=YES

1. Saturday at 12:00 a.m., a timer pops and POLICY1 is activated. The

PolicyCtrSA field of resource PC1 is incremented by one. PolicyCtrSA=1 for

resource PC1 and aggregation is suspended for resource PC1.

2. Saturday at 8 a.m., a timer pops and POLICY2 is activated. The PolicyCtrSA

field of resource PC1 is incremented by one. PolicyCtrSA=2 for resource PC1

because the resource belongs to both collections. The resource remains

suspended from aggregation.

3. Saturday at 10 a.m., a timer pops and POLICY2 is deactivated. The PolicyCtrSA

field of resource PC1 is decremented by one. PolicyCtrSA=1 for resource PC1

because the resource still belongs to the POLICY1 collection. The resource

remains suspended from aggregation.

4. Saturday at 3 p.m., an NMC operator clears the suspend flag for resource PC1.

PolicyCtrSA remains unchanged (it is still equal to one) but the resource is no

longer suspended from aggregation.

5. Saturday at 11:59:59 p.m., a timer pops and POLICY1 is deactivated. The

PolicyCtrSA field of resource ABC is decremented by one. PolicyCtrSA=0 for

126 Resource Object Data Manager and GMFHS Programmer’s Guide

resource ABC. In this example, the suspend flag has already been cleared but if

it hadn’t, the suspend flag is cleared and resource PC1 is no longer suspended

from aggregation.

Even though an NMC operator can change the value of the suspend flag of a

resource, policy will continue to update the suspend flag when policies are

activated and deactivated.

Example 4: A policy can specify that a resource is suspended from aggregation and

does not receive status. In this situation, both counters are used to keep track of

the number of active policies the resource belongs to for each action. In this

example, POLICY1 specifies that status updates are not sent to resource PC1 on

Saturdays. POLICY2 specifies that resource PC1 is suspended from aggregation on

Saturdays from 8 a.m. to 5 p.m. POLICY3 specifies that status updates are not sent

to resource PC1 and resource PC1 is suspended from aggregation from 2 p.m. to 4

p.m. on Saturdays.

Policy definitions:

 NMCSTATUS POLICY1

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(PC1)

 DAYOFWEEK=(SAT)

 TIME=(00.00.00,23.59.59)

 STOPUPDATE=YES

 NMCSTATUS POLICY2

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(PC1)

 DAYOFWEEK=(SAT)

 TIME=(08.00.00,17.00.00)

 SUSPENDAGG=YES

 NMCSTATUS POLICY3

 CLASS=(GMFHS_Managed_Real_Objects_Class)

 RESOURCE=(PC1)

 DAYOFWEEK=(SAT)

 TIME=(14.00.00,16.00.00)

 STOPUPDATE=YES

 SUSPENDAGG=YES

1. Saturday at 12:00 a.m., a timer pops and POLICY1 is activated. The

PolicyCtrSU field of resource PC1 is incremented by one. Counter field values

are PolicyCtrSA=0 and PolicyCtrSU=1. Status updates are no longer sent to

resource PC1.

2. Saturday at 8 a.m., a timer pops and POLICY2 is activated. The PolicyCtrSA

field of resource PC1 is incremented by one. Counter field values are

PolicyCtrSA=1 and PolicyCtrSU=1. Status updates are still not sent to resource

PC1 and the resource is also suspended from aggregation.

3. Saturday at 2 p.m., a timer pops and POLICY3 is activated. Both counter fields

are incremented by one. Counter field values are PolicyCtrSA=2 and

PolicyCtrSU=2. Status updates are still not sent to resource PC1 and the

resource remains suspended from aggregation.

4. Saturday at 4 p.m., a timer pops and POLICY3 is deactivated. Both counter

fields are decremented by one. Counter field values are PolicyCtrSA=1 and

PolicyCtrSU=1. Status updates are still not sent to resource PC1 and the

resource remains suspended from aggregation.

5. Saturday at 5 p.m., a timer pops and POLICY2 is deactivated. The PolicyCtrSA

field of resource PC1 is decremented by one. Counter field values are

PolicyCtrSA=0 and PolicyCtrSU=1. Status updates are still not sent to resource

PC1. The resource is no longer suspended from aggregation.

Chapter 5. How GMFHS Uses RODM 127

6. Saturday at 11:59:59 p.m., a timer pops and POLICY1 is deactivated. The

PolicyCtrSU field of resource ABC is decremented by one. Counter field values

are PolicyCtrSA=0 and PolicyCtrSU=0. Status updates are now sent to resource

PC1.

Resources Suspended from Aggregation Due to Policy

When a real resource is suspended from aggregation because of a scheduled policy

definition, the resource is added to a collection representing the policy and the

following occurs in GMFHS:

v The resource’s suspend flag is set.

v The resource’s suspend flag note is set to Scheduled.

v One is added to the resource’s PolicyCtrSA.

When aggregation is resumed for a real resource because of a policy definition, the

resource is removed from the collection representing the policy and the following

occurs in GMFHS:

v The resource’s suspend flag is cleared.

v The resource’s suspend flag note is cleared.

v One is subtracted from the resource’s PolicyCtrSA.

The suspend flag is cleared only if the value of the note is ″Scheduled″ and was set

by operator ID GMFHS.

If a policy definition specifies SUSPENDAGG=YES and STOPUPDATE=NO, the

affected resources do not change to the Scheduled system status. The resources are

suspended from aggregation but continue to receive system status updates.

An NMC operator can override the setting of the suspend flag. Refer to “Resources

Belonging to Multiple Policies” on page 124 for more information.

Suspending Aggregation Using an Aggregate

When an aggregate is suspended from aggregation, the aggregate itself is not

suspended from aggregation. Instead, all of the real objects currently reporting

status to the aggregate are suspended from aggregation. The following occurs in

GMFHS:

v The suspend flag of the real resource is set.

v The suspend flag of the real resource note is set to Scheduled.

v One is added to the PolicyCtrSA of the real resource.

v The suspended flag of the aggregate child is set.

v The suspended flag note of the aggregate child is set to Scheduled.

The child suspended flag is also set for any aggregates in the AggregateChild/
AggregateParent path between the aggregate affected by policy and the real

resources reporting status to that aggregate. However the child suspended flag

note field is not set to Scheduled for these intermediate aggregate resources.

When aggregation is resumed for an aggregate, the aggregate itself is not resumed.

Instead aggregation is resumed for all of the real objects currently reporting status

to the aggregate. The following occurs in GMFHS:

v The suspend flag of the real resource is cleared

v The suspend flag of the real resource note is cleared.

v One is subtracted from the PolicyCtrSA of the real resource.

v The suspended flag of the aggregate child is cleared.

v The suspended flag note of the aggregate child is cleared.

128 Resource Object Data Manager and GMFHS Programmer’s Guide

Example: AGGPOLICY specifies aggregation is suspended for aggregate resource

AGG1 on Saturdays.

Policy definitions:

 NMCSTATUS AGGPOLICY

 CLASS=(GMFHS_Aggregate_Objects_Class)

 RESOURCE=(AGG1)

 DAYOFWEEK=(SAT)

 TIME=(00.00.00,23.59.59)

 SUSPENDAGG=YES

1. Saturday at 12:00 a.m., a timer pops and AGGPOLICY is activated. Aggregate

resource AGG1 is added to the collection and the action (suspending

aggregation) is applied to the resource. Suspending an aggregate from

aggregation is a shortcut request to suspend all real resources currently

reporting status to the aggregate from aggregation. The PolicyCtrSA field of

each real resource is incremented by one. The PolicyCtrSA field of the

aggregate is not updated because the aggregate itself is not suspended.

2. Saturday at 11:59:59 p.m., a timer pops and AGGPOLICY is deactivated.

Aggregate resource AGG1 is removed from the collection and the action

(suspending aggregation) is removed from each resource. Unsuspending an

aggregate from aggregation is a shortcut request to resume aggregation for all

real resources currently reporting status to the aggregate. The PolicyCtrSA field

of each real resource is decremented by one. The PolicyCtrSA field of the

aggregate is not updated because the aggregate itself was never suspended and

can not be unsuspended.

If additional real resources begin to report status to aggregate AGG1 after the

policy is activated, they are not suspended by the policy definition AGGPOLICY.

Actions can only be applied to a member of the collection. The real resources are

suspended and resumed only because of an action to aggregate AGG1, a member

of the collection.

System Status Updates No Longer Sent to Resources Due to

Policy

When system status updates occur, the DisplayStatus field of the resource is

updated with the new status. A change to the DisplayStatus field triggers an

update to the resource if it appears in an open NMC view.

When system status updates are no longer sent to a resource because of a

scheduled policy definition, the resource is added to a collection representing the

policy. For the case where this is the only active policy the resource belongs to, the

following occurs in GMFHS:

v The PolicyDisplayStatus field is set to the current value of the DisplayStatus

field.

v The DisplayStatus field is set to Scheduled.

v The system status update sends Scheduled to the resource if it appears in an open

NMC view.

v One is added to the resource’s PolicyCtrSU field.

Any system status updates received for this resource while it belongs to an active

policy are saved in the PolicyDisplayStatus field rather than the DisplayStatus

field. Thus system status updates are not sent to NMC.

When system status updates are resumed, the resource is removed from the

collection representing the policy. The following occurs in GMFHS.

v One is subtracted from the resource’s PolicyCtrSU field.

Chapter 5. How GMFHS Uses RODM 129

v If the resource’s PolicyCtrSU field=0, then the DisplayStatus field is set to the

current value of the PolicyDisplayStatus field. This drives an NMC update to

change the resource from Scheduled status to its current system status.

v If the resource’s PolicyCtrSU field is greater than zero, the DisplayStatus field

remains Scheduled and any system status updates are saved in the

PolicyDisplayStatus field. No update is sent while the resource belongs to a

collection representing a policy where STOPUPDATE=YES was specified.

Additional Information

Refer to the IBM Tivoli NetView for z/OS Administration Reference for information

about creating and loading a policy file containing NMCSTATUS policy definitions.

Refer to the IBM Tivoli NetView for z/OS Resource Object Data Manager and GMFHS

Programmer’s Guide for information about the RODM Collection Manager.

Refer to IBM Tivoli NetView for z/OS Installation: Configuring Graphical Components

for information about the tasks necessary to process NMCSTATUS policy

definitions.

Refer to the IBM Tivoli NetView for z/OS Data Model Reference for information about

specific RODM fields.

Aggregation Concepts

This section describes aggregation for network resources. The topology of network

resources is managed by RODM. Network resources, including aggregate

resources, are displayed in NetView management console views, based on

information gathered by GMFHS.

Aggregation Overview

Aggregation is the process of creating, connecting, and updating the status of

aggregate objects. Aggregate objects represent a collection of real objects. A real object

represents an actual resource. Aggregate objects do not correspond to real, physical

devices. Aggregate objects provide two types of information about the real objects

associated with them:

v Connectivity information for fast path to failing resource views. For more

information about these views, see “NMC Locate Failing Resources Views” on

page 94.

v A single DisplayStatus (also referred to as status) representation for the group of

real objects based on a set of rules.

Both aggregate and real objects can exist under any class within RODM. GMFHS

uses the ResourceTraits field to determine whether an object is an aggregate or real

object. The ResourceTraits field is of data type INDEXLIST and can have multiple

values; all values are padded to eight characters with blanks. The GMFHS, SNA

topology manager, and MultiSystem Manager data models set the ResourceTraits

field at the class level for both real and aggregate classes. When an aggregate

object is created, the value AGG is set in the ResourceTraits field to indicate that

the object is an aggregate object. Similarly, when a real object is created, the value

REAL is set in the ResourceTraits field to indicate that the object is a real object. An

object cannot have both values in the ResourceTraits field; that is, it cannot be both

a real and an aggregate object.

In Figure 35 on page 131, objects labeled A represent aggregate objects and objects

labeled R represent real objects.

130 Resource Object Data Manager and GMFHS Programmer’s Guide

The aggregation level of an object is the number of aggregate objects traversed in an

aggregation path, including the current aggregate object. The aggregation level of

real objects is always 0. For example, in Figure 35, the aggregation level of R4 is

always 0. The aggregation level of A34 is 2 on the R10→A41→A34→A22→A12 path,

and it is 1 on the R9→A34→A22→A12 path. The aggregation level of A35 is always 1.

For an object in the aggregation hierarchy that has no aggregate children, an

aggregation path defines a unique traversal of the aggregation hierarchy using the

AggregationParent field. The path includes only one object at each level of the

hierarchy, and continues until the current object in the path has no aggregate

parents. For example, in Figure 35, R8→A32→A21→A12 form an aggregation path.

R8→A33→A22→A12 form another aggregation path that begins and ends with the

same objects.

An aggregate child is a real or aggregate object that is linked by the

AggregationChild field. This link can be either direct (also referred to as

immediate) or indirect. A direct child is a real or aggregate object that is directly

linked to the AggregationChild field of an object. An indirect child is a real or

aggregate object that can be reached by following the chain of AggregationChild

links through the aggregation hierarchy starting from the direct child of an object.

For example, in Figure 35, the direct children of A21 are R3, R4, A31 and A32. An

indirect child of A12 is R9. The indirect children of A22 are R8, R9, R10, R11, R12,

R13, and A41.

An aggregate parent is an aggregate object that is linked to an object by the

AggregationParent field. This link can be either direct (also referred to as

immediate) or indirect. A direct parent is any aggregate object that is directly

linked to the AggregationParent field of an object. An indirect parent is an

aggregate object that can be reached by following the chain of AggregationParent

links through the aggregation hierarchy starting from the direct parent of an object.

For example, in Figure 35, direct parents of R1 are A11 and A12. The direct parent

of A34 is A22. An indirect parent of R11 is A12. The indirect parents of A41 are

A22 and A12.

A11 A12

R1

R3

R5

R14 R10 R11 R12 R13

R6 R7 R8 A41 R9

R4 A31 A32 A33 A34 A35

R2 A21 A22

AGG_EXAMPLE_SNAP2 - Snapshot

Figure 35. Aggregation Example Using Real (R) and Aggregate (A) Objects

Chapter 5. How GMFHS Uses RODM 131

Creating an Aggregation Hierarchy

An aggregation hierarchy is the topology of aggregate and underlying real objects.

The aggregation hierarchy is built using the AggregationParent and

AggregationChild fields of the objects.

Although real objects are part of an aggregation hierarchy, an aggregation

hierarchy does not exist until at least one aggregate object is created in RODM.

Figure 35 on page 131 is one example of an aggregation hierarchy. An aggregation

hierarchy is defined by the following rules:

v For each path in the hierarchy, the least significant child of the path can be

either a real or an aggregate object. A least significant child is a real or aggregate

object that has no aggregation children and therefore begins zero or more

aggregation paths. For example, in Figure 35 on page 131, R2, R7 and A35 are

examples of least significant children.

v For each path in the hierarchy, the most significant parent of the path must be

an aggregate object. A most significant parent is an aggregate object that has no

aggregation parents and therefore ends one or more aggregation paths. For

example, in Figure 35 on page 131, A11 and A12 are examples of most significant

parents. A real object can never be the most significant parent because a real

object must have at least one aggregate parent to be considered part of the

aggregation hierarchy. For example, in Figure 35 on page 131, R14 is not part of

the aggregation hierarchy because it does not have an aggregate parent.

v A real object cannot be an aggregate parent.

v There is no restriction on the number of levels in an aggregation hierarchy. The

number of levels in an aggregation hierarchy is equal to the number of levels in

the longest aggregation path in the hierarchy.

Note: Aggregation priority functions are restricted to 9 levels of aggregation. For

more information, see “Aggregation Priority” on page 137.

v An object can be the direct child of more than one aggregate object, and an

aggregate object can have more than one direct child. R1 is a direct child of both

A11 and A12. R3, R4, A31 and A32 are direct children of A21.

v For GMFHS to perform aggregation correctly, there must be no aggregation

hierarchy loops. An aggregation hierarchy loop exists when an aggregate object is a

parent of itself. For example, A12 c not be a child of A33. This w result in the

path A12→A33→A22→A12→A33→A22..., which w loop indefinitely.

v A parent-child relationship can exist between objects on more than one path. For

each path, the child appears to be a unique object to the parent. For example, in

Figure 35 on page 131, R8 and A12 belong to the same two aggregation paths:

R8→A32→A21→A12 and R8→A33→A22→A12. From the perspective of A12, R8 is two

separate real objects that have identical characteristics.

v All objects in the aggregation hierarchy need not be interconnected. For example,

another subset of the aggregation hierarchy c be composed of objects that form a

hierarchy similar to that shown in Figure 35 on page 131, but with no common

objects between the two subsets of the hierarchy. The hierarchy subsets together

form the entire aggregation hierarchy.

Building the Aggregation Hierarchy in RODM

Objects can be linked to or unlinked from the aggregation hierarchy at any time.

The aggregation hierarchy is created using two RODM fields: AggregationParent

and AggregationChild. For a description of these fields, refer to the IBM Tivoli

NetView for z/OS Data Model Reference. The fields are of RODM type

OBJECTLINKLIST. For any object, the AggregationParent field contains links to all

of the direct parent objects. The AggregationChild field contains links to all of the

direct child objects.

132 Resource Object Data Manager and GMFHS Programmer’s Guide

In Figure 36, R2’s AggregationParent field contains links to two objects, A11 and

A12. A22’s AggregationParent field contains links to one object, A12. A22’s

AggregationChild field contains links to three objects, A33, A34, and A35.

 For GMFHS to perform aggregation correctly, the link or unlink of the

AggregationParent and AggregationChild fields of two objects must be performed

by method DUIFCUAP. RODM does not prevent this operation or issue a warning

if the operation is done without using the DUIFCUAP method; however, status

values of all aggregate objects above the child object being linked or unlinked

cannot be correctly calculated if this method is not used. Method DUIFCUAP also

prevents aggregation hierarchy loops. GMFHS performs unpredictably if an

aggregation hierarchy loop is introduced into the aggregation hierarchy. For more

information about how to use method DUIFCUAP, see “DUIFCUAP: Update

Aggregation Path Method” on page 490.

Using RODM methods and notifications, the aggregation hierarchy can be

modified at any time. Whole sections of the hierarchy can be linked or unlinked.

For example, in Figure 35 on page 131, A34 can be unlinked from A22 and linked

to A31. This procedure has no affect on the status of A11 because the same objects

still report to A11. However, the logical group of objects reporting to A21, A31, and

A22 has changed as a result of the hierarchy change, and the statuses of these

aggregate objects c be different. GMFHS dynamically handles these hierarchy

changes when a link or unlink is done using method DUIFCUAP.

Note: A12 can experience a temporary status change, depending on the length of

time between the unlinking and relinking of A34.

AggregationChildAggregationChild

Object A22

Object R2

Object A12Object A11

AggregationChild

AggregationParent

A 33

AggregationParent

Object A33

Object A34

Object A35

AggregationParent

AggregationParent

AggregationParent

Legend:

Real link

Figure 36. Links Between AggregationChild and AggregationParent Fields

Chapter 5. How GMFHS Uses RODM 133

Updating Status

Aggregation is performed on an aggregation hierarchy from the time that the first

AggregationParent to AggregationChild link occurs to the time that the last

AggregationParent from AggregationChild unlink occurs. The central purpose of

aggregation is to keep the statuses of all aggregate objects in the aggregation

hierarchy accurate at all times. The statuses of the aggregate objects are determined

by collecting the status of all real object children under an aggregate object, and

then performing a set of aggregation rules on the collected statuses using RODM

fields defined on both the aggregate and real objects.

How Status Affects Aggregation

Only the statuses of real object children contribute to the status value of an

aggregate parent. The statuses of child aggregate objects do not contribute to the

statuses of parent aggregate objects, because these objects do not represent a real

entity. For example, in Figure 35 on page 131, real object children R10, R11, R12,

and R13 contribute statuses to aggregate objects A41 and A34; however, object A41

does not contribute status to aggregate object A34.

The aggregation process can be summarized as follows:

1. An event occurs that affects the status of aggregate objects in the aggregation

hierarchy. See “Events That Start the Aggregation Process” on page 139. for

more information.

2. Gather the statuses of all real objects that affect the aggregate objects.

3. Calculate the status of the aggregate object as described in “Using the

DisplayStatus of Real Objects.”

4. Update the status of the aggregate object if it has changed.

5. Return to step 1 and wait for the next event.

Using the DisplayStatus of Real Objects

Although many RODM fields are used during the aggregation process, the

DisplayStatus field is central to this process. Step 3 of the aggregation process

listed under “How Status Affects Aggregation” uses the DisplayStatus field as

follows:

v Counts the number of children contributing to the XCPT group.

v For each object contributing to the XCPT group, further categorizes the object

into a number of status groups based on the status of the object.

v Counts the number of object children in each status group.

v Applies the aggregation rules listed in “Aggregation Rules” on page 138 to the

XCPT group and status group counts to determine the status of the aggregate

object.

v Updates the status of the aggregate object if it has changed.

XCPT Groups and Status Groups: Real objects can be members of the XCPT

group and in zero to eight status groups, depending on their status values. These

groups provide a way to prioritize and define a real object’s contribution to an

aggregate object’s status. The eight different status groups are STGRP1 (Status

Group 1) through STGRP8.

A real object is a member of an XCPT group, a status group, or both when the

status of the real object matches one of the status values defined for the group. The

status values defined for each group are customizable. For more information about

defining XCPT and status group status values, see “Customizing the DisplayStatus

Mapping Table for Exception Views” on page 104.

134 Resource Object Data Manager and GMFHS Programmer’s Guide

The XCPT group is used for exception view processing and aggregation

processing. For aggregation processing, the status of each real object under an

aggregate object is used to categorize the real object as having been in an exception

(XCPT) or a non-exception (NOXCPT) state. All real objects in the XCPT state are

counted in the XCPT group. For more information about the XCPT group and the

status groups, see “Defining Exception View Objects and Criteria” on page 100.

Note: For a real object to be further categorized into the 8 status groups, the real

object must also be counted in the XCPT group.

Example: In Figure 35 on page 131, aggregate A41 has real object children R10,

R11, R12, and R13. Assume the following DUIFSMTE statements are coded in the

DUIFSMT table:

 Also assume that the actual status values of the objects are:

v R10 is UNSAT

v R11 is DS140

v R12 is DS158

v R13 is UNKWN

In this example, all four resources are in an exception state and are counted in the

XCPT group. R10 is a member of status groups 1 and 6; R11 is a member of status

group 5; R12 is a member of status groups 1 and 8; R13 is a member of status

group 8. For aggregate object A41, there are:

v Four real objects in the XCPT group.

v Two real objects in status groups 1 and 8.

v One real object in status groups 5 and 6.

v Zero real objects in status groups 2, 3, 4, and 7.

Notes:

1. For any DUIFSMTE macro definition, the status values defined for each status

group sh be a subset of the status values defined for the XCPT group. An

attempt to define a status group status value that is not also an XCPT group

status value is not prevented; however, it has no affect on aggregation status

calculations.

2. The first DUIFSMTE statement in Figure 37 has a status value of DS158 defined

for STGRP6. This is enabled by the DUIFSMTE statement, but a status of DS158

is not counted toward STGRP6 because DS158 is not also in the XCPT group.

3. A status value in the XCPT group does not have to be defined as a status value

in any of the status groups; a real object can contribute to the XCPT group

without contributing to any of the status groups.

 DUIFSMTE CLASS=R10s_Class,MYNAME=R10, C

 XCPT=(UNSAT,INTER,DS136,DS137,DS142,DS143), C

 STGRP1=(UNSAT,INTER),STGRP2=(DS136,DS142), C

 STGRP6=(DS137,DS158,UNSAT)

 DUIFSMTE CLASS=R11s_Class,MYNAME=R11, C

 XCPT=(UNSAT,LOWSA,LOWUN,DS140), C

 STGRP3=(LOWSA,LOWUN),STGRP5=(DS140)

 DUIFSMTE CLASS=R12s_Class,MYNAME=R12, C

 XCPT=(INTER,LOWSA,DS154,DS158), C

 STGRP1=(DS158),STGRP4=(LOWSA),STGRP6=(DS154), C

 STGRP8=(INTER,DS158)

 DUIFSMTE CLASS=R13s_Class,MYNAME=R13,XCPT=(UNKWN),STGRP8=(UNKWN)

Figure 37. Example DUIFSMTE Statements in Table DUIFSMT

Chapter 5. How GMFHS Uses RODM 135

Suspended Resources: Real objects can be temporarily removed from the

aggregation hierarchy without actually changing the AggregationParent and

AggregationChild fields. This logical removal is referred to as suspending the object.

The following techniques can be used to suspend objects:

v Using NMC, you can set the suspend flag of a resource from the Resource

Properties window or clear suspended resources from the List of Suspended

Resources window. For more information, refer to the NMC online help.

v By setting the UserStatus field directly in RODM, using RODMView. For more

information, refer to the IBM Tivoli NetView for z/OS Data Model Reference.

Real objects can be suspended by an operator for any reason. In most cases, the

object is suspended when problem resolution for the real resource represented by

the object is being done. The object is said to be resumed when it is logically placed

back into the aggregation hierarchy.

GMFHS uses the SuspendedCount field to track the number of resources that have

been suspended. A real resource does not contribute status to its aggregation

parents if one of the following actions occurred:

v The suspend flag of the UserStatus field is on.

v The AggregationPriorityValue field has a value of −1 (Ignore).

v The AggregationPriorityValue field has a value of −2 (Resource type default).

The DefaultAggregationPriorityCopy field contains a copy of the value in the

DefaultAggregationPriorityValue field of the Display_Resource_Type_Class

object that is linked to the DisplayResourceType field of the real object. If the

DefaultAggregationPriorityCopy field is −1 (Ignore) and the

AggregationPriorityValue field is −2 (Resource type default), this resource does

not participate in status calculations for aggregation.

Note: Setting the AggregationPriorityValue or DefaultAggregationPriorityValue

fields to −1 (Ignore) does not affect the suspend flag of the UserStatus field.

These actions are independent of each other and do not cause the other to

occur.

Calculating the Aggregate Parent Status

After categorizing the status of each real object child into the XCPT group and

status groups, and then counting the number of real object children in each group

for a particular aggregate object, independent methods are used to calculate the

status of an aggregate object. Aggregation rules are then used to resolve any

conflicting status results produced by each of the methods.

Aggregation Thresholds: The status of an aggregate parent is determined based

on whether the XCPT group count is above or below a threshold value. There are

three threshold values defined as RODM fields on all aggregate objects. The values

are listed below in order of severity: :

v ThresholdDegraded (lowest severity)

v ThresholdSeverelyDegraded

v ThresholdUnsatisfactory (highest severity)

A threshold is met if the XCPT group count for an aggregate object is greater than

or equal to the threshold value. The ThresholdSeverelyDegraded value must be

less than or equal to the ThresholdUnsatisfactory value, and the

ThresholdDegraded value must be less than or equal to the

ThresholdSeverelyDegraded value.

136 Resource Object Data Manager and GMFHS Programmer’s Guide

The valid values for these fields are described in the IBM Tivoli NetView for

z/OS Data Model Reference. The values are as follows:

v A value of -2 indicates that the value of the default field from the

Display_Resource_Type_Class object (either DefaultThresholdDegraded,

DefaultThresholdSeverelyDegraded, or DefaultThresholdUnsatisfactory) is used

to define the threshold value. The default values can be -1, 0, or any positive

integer. These default values substitute directly for the actual threshold values.

v A value of -1 in the threshold field indicates that this threshold calculation is

disabled for the aggregate object.

v A value of 0 in the threshold field indicates that the object always changes to the

threshold status, no matter what the XCPT group count for the aggregate parent

is. If more than one threshold has a 0 value, then the highest priority threshold

takes effect.

v A positive number indicates that the XCPT group count must be equal to or

greater than the number to cause the aggregate object to change to the threshold

status value. The highest priority threshold that meets this condition is the

threshold that is used to apply the status.

v A value between -100 and -200 (inclusive) in the threshold field indicates that

the XCPT group count must be equal to or greater than (value + 100)*(Total

number of reals reporting to the aggregate)*0.01. In effect, the value is a

percentage of the total number of real objects currently attached to the aggregate

object.

Aggregation Priority: Aggregation priority allows real objects to be designated as

critical resources. If a critical resource contributes to the aggregate parent’s XCPT

group, this constitutes an automatic match with the degraded threshold.

Additional critical resources that contribute to the XCPT group has no additional

effect. When the last critical resource no longer contributes to the XCPT group, the

degraded threshold is no longer matched.

The AggregationPriorityValue field is defined on all real objects and it is used to

define a real object as a critical resource. The valid values for this field are

described in the IBM Tivoli NetView for z/OS Data Model Reference. Generally, the

values are:

v A value of -2 indicates that the value of the default field from the

Display_Resource_Type_Class objects DefaultAggregationPriorityValue field is to

be used to define the priority value. The default values can be -1, 0, or any

positive number in the range of 1–9. These default values substitute directly for

the actual priority values.

v A value of -1 indicates that the real object is suspended from aggregation.

v A value of 0 indicates that the real object is not a critical resource.

v A positive number from 1 through 9 indicates that the real object is a critical

resource. The number also indicates the number of levels up the aggregation

hierarchy to which this object contributes its critical nature if the object does

contribute to the XCPT group. The critical nature of a resource cannot be

propagated more than 9 levels up the aggregation hierarchy.

Note: An aggregation hierarchy can have any number of levels. A real object is

counted in the XCPT group for any aggregate at any level of the hierarchy.

However, if the object is also a critical resource, the critical nature only be

propagates a maximum of 9 levels above the real object. Therefore, there is a

degraded threshold match for aggregate objects that are at a level less than

or equal to the level specified in the AggregationPriorityValue field.

Chapter 5. How GMFHS Uses RODM 137

Status Group Customization: Both thresholding and priority aggregation allow

the status of a parent aggregate object to be set to one of five predetermined

values: Unknown, Satisfactory, Degraded, SeverelyDegraded, or Unsatisfactory.

The eight status groups are used to customize the actual state of the aggregate

object. Status group customization is very similar to aggregation priority, without

the 9 level limit on the aggregation hierarchy.

With status group customization, the final status of the aggregate parent can be

customized to be a value other than one of the five predetermined values. All real

objects that are a member of a particular status group are counted. This is done for

each status group. If the number of real objects in a status group is greater than

zero, the status group definitions on the aggregate object are used to determine the

status of the aggregate object.

The status groups are prioritized from STGRP1 (highest) to STGRP8 (lowest). If

more than one status group has a count greater than zero, and there is more than

one matching status group definition for the aggregate object, then the first status

value in the highest priority status group definition for the aggregate object is used

as the aggregate object’s status.

Unknown Resources: The status values of real object children can contribute

directly to the status values of aggregate parents without necessarily contributing

to the XCPT group. The total number of real objects with Unknown statuses under

an aggregate parent is compared to the value in the UnknownThreshold field of

the Global_Aggregation_Parameters_Class. If this threshold is equaled or exceeded,

then further aggregation processing for this aggregate parent is not valid and the

status of the aggregate parent becomes Unknown.

Unlike the three thresholds defined under “Aggregation Thresholds” on page 136,

this threshold is a number from 1 through 100 that represents a percentage. The

percentage is applied to the total number of real children objects under the

aggregate parent that are actively participating in aggregation (not suspended).

Aggregation Rules: Suspended resources, unknown resources, aggregation

thresholds, aggregation priority, and status group customization are used to

calculate the status of an aggregate object. The following aggregation rules are

used in the order listed to resolve conflicts among the aggregation methods:

1. Logically remove suspended real object children from the aggregation

hierarchy. This was already done by not allowing suspended real objects to be

counted in the XCPT and status groups, but the total count of all objects

reporting to an aggregate parent is now changed to reflect the removal of the

suspended resources.

2. If the total number of real object children is now zero, or if there is no

DisplayResourceType object currently linked to the aggregate parent and a

default threshold from this object is needed, the status of the aggregate object is

set to Unknown and the status calculation ends.

3. If the percentage of real object children with an Unknown status is greater than

the UnknownThreshold, the status of the aggregate object is set to Unknown

and the status calculation ends.

4. If there is a status group customization match with the aggregate object, the

aggregate object takes on the first status defined in the aggregate object’s

highest matching status group. The status calculation ends.

5. If the number of real object children in the XCPT group is greater than or equal

to the Unsatisfactory threshold, the status of the aggregate object becomes

138 Resource Object Data Manager and GMFHS Programmer’s Guide

Unsatisfactory and the status calculation ends. The Unsatisfactory threshold can

be expressed as an absolute count or as a percentage.

6. If the number of real object children in an XCPT group is greater than or equal

to the SeverelyDegraded threshold, the status of the aggregate object becomes

SeverelyDegraded and the status calculation ends. The ServerelyDegraded

threshold can be expressed as an absolute count or as a percentage.

7. If the number of real object children in an XCPT group is greater than or equal

to the Degraded threshold, the status of the aggregate object becomes Degraded

and the status calculation ends. The Degraded threshold can be expressed as an

absolute count or as a percentage.

8. If the number of real object children counted in the XCPT group that are critical

resources is greater than zero, the status of the aggregate object becomes

Degraded and the status calculation ends. Remember that the

AggregationPriorityValue field for any real object child might not allow it to be

counted as a critical resource for the current level of aggregate object.

9. If none of the previous conditions apply, the status of the aggregate object

becomes Satisfactory and the status calculation ends.

Aggregation Problems

Aggregation is accomplished using various RODM fields. Some of these fields can

be modified by the customer, and some are for GMFHS method use only. Although

a customer sh never modify a field that is for GMFHS method use only, RODM

does not prevent this from happening.

Inconsistencies can arise when:

v Internal counts are not equal for each aggregate object.

v Threshold values are greater than the total number of real object children of an

aggregate parent, or threshold values that do not follow the restrictions defined

in “Aggregation Thresholds” on page 136

An indicator in the UserStatus field is used to indicate possible inconsistencies

during aggregation processing.

UserStatus Field

The UserStatus field on an aggregate object contains information used to set the

operator status of the object in a view. There are five bits in the UserStatus field

that contribute to the operator status of an aggregate object:

v The resource marked bit

v The threshold inconsistency bit (set as a result of aggregation problems

described above)

v The suspended bit

v The resume bit

v The suspend resources under aggregate bit

The resource marked, suspended, resume, and suspend resources under aggregate

bits are set as a result of an operator action or by setting the UserStatus field

directly in RODM (using RODMView for example). The threshold inconsistency bit

is set during the aggregation process if an inconsistency is detected.

Events That Start the Aggregation Process

A number of events can start the aggregation process. In general, aggregation is

triggered based on a change to one of the RODM fields used for the aggregation

process. For example, a link is made using the AggregationParent and

AggregationChild field of two objects, or a DisplayStatus change occurs for a real

Chapter 5. How GMFHS Uses RODM 139

object in the aggregation hierarchy. The following is a description of each of the

events that trigger the aggregation process.

Changing the DisplayStatus of a Real Object: This is the most common event

that triggers the aggregation process. The DisplayStatus value of a real object can

change for a variety of reasons, such as a status change request from a NetView

management console or a NetView alert. Any time the status of a real object that is

a member of the aggregation hierarchy changes, the status of all aggregate parents

of that real object might also need to be changed.

If the real object was suspended with the automatic resume feature and the status

of the object is now Satisfactory, the object is logically relinked to the aggregation

hierarchy and aggregation for the object is resumed.

If there is no change in the object’s contribution to the XCPT group or a status

group, and the object does not change to or from Unknown status, then there is no

change to the aggregate parent status.

Linking and Unlinking Using Method DUIFCUAP: The AggregationParent and

AggregationChild fields of the child object and parent object passed to the

DUIFCUAP method are updated. Although a link or unlink operation involves

only two objects (the child object and the parent object), the action c affect the

status values of many aggregate objects in the aggregation hierarchy.

After a link or unlink operation, the status of the immediate parent aggregate

object and all parent objects of the immediate parent aggregate object can need to

be changed.

Changing the AggregationPriorityValue: If the AggregationPriorityValue of a real

object is changed, then the status of all aggregate parents of the real object might

need to be changed. If the real object is not counted in the XCPT group for the

aggregate parent object, there is no change to the aggregate parent status. The

following techniques can be used to change the value of the

AggregationPriorityValue field:

v Using the NetView management console workstation. For more information,

refer to in the IBM Tivoli NetView for z/OS NetView Management Console User’s

Guide.

v Using the NMC. For more information, refer to the NMC online help.

v By setting the AggregationPriorityValue field directly in RODM (using

RODMView for example). For more information, refer to the IBM Tivoli NetView

for z/OS Data Model Reference.

Changing an Aggregate Object Threshold: If any of these thresholds are

changed, the status of that specific aggregate object might need to be changed. The

following techniques can be used to change the value of the ThresholdDegraded,

ThresholdSeverelyDegraded, and ThresholdUnsatisfactory fields:

v Using the NMC. For more information, refer to the NMC online help.

v By setting the fields directly in RODM (using RODMView for example). For

more information, refer to the IBM Tivoli NetView for z/OS Data Model Reference.

Changing the Unknown Threshold: If this threshold is changed, the status of all

aggregate objects in the aggregation hierarchy might need to be changed. Two

techniques can be used to change the value of the UnknownThreshold field of the

Global_Aggregation_Parameters_Class:

140 Resource Object Data Manager and GMFHS Programmer’s Guide

v By setting the UnknownThreshold field directly in RODM (using RODMView

for example). For more information, refer to the IBM Tivoli NetView for z/OS Data

Model Reference.

Note: You cannot use the NMC to change the value of the UnknownThreshold

field.

Suspending a Real Object: If a resource is suspended, the status of all aggregate

parents of that real object might need to be changed. A real object can be

suspended from participating in aggregation at the workstation. The following

techniques can be used to suspend a real object from participating in aggregation:

v Using the NMC. For more information, refer to the NMC online help.

v By setting the UserStatus field directly in RODM (using RODMView for

example). For more information, refer to IBM Tivoli NetView for z/OS Data Model

Reference.

Changing Resource Type Defaults: The AggregationPriorityValue field for a real

object can indicate that the value of the DefaultAggregationPriorityValue field from

the Display_Resource_Type_Class object linked to the real object sh be used for

priority aggregation. The ThresholdDegraded, ThresholdSeverelyDegraded, and

ThresholdUnsatisfactory fields for aggregate objects can indicate that the value of

the default fields from the Display_Resource_Type_Class object linked to the

aggregate object sh be used for threshold aggregation.

For a real or aggregate object using these defaults, the effect is the same as if the

priority value or threshold field directly on the object had changed. The primary

difference is that multiple real or aggregate objects can be changed because a

Display_Resource_Type_Class object can be linked to multiple objects.

The following techniques can be used to change the value of the

ThresholdDegraded, ThresholdSeverelyDegraded, and ThresholdUnsatisfactory

fields:

v Using the NMC. For more information, refer to the NMC online help.

v By setting the field directly in RODM (using RODMView for example). For more

information, refer to the IBM Tivoli NetView for z/OS Data Model Reference.

Linking and Unlinking Using Method DUIFCLRT: Method DUIFCLRT is used

to associate a real or aggregate object with an object of the

Display_Resource_Type_Class. For real objects, this can affect the priority

aggregation value of the object if the default value from the

Display_Resource_Type_Class object is being used. For aggregate objects, this can

affect any of the Degraded, SeverelyDegraded, or Unsatisfactory thresholds of the

object if the default value from the Display_Resource_Type_Class object is being

used.

For a real or aggregate object using any of these defaults, the effect is the same as

if the priority value or threshold field directly on the object had changed.

Changing the Status Mapping Table: The status mapping table can be

dynamically updated using sample CNMSJH13. Because the definition of the XCPT

group or any of the eight status groups can change, this sample optionally allows

the DisplayStatus value of each real object in RODM to be updated (changed to the

same value that it currently has) to trigger exception view and aggregation status

recalculations.

Chapter 5. How GMFHS Uses RODM 141

Aggregation Methods

“GMFHS Methods” on page 487 provides a list of GMFHS methods. Each of the

methods that are described, beginning with DUIFCLRT, contribute at least

indirectly to aggregation. Three of these methods, DUIFCUAP, DUIFFAWS, and

DUIFFRAS contribute directly to aggregation.

Methods DUIFFAWS and DUIFFIRS are used to synchronize the aggregation

hierarchy if the UserStatus field of an object indicates that there is a threshold

inconsistency, or any time that an operator decides that the status of aggregate

objects might be incorrect. DUIFFRAS performs a subset of the function performed

by DUIFFAWS. DUIFFRAS causes the status of each aggregate object to be

recalculated based on the existing XCPT group and status group counts for each

aggregate object. DUIFFAWS extends DUIFFRAS by accumulating all of the XCPT

group and status group counts for each aggregate object before recalculating the

aggregate object’s status.

See “GMFHS Methods” on page 487 for a description of these methods.

Status Groups

The status (the value of the DisplayStatus field) of an aggregate object can be

customized based on the status of real object children under the aggregate.

The sample table DUIFSMT described in “Defining Exception Criteria” on page 101

is used for this purpose. The STGRPn keywords (where n = 1 through 8) of the

DUIFSMTE macro are used to map the status of real children objects to the desired

status of the aggregate parent. For more information about the DUIFSMTE macro

and how to refresh the DUIFSMT table, see “Customizing the DisplayStatus

Mapping Table for Exception Views” on page 104.

The STGRPn keywords are used to group DisplayStatus values in the same way

that the XCPT keyword is used for exception views. The groups are organized in a

priority manner, with STGRP1 being the highest priority group and STGRP8 being

the lowest. The same status value can belong to more than one status group; in

effect, all status values can be placed in every status group. The DisplayStatus

value must also be an XCPT value for it to register as a STGRPn keyword.

Status groups are used to map the status of a real object to the status of any parent

aggregate objects. If a real object changes to a status value that is in any of the

status groups, then the corresponding status group for all parent aggregate objects

are used to determine the status value of the aggregate objects. If the real object

status value is listed in more than one group, then the highest priority group that

contains the status value is used.

The exception state of the real object is used to determine the status of any

aggregate parents under the following conditions:

v The real object has no status groups, or the status value of the real object is not

contained in any status group.

v The matching status group for the parent aggregate object is not defined.

Using Status Groups

The following list contains additional operational characteristics of performing

aggregation using status groups:

v A status group match for an aggregate parent overrides the previous status of

that parent. The status group override remains in effect until either:

142 Resource Object Data Manager and GMFHS Programmer’s Guide

1. A higher priority status group match occurs for the aggregate parent.

2. The status value of the last real object that is contributing to the current

highest priority status group for the aggregate parent no longer matches that

status group, or the real object is unlinked from the hierarchy or is

suspended from aggregation.
v A status group match overrides the status value of an aggregate parent at any

level of the aggregation hierarchy; there is no level limit as there is with

aggregation priority values.

v As with exception based aggregation, suspended objects do not participate in

status group aggregation.

v The aggregate object threshold for the Unknown status of real objects is not

overridden by status group aggregation.

Examples of Customizing Aggregate DisplayStatus

The following example is provided to give an understanding of using status

groups to customize the DisplayStatus value of an aggregate object. For the

example, assume the following conditions:

v All objects of the T4NODE class contribute to exception state aggregation with a

DisplayStatus of unsatisfactory or unknown. If the DisplayStatus is

unsatisfactory, it is tagged to status group 1.

v All objects of the 1.3.18.0.0.1821 class contribute to exception state aggregation

with a DisplayStatus of unsatisfactory, intermediate, or unknown. If the

DisplayStatus is intermediate or unknown, it is tagged to status group 2.

v All aggregate objects have a status group match for status groups 1 and 2. An

object of the T4NODE class with an unsatisfactory status results in the status of

any aggregate parent to be DS136. An object of the 1.3.18.0.0.1821 class that has

either an unsatisfactory or an intermediate status results in the status of an

aggregate parent to be DS137, as long as this status is not overridden by a status

group 1 match.

v Any object not in one of the three previously defined classes contributes to

exception state aggregation with a DisplayStatus of unsatisfactory or medium

unsatisfactory. If the DisplayStatus is UNSAT, it is tagged to status group 3.

Because there is no matching status group 3 definition on any aggregate object, a

real object DisplayStatus of UNSAT never causes a status group 3 override on an

aggregate parent.

Using the previously listed conditions, Figure 38 shows the coding of the

DisplayStatus mapping table. The fourth statement sets the defaults.

Using the Collection Definition Objects

This section describes how to use the collection definition objects.

Collection definition objects are used by the GMFHS RODM Collection Manager

function to define the contents of Network_View_Class and

GMFHS_Aggregate_Objects_Class objects. Collection definition objects are created

 DUIFSMTE CLASS=T4NODE,XCPT=(UNSAT,UNKWN),STGRP1=(UNSAT)

 DUIFSMTE CLASS=1.3.18.0.0.1821,XCPT=(UNSAT,INTER,UNKWN), C

 STGRP2=(INTER,UNKWN)

 DUIFSMTE CLASS=GMFHS_Aggregate_Objects_Class,XCPT=(SDGRD), C

 STGRP1=(DS136),STGRP2=(DS137)

 DUIFSMTE CLASS=ALL,XCPT=(UNSAT,MEDUN),STGRP3=(UNSAT)

Figure 38. Example of Customizing Aggregate Display Status

Chapter 5. How GMFHS Uses RODM 143

in either the Network_View_Collection_Class or the Aggregate_Collection_Class.

Each of these classes are subclasses of the Collection_Definition_Class. Objects

must not be created on the Collection_Definition_Class.

The Network_View_Class and GMFHS_Aggregate_Objects_Class objects defined by

the collection definition objects are called collection creation objects. Collection

creation objects are created by the GMFHS RODM Collection Manager function

from the information in a collection definition object. The RODM Collection

Manager continuously watches for new collection definition objects to be created

or deleted in RODM. It creates a corresponding collection creation object

dynamically. In addition, changes to the resource collection on an existing

collection definition object are monitored continuously. The changes are

dynamically reflected to the corresponding collection creation object.

Collection Definition Objects

Fields on a collection definition object specify:

v The RODM MyName of the collection creation object.

v If a Network_View_Collection_Class object, the Annotation of the

Network_View_Class collection creation object.

v If an Aggregate_Collection_Class object, the DisplayResourceUserData of the

GMFHS_Aggregate_Objects_Class collection creation object.

v If an Aggregate_Collection_Class object, the DisplayResourceName of the

GMFHS_Aggregate_Objects_Class collection creation object.

v If an Aggregate_Collection_Class object, the DisplayResourceType of the

GMFHS_Aggregate_Objects_Class collection creation object.

v If an Aggregate_Collection_Class object, the DisplayResourceOtherData of the

GMFHS_Aggregate_Objects_Class collection creation object.

v If an Aggregate_Collection_Class object, the DegradedThreshold of the

GMFHS_Aggregate_Objects_Class collection creation object.

v If an Aggregate_Collection_Class object, the SeverelyDegradedThreshold of the

GMFHS_Aggregate_Objects_Class collection creation object.

v If an Aggregate_Collection_Class object, the UnsatisfactoryThreshold of the

GMFHS_Aggregate_Objects_Class collection creation object.

v The LayoutType of the Network_View_Class of

GMFHS_Aggregate_Objects_Class collection creation object.

v If an Aggregate_Collection_Class object, request-specific flags that are used to

process the aggregate collection.

v A data field which holds information that is interpreted by the NMC console.

v A logic tree of rules an object must pass to be included in the

Network_View_Class or GMFHS_Aggregate_Objects_Class collection creation

object.

Collection Definition Object Fields

Refer to the IBM Tivoli NetView for z/OS Data Model Reference for complete

information about the collection definition object classes and fields.

Most of the fields on the collection definition object are copied directly to the field

of the same name on the collection creation object. Some of the fields, such as the

RequestFlags, CollectionLocateName, and WizardHints field, are used only by the

RODM Collection Manager. They are not used to supply a value to a field on the

collection creation object.

144 Resource Object Data Manager and GMFHS Programmer’s Guide

Some of the collection definition object fields are used to indirectly supply a value

to a field on the collection creation object. The LayoutType field, when specified on

an Aggregate_Collection_Class object, is converted to a character string and

appended to the string ″RCMLayoutParmViewType″. This concatenated string is

used as the name of a Layout_Parameters_For_View_Class object. This object is

then linked to the DetailViewLayoutForSelectedResource field of the collection

creation object.

In a similar way, the DisplayResourceType field is used as the name of a

Display_Resource_Type_Class object. This object is then linked to the

DisplayResourceType field of the collection creation object. The CollectionSpecn

fields are used to populate the ContainsObjects field of a Network_View_Class

collection creation object and the AggregationChild and IsPartOf fields of a

GMFHS_Aggregate_Objects_Class collection creation object. See “Using Collection

Specifications” for more information about the usage of these fields.

If the collection creation object already exists in RODM, it is deleted and recreated

using the information in the collection definition object. Name your collection

creation object objects carefully to ensure that they do not overwrite existing

Network_View_Class or GMFHS_Aggregate_Object_Class objects. Adding a prefix

or suffix to the collection creation object name that identifies it as an object that

was created by the RODM Collection Manager is an easy way to prevent creating a

duplicate collection creation object.

Using Collection Specifications

The collection specification is contained in the CollectionSpecn fields of the

collection definition object. These fields are concatenated together in ascending

numerical order of the n numeric portion of the field to create the full collection

specification. The first CollectionSpecn field must be CollectionSpec1. A collection

specification contains a set of rules that describe the objects to be in the

Network_View_Class collection creation object ContainsObjects field or the

GMFHS_Aggregate_Objects_Class AggregationChild and IsPartOf fields.

The rules in the collection specification are applied dynamically. The rules match

objects that currently exist in RODM at the time the rules are initially processed by

the RODM Collection Manager function as well as objects that are dynamically

added to or deleted from RODM after the rules are initially processed. The RODM

Collection Manager places a RODM notification on all fields in all classes that are

specified in any collection specification for any collection definition object and is

then notified when the value of these fields change for any object. As a result, the

RODM Collection Manager can update the objects in a collection creation object

whenever a change occurs in RODM that w affect the collection creation object.

Conditional Statements

Conditional statements are logically joined together and are a part of a collection

specification.. Each conditional statement is composed of a RODM field, a RODM

class, a value (or optionally), a set of values, and an operation. For each object

within the specified class, the specified field is compared to the value or

list-of-values using the operation. If the operation compares successfully, then the

object matches the condition. Otherwise, it fails the condition. The list of all objects

that compare successfully with the condition are the result of the conditional

statement. These objects are of RODM type ObjectList.

The simplest form of a collection specification is a single conditional statement,

and can be expressed in the following general terms:

Chapter 5. How GMFHS Uses RODM 145

{Class/Field} operation {Value} ==> list_of_objects

For each object in the given Class, take the value of the object’s Field and compare

it to Value using the comparison operation. If the values compare successfully,

place the object in the output list_of_objects.

The {Value} term can also be a reference to a set of values, much like the

{Class/Field} term indirectly references all objects on the Class. Each value is listed

directly in the collection specification. When more than one value is listed in the

{Value} term, the Field value of an object is compared against each value in the

value list. One or more of the values in the value list must compare successfully

for the object to be added to the list_of_objects.

The single conditional statement can also be expressed in the following terms:

{Value1} operation {Value2} ==> list_of_objects

Where both Value1 and Value2 can be either a single value or a value list. Value1

refers to the value of the Field on each object in the Class. Value2 refers to the list

of values directly specified in the conditional statement. This generic syntax is

useful when complex conditional statements are described.

In the case of the simple collection specification, the list_of_objects that results

becomes the object list for either the ContainsObjects field or the

AggregationChild/IsPartOf fields of the collection creation object. In effect, this

list_of_objects is the final output from the collection specification

Postfix Notation in Conditional Statements

When a postfix notation is used to express the conditional statement, the statement

is:

{Class/Field} {Value} operation ==> list_of_objects

or

{Value1} {Value2} operation ==> list_of_objects

Postfix notation is the notation used in the actual collection specification on the

collection definition object in RODM.

For example, a simple collection specification w be:

 |GMFHS_Managed_Real_Objects_Class|DisplayStatus|132|.EQ.

This collection specification takes the value of the DisplayStatus field for each

object in the GMFHS_Managed_Real_Objects_Class and compares it to 132. If the

values are equal, the object is added to the list_of_objects that satisfy the conditional

statement. After all objects have been compared, the list_of_objects is put into the

collection creation object’s object list field.

The conditional statement is also referred to as a leaf specification. A leaf

specification produces a list_of_objects from a comparison of two lists of values. It is

a leaf in the processing tree that a collection specification represents conceptually. It

is a leaf because its Value1 and Value2 operators are not produced by other

conditional statement evaluations from the collection specification, but instead

come directly from either the collection specification (Value2) or from a field on an

object (Value1).

146 Resource Object Data Manager and GMFHS Programmer’s Guide

Complex Conditional Statements

Most collection specifications are not composed of only one conditional statement.

For an object to be considered a candidate for a network view, for example, you

can have its DisplayStatus be 132 AND its MyName be Chihuahua. In this case,

the conjunction AND is used to link the two conditional statements together:

The syntax for linking conditional statements together in postfix notation is:

({Class/Field} operation {Value}) ({Class/Field} operation

{Value}) conjunction ==> list_of_objects

or

 (leaf_specification) (leaf_specification) conjunction ==> list_of_objects

Both leaf specifications produce an object list even if the list contains no objects;

the final list_of_objects is determined by applying the conjunction operator (AND or

OR) to the two object lists. If the conjunction is AND, then the object identifier

must be in both lists for it to be in the resulting list_of_objects. If the conjunction is

OR, then the object identifier must be in one or the other list for it to be in the

resulting list_of_objects.

Since a leaf specification evaluates to a list_of_objects, the generic form of the above

syntax is:

(list_of_objects)(list_of_objects) conjunction ==> list_of_objects

This syntax is also referred to as a node specification. A node specification uses the

output from other conditional statements (object lists) as the operands of the

conjunction. Since a node specification itself is a conditional statement that

produces an object list, an unlimited complex conditional can be built by

recursively substituting node specifications in the simple node specification as

described here.

For example, consider the following complex conditional in postfix notation:

(a) (b) EQ (c) (d) EQ AND (e) (f) EQ (g) (h) EQ AND OR

To continue this example, we build it up to the generic form of a complex

conditional. First, (a) (b) EQ is a leaf specification:

(leaf_specification) (c) (d) EQ AND (e) (f) EQ (g) (h) EQ AND OR

Next, (c) (d) EQ is also a leaf specification:

(leaf_specification) (leaf_specification) AND (e) (f) EQ (g) (h) EQ AND OR

or

(list_of_objects) (list_of_objects) AND (e) (f) EQ (g) (h) EQ AND OR

Next, (list_of_objects) (list_of_objects) AND is in the form of a node specification:

(node_specification) (e) (f) EQ (g) (h) EQ AND OR

or

(list_of_objects) (e) (f) EQ (g) (h) EQ AND OR

Next, (e) (f) EQ (g) (h) EQ is identical to (a) (b) EQ (c) (d) EQ:

(list_of_objects) (leaf_specification) (leaf_specification) AND OR

Evaluating the complex conditional that involves the leaf specifications, we have:

Chapter 5. How GMFHS Uses RODM 147

(list_of_objects) (node_specification) OR

or

(list_of_objects) (list_of_objects) OR

This final conditional matches the generic syntax described here, and produces the

final object list for the complex conditional. See “Stack Model Postfix Processing”

for more information about the method used to actually evaluate the postfix

notation used in a collection specification.

Stack Model Postfix Processing

A collection specification is processed by using a virtual stack to hold the

intermediate results from the conditional statements in the collection specification.

Any output from a leaf specification, which is an object list, is added to the stack.

When a conjunction is encountered in the collection specification, the last two

object lists added to the stack are removed from the stack, the conjunction is

applied to the object lists, and the resulting object list is added to the stack. This

processing continues, left to right, to the end of the collection specification. At the

end of the collection specification, there sh be one and only one object list left on

the stack. If this is not the case, the collection specification is syntactically incorrect.

The object list left on the stack is the final result of the collection specification. It is

assigned directly to the ContainsObjects or AggregationChild/IsPartOf fields of the

collection creation object.

Although leaf specifications are processed using the postfix notation, the input to

the operator (Value1 and Value2) are not object lists. The stack only contains object

lists. Therefore, leaf specifications are evaluated without using the stack. Their

output, which is a list of objects, is added to the stack.

The following shows the stack operations that occur while evaluating the example

on page on page 147:

(a) (b) EQ (c) (d) EQ AND (e) (f) EQ (g) (h) EQ AND OR

Initially, the stack is empty. Reading the collection specification from left to right,

the leaf specification (a) (b) EQ is evaluated to the object list a_b_objects and added

to the stack. The result is:

 Stack contains: a_b_objects

Remaining specification: (c) (d) EQ AND (e) (f) EQ (g) (h) EQ AND OR

Since (c) is not a conjunction, what follows must be another leaf specification;

anything other than a conjunction or a valid leaf specification is syntactically

incorrect. (c) (d) EQ is evaluated to the object list c_d_objects and added to the

stack. The result is:

 Stack contains: c_d_objects

a_b_objects

Remaining specification: AND (e) (f) EQ (g) (h) EQ AND OR

AND is a conjunction, so the first two object lists on the stack (in this case, the

only two), are removed, then evaluated using the conjunction, and the result is

added to the stack. It is an error if the stack does not contain two or more object

lists when a conjunction is evaluated. The result is:

148 Resource Object Data Manager and GMFHS Programmer’s Guide

Stack contains: a_b_AND_ c_d_objects

Remaining specification: (e) (f) EQ (g) (h) EQ AND OR

Because (e) is not a conjunction, what follows is another leaf specification. (e) (f)

EQ is evaluated to the object list e_f_objects and is added to the stack. The result

is:

 Stack contains: e_f_objects

a_b_AND_ c_d_objects

Remaining specifications: (g) (h) EQ AND OR

Because (g) is not a conjunction, what follows is another leaf specification. (g) (h)

EQ is evaluated to the object list g_h_objects and is added to the stack. The result

is:

 Stack contains: g_h_objects

e_f_objects

a_b_AND_c_d_objects

Remaining specifications AND OR

AND is a conjunction, so the first two object lists on the stack are removed,

evaluated using the conjunction, and the result is added to the stack. The result is:

 Stack contains: e_f_AND_g_h_objects

a_b_objects AND c_d_objects

Remaining specifications: OR

Finally, OR is a conjunction, so the last two object lists on the stack are removed,

evaluated using the conjunction, and the result is added to the stack. The result is:

 Stack contains: a_b_AND c_d_objects_OR_e_f_AND_g_h_objects)

Remaining specifications:

At this point, there sh be only one object list on the stack (there is) and nothing left

in the collection specification. If either of these is not true, the collection

specification was syntactically incorrect. The final object list is the result of the

collection specification, and is copied to the collection creation object.

Collection Specification Syntax

The syntax for the collection specification field is:

<collection_specification> :: <separator><leaf_specification> -or-

 <separator><node_specification>

<node_specification> ::

 <leaf_specification><separator><leaf_specification><separator>

 <conjunction> -or-

<leaf_specification><separator><node_specification><separator>

 <conjunction> -or-

<node_specification><separator><leaf_specification><separator><conjunction>

 -or-

<node_specification><separator><node_specification><separator><conjunction>

Chapter 5. How GMFHS Uses RODM 149

<leaf_specification> ::

 <class_name><separator><field_name><separator><value_list>

 <separator><operator>

<value_list> ::

 <value> -or-

 <value><separator><value_list>

<class_name> ::

 string of characters, maximum of 64, specifying a RODM Class, e.g.

NMG_Class

<field_name> ::

 string of characters, maximum of 64, specifying a RODM Field, e.g. MyName

<value> ::

 string of characters, specifying the value of a RODM Field, e.g. CNM01AGT

<separator> ::

 a single character; can be any character value, e.g. |

<operator> :: .EQ. (equal) -or-

 .NE. (not equal) -or-

 .LT. (less than) -or-

 .GT. (greater than) -or-

 .LE. (less than or equal to) -or-

 .GE. (greater than or equal to) -or-

 .CONTAINS. (contains at least one of) -or-

 .CONTAINS=. (contains at least one of, sensitive to case) -or-

 .NCONTAINS. (does not contain) -or-

 .NCONTAINS=. (does not contain, sensitive to case)

<conjunction> :: .AND. -or-

 .OR.

The character that separates the individual tokens in the collection specification is

defined as a part of the collection specification. <separator> can be any character.

This character is allowed to be user defined because any selected value c possibly

appear in a <class_name>, <field_name>, or <value>. The NetView Management

Console GUI uses the vertical bar (|) as the default separator character.

Collection Specification Values

The {Value} portion of a leaf specification can be thought of as a pattern. A pattern

is a sequence of characters, some of which have special meanings, that is matched

against a specific value or set of values. The special characters allow a pattern to

describe more than one value. A pattern with no special characters describes only

one value, the value that is composed of exactly the characters in the pattern. A

pattern with special characters is similar to a list of values, where the list of values

is composed of all of the unique values that match the pattern. If {Value} is a list of

values, each of the values within the list can be a pattern with special characters.

These patterns can be expressed using DOS wildcards or regular expressions. A

regular expression is a set of characters and operators that define a string or group

150 Resource Object Data Manager and GMFHS Programmer’s Guide

of strings in a search pattern. Regular expressions also contain metacharacters,

which are characters with special meanings. The default notation for patterns is to

use DOS wildcarding. If the pattern uses regular expressions, the first character of

the pattern must be the backslash (\). If the pattern does not use any of the special

characters (in either DOS or regular expression notation), the pattern resolves to

single unique value for the comparison operation.

If you want to use DOS wildcards and the first character of the DOS wild card is a

backslash (\), then you must escape it with a plus sign (+). That is, +\value is

interpreted as a DOS wild card value of \value. Also, if you want to use a DOS

wild card and the first character of the DOS wild card is a plus sign, then you

must escape that with another plus sign. Again, ++value w be interpreted as a DOS

wildcarded value of +value. The plus sign as an escape character is only effective

as the first character of the value, and only when followed by another plus sign or

backslash.

The special characters for DOS patterns are an asterisk (*) and the question mark

(?). An asterisk matches zero or more characters from where the asterisk is in the

pattern. A question mark matches any one character in the pattern. Special

characters for DOS patterns can be used anywhere in a pattern. The pattern

*re?*om* w match any string that had an re that was preceded by zero or more

other characters, at least one character after the re, then zero or more characters

until om, followed by zero or more characters to the end of the string.

A pattern using DOS wildcard characters must always match the entire string that

it is being compared with. In this example, if the pattern was re?*om without the

preceding and ending asterisks, then the matched string must begin with re and

end with om. This is slightly different from the way regular expressions work.

Regular expressions are used for more complex pattern matching. DOS patterns in

a collection specification are converted to regular expressions by the RODM

Collection Manager prior to matching the pattern against a value; all pattern

matching is done by the RODM Collection Manager using regular expressions. The

regular expression pattern is applied to the substrings of the input string; if it

matches a substring, then the pattern is considered to have matched the entire

input string. Because regular expressions match on a substring of the input string,

the caret (^) metacharacter is added to the beginning of any converted DOS wild

card pattern, and the dollar sign ($) metacharacter is added to the end of the same

converted DOS wild card pattern in order to enforce the DOS wild card constraint

of matching the entire string.

The simplest form of regular expression is a string of characters with no special

meaning. The following characters have special meaning; they are used to form

extended regular expressions:

. (period)

The period symbol matches any one character except the terminal new-line

character.

[string]

A string within square brackets specifies any of the characters in the string.

Thus [abc], if compared to other strings, matches any that contains a, b, or

c. If the string within the square brackets contains a character, followed by

a hyphen, followed by another character, it indicates that all of the

characters in the current collating sequence between the two intervening

characters are considered a part of the string. For example, [a-z] can be

equivalent to [abc...xyz] or, with a different collating sequence, it can be

Chapter 5. How GMFHS Uses RODM 151

equivalent to [aAbBcC...xXyYzZ]. If the string within the square brackets

begins with the caret (^) symbol, it negates the characters within the

square brackets. Thus [^abc], if compared to other strings, w fail to match

any that contains even one a, b, or c.

expression[m] or expression[m,] or expression[m,u]

Integer values enclosed in [] indicate the number of times to apply the

preceding regular expression. The value for m is the minimum number,

and u is the maximum number. The value for u must be less than 256. If

you specify m, it indicates the exact number of times to apply the regular

expression. [m,] is equivalent to [m,u], where u is an unbounded upper

limit. They both match m or more occurrences of the expression. The plus

sign (+) and asterisk (*) operations are equivalent to [1,] and [0,]

respectively.

expression* (asterisk)

The asterisk symbol indicates zero or more of any characters. For example,

a*e is equivalent to any of the following: 99ae9, aaaaae, a999e99.

$ (dollar symbol)

The dollar symbol matches the end of the string.

^ (caret)

The caret symbol matches the beginning of the string.

\ (backslash)

The backslash character turns off the special meaning of any character

following the backslash, thereby forcing the character to be intepreted as

itself in the pattern. For example, \. matches the . character, not a \

followed by any character.

expression+ (plus)

The plus sign specifies one or more occurrences of a character. Thus,

smith+ern is equivalent to, for example, smithhhern.

(expression)

Groups a subexpression allowing an operator, such as *, +, or [], to work

on the subexpression enclosed in parentheses. For example, (a*(cb+)*) w

match any string that contained zero or more occurences of a, followed by

zero or more occurences of the pattern c followed by one or more

occurences of b.

The asterisk (*) character in a DOS pattern becomes a period asterisk (.*) in a

regular expression. The question mark (?) characters in a DOS pattern becomes a

period (.) in a regular expression.

All DOS patterns are prepended with a caret (^) (which matches the beginning of a

string), and appended with a dollar sign ($) (which matches the end of a string)

when they are converted into a regular expression by the RODM Collection

Manager. This forces the entire string to be matched, character for character.

For example, the pattern *IS?R* is a DOS pattern that w match:

v BISTRO

v MISERLY

v MISER

but not:

v MISTER

v DISRUPT

152 Resource Object Data Manager and GMFHS Programmer’s Guide

The same pattern expressed as a regular expression w be \.*IS.R.*

The pattern \RE[AGLRU]+.E[^A-O]+.*ON is a regular expression that w match:

v REGULAR EXPRESSION

v REGAL-EXPATRIATION

but not:

v REGULATION

v REGENERATION

Values and Data Types

A {Value} in a leaf specification is always initially interpreted as a character string.

The {Class/Field} that the {Value} is compared with can be one of a number of

actual data types. If necessary, {Value} (each value, in the case of a list of values) is

converted to the appropriate data type before the comparison is done. In general,

only character data types can be expressed using DOS wildcards or regular

expressions. Special characters for pattern matching are interpreted as the literal

character if found in a {Value} that is to be matched against other data types.

Not all RODM data types are allowed for a {Class/Field} element of a leaf

specification. The following table lists each of the RODM data types, indicates

whether the data type is allowed in a leaf specification, indicates whether DOS

wildcards or regular expressions are allowed for the data type, and shows how

data is converted from a character string to match the data type.

 RODM Data Type Allowed in Leaf

Specification

Allows

Wildcards

/Regular

Expressions

Conversion

ANONYMOUS No N/A N/A

ANONYMOUSVAR Yes No {Value} contains

only the characters

’0’ or ’1’, which are

converted to an

actual bitstring

before the

comparison.

APPLICATIONID No N/A N/A

BERVAR Yes No {Value} contains

only the characters

’0’ or ’1’, which are

converted to an

actual bitstring

before the

comparison.

CHARVAR Yes Yes None (treated as a

character string)

CHARAVARADDR No N/A N/A

CLASSID No No None (treated as a

character string)

CLASSIDLIST No N/A N/A

CLASSLINKLIST No N/A N/A

ECBADDRESS No N/A N/A

Chapter 5. How GMFHS Uses RODM 153

RODM Data Type Allowed in Leaf

Specification

Allows

Wildcards

/Regular

Expressions

Conversion

FIELDID Yes No {Value} is

converted to an

integer. It is an

error if {Value}

contains characters

that cannot be

converted to a

floating point

variable.

FLOATING Yes No {Value} is

converted to a

floating point

variable. It is an

error if {Value}

contains characters

that cannot be

converted to a

floating point

variable.

GRAPHICVAR No N/A N/A

INTEGER Yes No {Value} is

converted to an

integer. It is an

error if {Value}

contains characters

that cvannot be

converted to an

integer.

INDEXLIST Yes Yes None (Each value

in the IndexList is

treated as a

CharVar, regardless

of it’s actual type.

At least one value

must compare

successfully for the

IndexList to

compare

successfully.

METHODNAME No N/A N/A

METHODPARAMETERLIST No N/A N/A

METHODSPEC No N/A N/A

OBJECTID No N/A N/A

OBJECTIDLIST No N/A N/A

OBJECTLINK No N/A N/A

OBJECTLINKLIST No N/A N/A

OBJECTNAME Yes Yes None (treated as a

character string)

RECIPIENTSPEC No N/A N/A

154 Resource Object Data Manager and GMFHS Programmer’s Guide

RODM Data Type Allowed in Leaf

Specification

Allows

Wildcards

/Regular

Expressions

Conversion

SELFDEFINING No N/A N/A

SHORTNAME No No None (treated as a

character string)

SMALLINT Yes No {Value} is

converted to a

short integer. It is

an error if {Value}

contains characters

that cannot be

converted to a

short integer,

SUBSCRIBEID No N/A N/A

SUBSCRIPTSPEC No N/A N/A

SUBSCRIPTSPECLIST No N/A N/A

TIMESTAMP No N/A N/A

TRANSID No N/A N/A

Examples of Collection Definition Objects

This section contains examples of the Collection Definition Objects.

Example 1:

Collect all objects in the GMFHS_Managed_Real_Objects_Class whose

DisplayStatus field is not equal to 129 and show them in a Network View. The

vertical bar character (|) will serve as the separator character on the

CollectionSpec1 field.

The CDO object that describes this collection c be specified as follows in a RODM

loader file:

 CREATE INVOKER ::= 0000003;

 OBJCLASS ::= Network_View_Collection_Class;

 OBJINST ::= MyName = (CHARVAR) ’Example1’;

 ATTRLIST

 Annotation ::= (CHARVAR) ’Example1 Annotation’,

 LayoutType ::= (INTEGER) 1,

 CollectionSpec1 ::=

 (CHARVAR) ’|GMFHS_Managed_Real_Objects_Class|

 DisplayStatus|129|.NE.’;

 END;

This RODM Collection Manager creates a Network_View_Class object called

″Example1″ with a LayoutType of 1 and Annotation of ″Example1 Annotation″.

The collection specification represents a single conditional (it is composed of a

single leaf specification). The matching object list is copied to the ContainsObject

field of the Example1 view.

Example 2:

Collect all objects in the appnTransmissionGroupCircuit class (actual class name is

1.3.18.0.0.2058) whose DisplayResourceOtherData field contains a CP as the first

Chapter 5. How GMFHS Uses RODM 155

two characters, and Active as the last six characters AND all objects in the

appnTransmissionGroupCircuit class whose AggregationPriorityValue is equal to 1,

2, or 3 , and put them into an Aggregate. The vertical bar character (|) serves as

the separator character.

The CDO object that describes this collection c be specified as follows in a RODM

loader file:

CREATE INVOKER ::= 0000003;

 OBJCLASS ::= Aggregate_Collection_Class;

 OBJINST ::= MyName = (CHARVAR) ’Example2’;

 ATTRLIST

 DisplayResourceOtherData ::= (CHARVAR) ’Example2 Other Data’,

 DisplayResourceUserData ::= (CHARVAR) ’Example2 User Data’,

 CollectionSpec1 ::=

 (CHARVAR) ’|1.3.18.0.0.2058|DisplayResourceOtherData|

 CP*Active|.CONTAINS=.’,

 CollectionSpec2 ::=

 (CHARVAR) ’|1.3.18.0.0.2058|AggregationPriorityValue|

 1|2|3|.EQ.|.AND.’;

 END;

The RODM Collection Manager creates a GMFHS_Aggregate_Objects_Class object

called Example2 with a DisplayResourceOtherData of ″Example2 Other Data″ and

a DisplayResourceUserData of ″Example2 User Data″. The other fields that are not

specified on the Aggregate_Collection_Class object are set to the defaults used for

objects created on the GMFHS_Aggregate_Objects_Class.

The collection specification is represented in both of the CollectionSpecn fields. It c

have been placed entirely in either the CollectionSpec1 or CollectionSpec2 field;

this example demonstrates the concatenation of the two fields. The actual collection

specification, after concatentation, is:

|1.3.18.0.0.2058|DisplayResourceOtherData|CP*Active|.CONTAINS=.|1.3.18.0.0.2058|

AggregationPriorityValue|1|2|3|.EQ.|.AND.

This collection specification represents a complex conditional (it is composed of a

two leaf specifications). DOS wildcards are used to find the objects that match the

DisplayResourceOtherData value. If there are three objects in class 1.3.18.0.0.2058

with objects IDs 1, 2, and 3, and their corresponding DisplayResourceOtherData

fields contain:

v CPCP-supportedActive

v CP-CP Session Support

v CPCP-supportedNotActive

and their corresponding AggregationPriorityValue fields contain:

v -1

v 2

v 3

After evaluating the first leaf specification, the virtual stack contains:

v {1, 3}

where {1, 3} is the object list produced from evaluating the leaf specification. After

evaluating the second leaf specification, the virtual stack contains:

v {2, 3}

v {1, 3}

156 Resource Object Data Manager and GMFHS Programmer’s Guide

The .AND. conjunction causes the two object lists to be removed from the stack;

their intersection results in the list {3} which is added to the stack. This object is

the result of the entire complex conditional. It is linked into both the

AggregationChild field (using the DUIFCUAP method) and the IsPartOf field on

the Example2 object.

There is no benefit using two different classes in the individual leaf specifications.

Both leaf specification w, by definition, produce object lists that containe no objects

in common. The intersection of the lists requested by the .AND. conjunction

therefore always produces an empty object list. If the conjunction is .OR., then

using two different classes is acceptable.

Example 3:

Collect all objects in the GMFHS_Managed_Real_Objects class whose MyName

matches TEST plus an alphabetic classification character plus some number of

additional characters plus 1 plus a numeric range character; for example,

″TESTACPU10″, as long as the alphabetic classification character is not B, and

whose DisplayStatus is either Satisfactory or Unsatisfactory. Add to this list the

objects in the GMFHS_Aggregate_Objects_Class whose MyName matches TEST

plus an alphabetic classification character plus some number of additional

characters, for example, ″TESTACPUALL″, as long as the alphabetic classification

character is not B. Enter them into a Network View.

The CDO object that describes this collection c be specified as follows in a RODM

loader file:

CREATE INVOKER ::= 0000003;

 OBJCLASS ::= Network_View_Collection_Class;

 OBJINST ::= MyName = (CHARVAR) ’Example3’;

 ATTRLIST

 Annotation ::= (CHARVAR) ’Example3 Annotation’,

 CollectionSpec1 ::=

 (CHARVAR) ’|GMFHS_Managed_Real_Objects_Class|MyName|\^TEST[A-C].*1.$|

 .CONTAINS.’

 ’|GMFHS_Managed_Real_Objects_Class|MyName|TESTB*|

 .NCONTAINS.|.AND.’

 ’|GMFHS_Managed_Real_Objects_Class|DisplayStatus|130|

 .LE.|.AND.’

 ’|GMFHS_Aggregate_Objects_Class|MyName|\^TEST[A-C].*$|

 .CONTAINS.’

 ’|GMFHS_Aggregate_Objects_Class|MyName|TESTB*|

 .NCONTAINS.|.AND.|.OR.’; END;

Assume the following objects exist in the GMFHS_Managed_Real_Objects_Class:

 Object ID MyName DisplayStatus

1 TESTACPU10 131

2 TESTACPU11 129

3 TESTBCPU10 130

4 TESTBCPU11 132

5 TESTCCPU10 129

6 TESTCCPU11 132

7 TESTCCPU12 129

8 TESTCCPU12X 130

9 TESTDCPU10 129

Chapter 5. How GMFHS Uses RODM 157

Assume the following objects exist in the GMFHS_Aggregate_Objects_Class:

 Object ID MyName

10 TESTAAGGs

11 TESTBAGGS

12 TESTCAGGS

13 TESTDAGGS

The expression for the first leaf specification is given in regular expression

notation. DOS wildcards do not have a way to specify that the 5th character must

be between A and C, so the regular expression was used in this case. After

evaluating the first leaf specification, the virtual stack contains:

 {1, 2, 3, 4, 5, 6, 7}

After evaluating the second leaf specification, the virtual stack contains:

 {1, 2, 5, 6, 7, 8, 9}

 {1, 2, 3, 4, 5, 6, 7}

The .AND. conjunction removes these two lists from the stack, and replaces them

with:

 {1, 2, 5, 6, 7}

After evaluating the third leaf specification, the virtual stack contains:

 {2, 3, 5, 7, 8, 9}

 {1, 2, 5, 6, 7}

The .AND. conjunction removes these two lists from the stack, and replaces them

with:

 {2, 5, 7}

After evaluating the fourth leaf specification, the virtual stack contains:

 {10, 11, 12}

 {2, 5, 7}

After evaluating the fifth (and final) leaf specification, the virtual stack will

contains:

 {10, 12, 13}

 {10, 11, 12}

 {2, 5, 7}

The .AND. conjunction removes the top two lists from the stack, and replaces them

with:

 {10, 12}

 {2, 5, 7}

Finally, the .OR. conjunction removes only two lists from the stack, and replaces

them with:

 {2, 5, 7, 10, 12}

This becomes the final object list returned by the complex conditional which is

then linked in to the ContainsObjects field of the Example 3 object.

158 Resource Object Data Manager and GMFHS Programmer’s Guide

Using NetView Resource Manager

This section describes NetView Resource Manager (NRM) views and how they can

be customized. NetView Resource Manager enables you to graphically monitor and

manage NetView tasks for resource utilization and status with NMC. You can

monitor all NetViews in your enterprise using one NMC. For more information

about setting up and using NetView Resource manager see:

v The IBM Tivoli NetView for z/OS Installation: Configuring Graphical Components.

v The IBM Tivoli NetView for z/OS User’s Guide.

NetView Resource Manager Views

When NRM is active, NetViewTasks appears in the NetView management console

view tree. This opens a view of the NRM domain aggregate objects. You can

navigate from this view to the NRM Task aggregate objects view. From a Task

aggregate you can navigate to a view with the following real objects, which

represent statistical monitors:

v Status

v CPU (CPU utilization)

v STG (Storage)

v MSGCT (Message Queue Count)

v MQOUT (Output Message Rate)

v MQIN (Input Message Rate)

v I/O (I/O Rate)

To see the value of the monitors, open the Resource Properties notebook.

Chapter 5. How GMFHS Uses RODM 159

The monitor value is in the Data 1 field.

Figure 39. Resources Properties Notebook

160 Resource Object Data Manager and GMFHS Programmer’s Guide

This field does not automatically update dynamically. If you w like for this field to

update dynamically, see “Using DUIFVINS with NetView Resource Manager” on

page 164.

The default status values for NRM real objects are:

v Task active - Satisfactory

v Task inactive - Unknown

v Task status unknown - Unknown

v Threshold 1 has been reached - Intermediate

v Threshold 2 has been reached - Medium Unsatisfactory

v Threshold 3 has been reached - Unsatisfactory

The status value is stored in the RODM DisplayStatus field for each NRM object

representing a statistical monitor.

Status values for the real objects can be customized. See the Display Status section

in CNMSTYLE under NetView Resource Manager Initialization Parameters for

information about how to do this. NRM real objects are in the

GMFHS_Managed_Real_NRM_Objects_Class class, therefore a DisplayStatus of

Unknown does not map to an exception state. If you want to map the Unknown

DisplayStatus to an exception status for NRM objects, see “Modifying DUIFSMT

for NetView Resource Manager” on page 164.

Figure 40. Data 1 Field

Chapter 5. How GMFHS Uses RODM 161

NetView Resource Manager Object Information

NetView Resource Manager aggregate objects are in the

GMFHS_Aggregate_NRM_Objects_Class class. NRM real objects are in the

GMFHS_Managed_Real_NRM_Objects_Class class. All NRM objects have an

″NRM″ prefix in the MyName field.

NMC Command support for NetView Resource Manager

Commands are available for all NetView Resource Manager objects. The

commands that are available depend on the type of task, as shown in Table 21. The

available commands can be selected by clicking the right mouse button on the

selected object. Command results will be displayed on console log of the NetView

management console.

 Table 21. NMC Commands Supported

Task Available commands

DSRBS v DST

LIST SAFOP=opid v OST

v NNT

v AOST (Autotask)

LIST taskname v PPT

v Automatic Tasks

v DST

v OPT

v OST

v NNT

v AOST (Autotask)

v HCT

LIST STATUS=TASKS v NetView Aggregate

LIST STATUS=VOST v VOST (Virtual OST)

Message v OST

v NNT

v AOST (Autotask)

v VOST (Virtual OST)

Query/Set Thresholds1

v NetView Aggregate

v MAINTASK

v PPT

v Automatic Tasks

v DST

v OPT

v OST

v NNT

v AOST (Autotask)

v VOST (Virtual OST)

v HCT

RECYCLET v DST

v OPT

162 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 21. NMC Commands Supported (continued)

Task Available commands

RESOURCE v NetView Aggregate

START HCL=hclname1

v HCT

START TASK=taskname1

v DST

v OPT

STOP FORCE=taskname1

v DST

v OPT

v OST

v NNT

v AOST (Autotask)

v VOST (Virtual OST)

v HCT

STOP TASK=taskname1

v DST

v OPT

v OST

v NNT

v AOST (Autotask)

v VOST (Virtual OST)

v HCT

TASKMON v NetView Aggregate

v MAINTASK

v PPT

v Automatic Tasks

v DST

v OPT

v OST

v NNT

v AOST (Autotask)

v VOST (Virtual OST)

v HCT

TASKUTIL v NetView Aggregate

v MAINTASK

v PPT

v Automatic Tasks

v DST

v OPT

v OST

v NNT

v AOST (Autotask)

v VOST (Virtual OST)

v HCT

1. These commands are protected by the default security for NetView (CNMSCAT2/CNMSAF2).

Chapter 5. How GMFHS Uses RODM 163

The commands issued at the TASK aggregate are generally the same as the

commands issued at the real objects, with the TASKMON command as an

exception. TASKMON taskname is issued on aggregate TASK objects. TASKMON

taskname stat is issued on the following:

v CPU

v STG

v IO

v MQIN

v MQOUT

TASKMON taskname is issued for the STATUS and MSGCT objects.

Note: For more information about Automatic Tasks, see the tasks listed in the

Automatic Tasks section of the the IBM Tivoli NetView for z/OS User’s Guide.

With the exception of DSIWEB and FLBTOPO, all of the tasks listed are

valid for NRM.

The Query/Set Threshold command, which is presented as a dialog, enables you to

examine/change the effective NRM thresholds. This dialog is available for all

objects except the STATUS object. The thresholds can also be set with the

DEFAULTS/OVERRIDE commands. Message command, which is also presented as

a dialog, enables you to send a message to the selected operator task.

Modifying DUIFSMT for NetView Resource Manager

Unknown resources (inactive tasks), by default, are not considered to be in an

exception state. To map the DisplayStatus value of Unknown to an exception state

for resources in the GMFHS_Managed_Real_NRM_Objects_Class, use DUIFSMT.

Example:

DUIFSMTE CLASS=GMFHS_Managed_Real_NRM_Objects_Class, C

 XCPT=(UNSAT,DS152,DS153,DS154,DS155,DS156,DS157,DS158,DSC

 159,MEDUN,LOWUN,UNKWN)

CNMSJH13 is provided to assemble and link-edit DUIFSMT. For more information

about DUIFSMT, see “Customizing the DisplayStatus Mapping Table for Exception

Views” on page 104.

Using DUIFVINS with NetView Resource Manager

If you want the NRM monitor values to update dynamically, code the following

RODM loader statement:

OP DUIFVINS INVOKED_WITH (SELFDEFINING)

 (

 (SMALLINT) 0

 (INTEGER) 7

 (OBJECTID) EKG_Method.DUIFVNOT

 (CLASSID) GMFHS_Managed_Real_NRM_Objects_Class

 (FIELDID) GMFHS_Managed_Real_NRM_Objects_Class.DisplayResourceOtherData

);

See “DUIFVINS: Install View Granularity Method (DUIFVNOT)” on page 498 for

more information.

NetView Resource Manager Sample Loader Files

A sample of NetView Resource Manager objects views and aggregates that take

advantage of the RODM Collection Manager is available. The RODM Collection

164 Resource Object Data Manager and GMFHS Programmer’s Guide

Manager is a NetView function that actively monitors RODM contents and updates

views and aggregates according to criteria you specify. One section of sample JCL

CNMSJH12 provides sample RODM loader files that build RODM Collection

Manager collections of NetView Resource Manager objects.

Follow the instructions in CNMSJH12 to uncomment the two DD statements

containing DUIFNRM1 and DUIFNRM2 parts as shown in the following example:

// DD DSN=NETVIEW.V5R3M0.CNMSAMP(DUIFNRM1),DISP=SHR <-NRM RCM SAMPLE

// DD DSN=NETVIEW.V5R3M0.CNMSAMP(DUIFNRM2),DISP=SHR <-NRM RCM SAMPLE

Sample DUIFNRM1 contains the following views and aggregates:

v View - NRM_OSTs - All NetView users logged on

v View - NRM_CPU_USERS - Non-Satisfactory CPU users

v View - NRM_HEALTH - General health of NetView, containing the following

aggregates:

– Aggregate - NRM_HEALTH_CPU - All Non-Satisfactory CPU objects

– Aggregate - NRM_HEALTH_IO - All Non-Satisfactory IO objects

– Aggregate - NRM_HEALTH_MQS - All Non-Satisfactory MQIN and MQOUT

objects

– Aggregate - NRM_HEALTH_MESSAGES - All Non-Satisfactory MSG objects

– Aggregate - NRM_HEALTH_STORAGE - All Non-Satisfactory STG objects

These views and aggregates collect data from all NetViews that the NetView

Resource Manager is currently managing, so they are best used on a single system.

Or, they can be modified to select a single system by changing their criteria using

the RODM Collection Manager, described in “Customizing Sample Loader Files.”

Sample DUIFNRM2 is an example of selecting objects from a single NetView. It

contains the following view:

v View - NRM_DSI_TASKS - A01NV tasks starting with DSI

Customizing Sample Loader Files

After you have loaded the sample RODM loader files, you can modify the

collections using the NMC console. As an administrator, click on Tasks->RODM

Collection Manager, to open the RODM Collection Manager GUI. From there, you

can browse and modify the collections. In order to make your changes persistent

across RODM cold starts, specify a data set or partitioned data set member to

which to save your changes when sending your collections to the host. Then, when

you cold start RODM, load the data sets containing your modified collections, and

they will be available to NMC console users.

Chapter 5. How GMFHS Uses RODM 165

|
|

166 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 6. Customizing GMFHS to Process and Receive

Alerts and Resolutions

This chapter describes how GMFHS receives and processes alerts and resolutions.

It describes how the customization changes you make affect this processing. Ensure

the name of the objects you create in RODM match the resource names supplied

by alerts.

Receiving and Monitoring Alerts or Resolutions

GMFHS monitors the status of non-SNA resources and the alert-received (event

notification) user status of SNA resources by receiving copies of all alert and

resolution major vectors that the hardware monitor automates. GMFHS identifies

the resources on which these major vectors report.GMFHS relates each status

report to the object in RODM that represents the resource.

Note: A non-SNA domain in GMFHS is any valid combination of a service point,

transaction program, and element management system. A non-SNA domain

in GMFHS functions as the interface between the NetView program and the

non-SNA network.

There are seven elements involved in this process; customization can affect all of

them:

v What GMFHS receives from the hardware monitor

v Objects in RODM representing SNA resources

v Objects in RODM representing network management gateways (NMGs)

v Objects in RODM representing non-SNA domains

v Objects in RODM representing non-SNA resources

v DUIFEDEF alert processing

v Alert translation tables

What GMFHS Receives from the Hardware Monitor

When NetView receives an alert, the alert is passed through the automation table

where the DUIFECMV command processor is run. This command processor sends

information to GMFHS and initiates GMFHS processing of the alert. The

information received by GMFHS is:

v A copy of the major vector.

v The hardware monitor resource hierarchy created from the content of the

hierarchy and resource list (H/RL) subvector or hierarchy name list (HNL)

subvector.

v The name of the SNA domain from which the major vector originated.

v An optional set of parameters to DUIFECMV which bypass the DUIFEDEF alert

processor. The parameters are CLASS, DOMAIN, INDICAT, OBJNAME,

STATUS, and GMFHSDOM. If specified, the following parameters are required:

– DOMAIN

– CLASS

– OBJNAME

– INDICAT

STATUS is required only if the value of parameter INDICAT is 2 or 4.

GMFHSDOM is optional.

© Copyright IBM Corp. 1997, 2007 167

GMFHS checks the hardware monitor resource hierarchy rather than the H/RL or

HNL subvectors for resource names. Some of its logic depends on the presence or

absence of these two subvectors.

If parameters are specified for DUIFECMV, they cause GMFHS to bypass the

processing described in “Objects in RODM Representing SNA Resources,” “Objects

in RODM Representing NMGs” on page 169, “Objects in RODM Representing

Non-SNA Domains” on page 169, and “Objects in RODM Representing Non-SNA

Resources” on page 171. CLASS, DOMAIN, and OBJNAME are used to identify

the object to which the alert is logged, and STATUS specifies a value for the new

resource status. INDICAT specifies the type of status processing to perform. When

a value of 1 or 3 is specified for INDICAT, the procedure described in “Alert

Translation Tables” on page 176 is used.

Note: Command processor DUIFECMV must run under the autotask DUIFEAUT.

Refer to the NetView online help or the IBM Tivoli NetView for

z/OS Command Reference Volume 1 for more information about DUIFECMV

and its operands.

Objects in RODM Representing SNA Resources

When GMFHS receives an alert or resolution major vector, it tries to determine

whether the reported resource is an SNA resource or a non-SNA resource. If the

major vector contains neither the H/RL subvector nor the HNL subvector, GMFHS

handles the major vector as an SNA resource. If either of these subvectors is

present and the hardware monitor resource hierarchy contains either a service

point resource type (SP or PUGW), or a transaction program resource type (TP or

PUGA), the resource must be a non-SNA resource. GMFHS uses the “First

Method” on page 169 to process this non-SNA resource. If either of these

subvectors is present and neither a service point type (SP or PUGW), or a

transaction program resource type (TP or PUGA) is contained in the hardware

monitor hierarchy, the resource being reported on can still be either a SNA or a

non-SNA resource. GMFHS uses the method described in “Second Method” on

page 170.

If GMFHS determines that the resource being reported on is a non-SNA resource,

GMFHS takes action according to procedures described in “Objects in RODM

Representing Non-SNA Resources” on page 171. The remainder of this section

describes the actions GMFHS takes if it determines that the resource being

reported on is an SNA resource.

GMFHS tries to find an object in the SNA_Domain_Class with a name that

matches the original SNA domain name for the major vector. If it does not find this

object, GMFHS drops the major vector. If this object is found, GMFHS tries to find

an object in the GMFHS_Shadow_Objects_Class with a name that is the

concatenation of the SNA network (SNANet) field of the SNA_Domain_Class

object, a period (.) delimiter, and the resource name farthest to the right in the

hardware monitor resource hierarchy.

For example, suppose the following object is defined in the SNA_Domain_Class:

 MyName : A10NV

 SNANet : NETA

Alerts and Resolutions Reference

168 Resource Object Data Manager and GMFHS Programmer’s Guide

If GMFHS receives an alert with an origin SNA domain name of A10NV and that

alert has NT69I073 as the name farthest to the right in the hardware monitor

resource hierarchy, the name of the object searched for in the

GMFHS_Shadow_Objects_Class follows:

 NETA.NT69I073

If GMFHS finds this object in the GMFHS_Shadow_Objects_Class, it turns on the

event notification bit in the UserStatus field of this object, creates an event report

protocol data unit, and logs it.

When you create objects in the SNA_Domain_Class and

GMFHS_Shadow_Objects_Class, you need to coordinate the names of these objects

with the names of your SNA networks, SNA domains, and SNA resources in those

domains.

Objects in RODM Representing NMGs

GMFHS uses NMG objects during alert processing if it has determined that the

second method is necessary to resolve the alert. The way in which the NMG object

is used is defined under the “Second Method” on page 170.

Objects in RODM Representing Non-SNA Domains

When GMFHS receives an alert or resolution for a non-SNA resource, it first

determines the identity of the non-SNA domain containing the non-SNA resource

being reported on. Next GMFHS tries to identify the resource itself. GMFHS does

this by using hardware monitor resource hierarchy information as a search

argument to compare against the names of objects you defined in the

Non_SNA_Domain_Class. Knowing how this search is accomplished can help you

understand how to set up a plan to name your Non_SNA_Domain_Class objects

with information contained in the hardware monitor resource hierarchy.

GMFHS uses two methods mentioned previously to determine the identity of the

non-SNA domain. These methods are described in detail in this chapter. In the first

method, the resource is assumed to be a non-SNA resource. If, after applying this

method, GMFHS cannot identify the non-SNA domain of the resource being

reported on, it drops the major vector because it cannot identify the non-SNA

resource. In the second method, alerts that are not for non-SNA resources are

assumed to be for SNA resources, and the steps described in “Objects in RODM

Representing SNA Resources” on page 168 are used. When you define objects in

the Non_SNA_Domain_Class, be sure your plan includes information GMFHS

looks for in the hardware monitor resource hierarchy.

First Method

As described previously, it has been determined that either a Hierarchy Resource

List or a Hierarchy Name List subvector is present in the alert, and the alert

contains a service point or a transaction program or both upon entrance to this

method.

Beginning with the hierarchy element defined as a service point (if found), or

beginning with the hierarchy element defined as a transaction program if a service

point is not found, GMFHS builds a concatenation of all names remaining in the

resource hierarchy. In this concatenation, the names are separated from one another

by a period (.).

GMFHS next compares this concatenation with the names of all objects in the

Non_SNA_Domain_Class. All of the objects in this class have been sorted in

Alerts and Resolutions Reference

Chapter 6. Customizing GMFHS to Process and Receive Alerts and Resolutions 169

descending order based on the length of their names. If GMFHS cannot find a

non-SNA domain object that matches the current concatenation list, then the

rightmost object is removed from concatenation and the Non_SNA_Domain_Class

is searched once again for this new name. This process continues until either a

Non_SNA_Domain_Class object matches, or the concatenation list contains no

more elements.

For example, suppose the hardware monitor resource hierarchy contains the

following resource name and type pairs:

 Name Type

 NMGPU5 PU

 SP010 SP

 RING010 RING

 PRINTER1 PRTR

There is an object in the Non_SNA_Domain_Class named SP010.RING010. GMFHS

looks for a Non_SNA_Domain_Class object with one of these names, exactly as

shown, and in the order shown:

 SP010.RING010.PRINTER1

 SP010.RING010

 SP010

GMFHS acts on the first object that matches with the current concatenation list. In

this example, there is no non-SNA domain object named SP010.RING010.PRINTER1,

but there is an object named SP010.RING010. GMFHS handles the object named

SP010.RING010 as though it represents the domain of the resource reported on.

There might also be a non-SNA domain object named SP010 in this example.

However, the match will occur on the first non-SNA domain object in the sorted

list; therefore, the match will occur on SP010.RING010 before SP010. Also, the names

must match exactly; a concatenation name of SP010.RING01 will not match a

non-SNA domain name of SP010.RING010.

Second Method

If the alert hierarchy does not have a service point or a transaction program,

GMFHS compares each name in the resource hierarchy, beginning with the

rightmost resource in the hierarchy, to each NMG_Class object name.

Note: This is not a concatenation list as used in the first method, but rather each

individual resource name. If a match is not found, the alert is treated as an

alert for a SNA object.

If a match is found, all Non_SNA_Domain_Class objects are searched for a match

on the same name. If a match is not found, the alert is treated as an alert for a

SNA object. Otherwise, a match has been found on a non-SNA domain object.

For example, suppose the hardware monitor resource hierarchy contains the

following resource name and type pairs:

 Name Type

 NMGPU5 PU

 PRINTER2 DEV

There is an object in the NMG_Class named NMGPU5, and an object in the

Non_SNA_Domain_Class named NMGPU5. GMFHS looks for an NMG_Class object

with one of these names, exactly as shown, and in the order shown:

Alerts and Resolutions Reference

170 Resource Object Data Manager and GMFHS Programmer’s Guide

PRINTER2

 NMGPU5

As soon as a match is found with an NMG_Class object (in this case, with the

object named NMGPU5), a check is made for the same object name in the

Non_SNA_Domain_Class. If a match is found there, then this domain contains the

object being reported on.

It is important to note that if the Non_SNA_Domain_Class name does not match,

the search will not continue with the next name in the resource list and the

NMG_Class. The first time the NMG_Class is matched, either the

Non_SNA_Domain name also matches the resource hierarchy element, or the alert

is treated as a SNA resource alert.

Objects in RODM Representing Non-SNA Resources

If GMFHS finds the non-SNA domain as described in “Objects in RODM

Representing Non-SNA Domains” on page 169, it tries to identify the non-SNA

resource. GMFHS does this by invoking the load module named in the AlertProc

field of the Non_SNA_Domain_Class object. Refer to the IBM Tivoli NetView for

z/OS Data Model Reference for more information about the AlertProc field.

The default value for the AlertProc field is DUIFEDEF. A sample DUIFEDEF is

shipped with the NetView program. DUIFEDEF can return the following:

v A list of zero or more possible resource names to GMFHS

v A feedback indicator that specifies whether the names are for a single non-SNA

resource or for multiple non-SNA resources

v The name of the RODM class containing these non-SNA resources

v The value for DisplayStatus

Single Non-SNA Resource

When the DUIFEDEF feedback indicator specifies that the names are for a single

non-SNA resource, then, for each name in this list, GMFHS tries to find an object

in the class returned by DUIFEDEF, until either an object is found or the end of the

list is reached.

For the first object found (and only this object), GMFHS:

v Determines the DisplayStatus returned by DUIFEDEF or, if not present,

translates the status reported in the alert or resolution into a GMFHS

DisplayStatus. Refer to the IBM Tivoli NetView for z/OS Data Model Reference for

more information about the DisplayStatus field.

v Relates this status to the object in the class returned by DUIFEDEF.

v Builds an event report protocol data unit.

v Logs this protocol data unit in the Dbserver database.

Multiple Non-SNA Resources

When the DUIFEDEF feedback indicator specifies that the names are for multiple

non-SNA resources, GMFHS tries to find an object in the class returned by

DUIFEDEF for each name in the list. For each object found, GMFHS:

v Determines the DisplayStatus returned by DUIFEDEF or, if not present,

translates the status reported in the alert or resolution into a GMFHS

DisplayStatus.

v Relates the status reported to the object in the class returned by DUIFEDEF.

v Builds an event report protocol data unit.

v Logs this protocol data unit.

Alerts and Resolutions Reference

Chapter 6. Customizing GMFHS to Process and Receive Alerts and Resolutions 171

All alerts and resolutions that report on resources in a non-SNA domain are

processed by the same AlertProc module. Be sure that the alerts and resolutions for

any non-SNA domain where you have made modifications are always formatted so

that the AlertProc module for that domain produces the expected results.

DUIFEDEF Alert Processing

If no value is present for AlertProc or if DUIFEDEF is named in the AlertProc field,

DUIFEDEF provides the possible name of the non-SNA resource or resources

described in an alert or resolution, and the name of the class containing these

resources. The sample DUIFEDEF provided with the NetView program also looks

for alerts from LANs that can report on single or multiple resources.

Parameters

GMFHS runs DUIFEDEF (or any other load module named in the AlertProc field)

with the following parameters:

Pointer to a reentrant work area

The AlertProc module is reentrant and uses this work area. The same work area is

shared among all AlertProc modules. An AlertProc module cannot assume that

information the module stores in this work area is still intact at a later call of the

module. The work area format is as follows:

v Fullword representing the length of the work area set by GMFHS. This must not

be modified by the AlertProc module.

v Fullword containing the following fields:

– One byte containing the DisplayStatus value set by the AlertProc module

before returning to GMFHS. The DisplayStatus value and its meanings are as

follows:

Value Meaning

0 DisplayStatus has not been determined. Use the status mapping table.

Non-0

The DisplayStatus value that is to be used.
– Two bytes reserved.

– One byte containing the binary feedback indicator set by the AlertProc

module before returning to GMFHS. The feedback indicator value and its

meanings are as follows:

Value Meaning

0 Each possible name identifies only one non-SNA resource. GMFHS

queries RODM for each name until it finds a match, and relates the

status to only this resource.

Non-0 Each possible name identifies a separate non-SNA resource. GMFHS

queries RODM for each name, and for each name found, applies the

status to the resource.

Note: Prior to NetView V3R1, the binary feedback indicator was four bytes.

For migration purposes, two of these bytes are now reserved and one

is used for the DisplayStatus value. Set the binary feedback indicator to

0 or 1.
v Fullword containing the offset from the start of the work area to the first

possible name.

Alerts and Resolutions Reference

172 Resource Object Data Manager and GMFHS Programmer’s Guide

v The name of the RODM class which contains the possible resource names. The

class name is formatted as follows:

– Halfword, not boundary aligned, containing the length of the class name.

– Character string containing the RODM class name.
v The list of possible resource names is formatted as follows:

– Halfword, not boundary aligned, containing the length of the resource name.

– Character string containing the resource name.

When more than one name is returned, names are concatenated without any

boundary alignment. The list of possible names ends with a halfword containing

binary zero, also not boundary-aligned. GMFHS accepts a list where the length

of the first possible name is zero.

Pointer to a second reentrant work area

This work area is a separate work area supplied to each AlertProc module, and is

4088 (X'FF8') bytes in length. If an AlertProc module needs to retain information

unaltered across calls, that information can be stored in this work area.

Value of the EMDomain field

The EMDomain field of the Non_SNA_Domain_Class object is a value representing

the domain ID. It can be used by the AlertProc module to build candidate name

lists. For more information about the EMDomain field refer to the IBM Tivoli

NetView for z/OS Data Model Reference.

Value of the DomainCharacteristics field

The DomainCharacteristics field of the Non_SNA_Domain_Class represents the

features supported by the domain. Refer to the IBM Tivoli NetView for z/OS Data

Model Reference for more information about this field.

Pointer to an array of structures

Each structure describes a subvector within the major vector. Each structure has

the following format:

v Fullword containing the pointer to a subvector. The leftmost bit is turned on in

the fullword pointer that points to the last subvector in the major vector.

v Fullword integrity validation flag. If this fullword is all zeros, the subvector

length is validated (in other words, not zero, and contained within the length of

the major vector); if the subvector contains subfields, the subfield lengths are not

validated. If this fullword is not all zeros, the subvector length is validated; if

the subvector contains subfields, the subfield lengths are also validated.

There is a separate structure for each embedded product ID subvector (X'11')

immediately following the structure for the product set ID subvector (X'10').

Pointer to hardware monitor resource hierarchy

This is a list, supplied by the hardware monitor, containing a text representation of

the resource name and type pairs contained in the H/RL or HNL subvector. Each

name and type pair contains an 8-character resource name, left-justified and

right-padded with blanks, and a 4-character resource type, left-justified and

right-padded with blanks. GMFHS supplies the portion of the hardware monitor

resource hierarchy that follows the names which make up the name of the

Non_SNA_Domain_Class object.

In the example, “First Method” on page 169 GMFHS supplies a list containing one

name and type pair:

PRINTER1PRTR

Alerts and Resolutions Reference

Chapter 6. Customizing GMFHS to Process and Receive Alerts and Resolutions 173

Pointer to the length of the hardware monitor resource hierarchy

In the example, GMFHS supplies a pointer to a fullword containing the decimal

value 12.

Register 15 Conventions

DUIFEDEF (or any other AlertProc module) returns a value in register 15 as

follows:

Value Meaning

0 The first reentrant workarea provided by GMFHS contains a list of zero or

more possible resource names, formatted as described previously, the name

of the RODM class containing the resource or resources, and optionally, a

value for DisplayStatus for the resources. If there are zero names, the

AlertProc module completed successfully but did not identify any

non-SNA resources.

 GMFHS processes the name list and status according to the fullword

feedback indicator in the work area.

Greater than 0

The first reentrant workarea provided by GMFHS is not large enough to

hold all of the possible names and the RODM class name. The value in

register 15 is the length of a work area required to contain all of the

possible names and the RODM class name.

 If this is the first time the AlertProc module requested a larger work area

for this alert, GMFHS acquires more space to satisfy the request and calls

the AlertProc module again. Otherwise, GMFHS logs the error in a system

error synopsis and issues console message DUI3913E.

Less than 0

The AlertProc module detected a calling parameter error.

 GMFHS logs the error in a system error synopsis and issues console

message DUI3913E.

Default DUIFEDEF Actions

If neither subvector X'51' nor subvector X'5D' is present in the major vector, the

alert or resolution reports status on only one non-SNA resource. DUIFEDEF

follows these steps.

v Builds a list of either one or two possible names.

– The first name is a concatenation of:

- The EMDomain field supplied in the third calling parameter, not including

trailing blanks.

- A period (.) delimiter.

- All resource names in the hardware monitor resource hierarchy, not

including trailing blanks, delimited by periods (.), if indicated by the value

of the DomainCharacteristics field. Refer to the IBM Tivoli NetView for

z/OS Data Model Reference for information about this value in the

DomainCharacteristics field.
– The second name is a concatenation of:

- The EMDomain field supplied in the third calling parameter, not including

trailing blanks.

- A period (.) delimiter.

- The last resource name in the hardware monitor resource hierarchy.

Alerts and Resolutions Reference

174 Resource Object Data Manager and GMFHS Programmer’s Guide

If the second name is identical to the first, only the first is returned to

GMFHS.
v Returns a value of 0 in the binary feedback indicator.

v Returns a value of GMFHS_Managed_Real_Objects_Class in the RODM class

name.

If either subvector X'51' or subvector X'5D' are present in the major vector, the alert

or resolution reports status on one or more non-SNA resources. DUIFEDEF follows

these steps:

v Builds a list of zero or more possible names.

– Searches for the following subfields:

 X'03' - Local Individual MAC Address

 X'04' - Remote Individual MAC Address

 X'06' - Ring Fault Domain Description

 X'08' - Single MAC Address

 X'23' - Local Individual MAC Name

 X'24' - Remote Individual MAC Name

 X'26' - Fault Domain Names

 X'28' - Single MAC Name
– Creates, for each subfield found, either one possible name:

X'03', X'04', X'08', X'23',

X'24', X'28'

or two possible names:

X'06', X'26'

– Translates addresses to display hexadecimal. Each possible name is a

concatenation of:

- The EMDomain field supplied in the third calling parameter including

trailing blanks.

- A period (.) delimiter.

- The name or address in the subfield. All resource names in the candidate

name list can be delimited with a period if so requested in the

DomainCharacteristics field. Refer to theIBM Tivoli NetView for z/OS Data

Model Reference for information about this value in the

DomainCharacteristics field.

- If any resulting name is a duplicate of a name already in the list, it is not

added to the list.

- If any resulting object name is longer than 254 maximum characters RODM

permits, the name is not added to the list.

- If any name in subfields X'23', X'24', X'26', or X'28' is all blanks, GMFHS

does not build a possible name.

- Trailing blanks in subfields X'23', X'24', X'26', and X'28' are not included in

possible names. Embedded blanks in these subfields are included in

possible names. Since RODM does not currently permit object names with

embedded blanks, GMFHS is not successful when it attempts to find

objects with such names in RODM.
v Returns a value of 1 in the binary feedback indicator.

v Returns a value of GMFHS_Managed_Real_Objects_Class in the RODM class

name.

To illustrate, suppose the value of the EMDomain field of this

Non_SNA_Domain_Class object is DOMAIN1. If there is no subvector X'51' or

subvector X'5D', DUIFEDEF returns a feedback indicator value of 0 and one

possible name:

Alerts and Resolutions Reference

Chapter 6. Customizing GMFHS to Process and Receive Alerts and Resolutions 175

DOMAIN1.PRINTER1

If, however, there is a subvector X'51' or subvector X'5D', which contains a Ring

Fault Domain Description subfield, and the addresses in the subfield are

X'00101AF1CE74' and X'00101AF1CE0B', then, DUIFEDEF returns a feedback

indicator value of 1 and two possible names:

 DOMAIN1.00101AF1CE74

 DOMAIN1.00100AF1CE0B

Alert Translation Tables

DUIFEUSR and DUIFEIBM are alert translation tables contained in non-reentrant

and non-reusable load modules. DUIFEIBM is supplied to you as a load module

only. DUIFEUSR is supplied to you as a load module, an assembler source module,

and an assembler macro named DUIFEDST.

DUIFEIBM contains the default code point translations supplied by IBM.

DUIFEUSR is supplied to the you as an empty table. You can add code point

translations to DUIFEUSR which override matching code point translations

contained in DUIFEIBM.

One or more DUIFEDST macros can be added to DUIFEUSR to define alert code

point translation. The macro format is as follows:

 Where:

STATUS=DisplayStatus_value

The NetView DisplayStatus value for this table entry. For example, to assign a

DisplayStatus value of UNSATISFACTORY, code STATUS=UNSATISFACTORY.

The STATUS keyword is required. Valid values are:

v SATISFACTORY

v UNSATISFACTORY

v INTERMEDIATE

v UNKNOWN

v DS136 (User Positive 1)

v DS137 (User Positive 2)

v DS138 (User Positive 3)

v DS139 (User Positive 4)

v DS140 (User Positive 5)

v DS141 (User Positive 6)

v DS142 (User Positive 7)

v DS143 (User Positive 8)

v MEDSA (Medium Satisfactory)

v LOWSA (Low Satisfactory)

v DS152 (User Negative 1)

v DS153 (User Negative 2)

v DS154 (User Negative 3)

v DS155 (User Negative 4)

v DS156 (User Negative 5)

DUIFEDST

�� DUIFEDST STATUS=DisplayStatus_value

,ALERT=alert_type
 �

�
,CLASS=class_name

,MYNAME=resource_name
 ��

Alerts and Resolutions Reference

176 Resource Object Data Manager and GMFHS Programmer’s Guide

v DS157 (User Negative 6)

v DS158 (User Negative 7)

v DS159 (User Negative 8)

v MEDUN (Medium Unsatisfactory)

v LOWUN (Low Unsatisfactory)

ALERT=alert_type

Is any valid alert type from the basic alert or generic alert. The ALERT

keyword is optional.

Note: NETCENTER service points use alert type X'12'(unknown) for session

protocol alerts and to simulate resolutions. To maintain compatibility

with NETCENTER service points, the DUIFEIBM translation table does

not provide a code point translation for alert type X'12'. You can add a

code point translation for alert type X'12' to the DUIFEUSR translation

table. If you are using NETCENTER and you add a code point

translation for alert type X'12', it translates these alerts to

SATISFACTORY; all NETCENTER resolutions are translated to the status

you specify in this code point translation.

CLASS=class_name

The name of the RODM class that applies to this table entry. The CLASS

keyword is optional.

MYNAME=resource_name

The MyName of the resource or groups of resources that applies to this table

entry. The wildcard character (*) can be used as a suffix to specify groups of

resources. The MYNAME keyword is optional.

GMFHS sequentially searches the table to find the first match for an alert.

Therefore, place your DUIFEDST macros in most-specific to least-specific order to

ensure your desired status processing occurs.

To specify that alert_type X'03' (Performance) is to result in a DisplayStatus_value

of UNSATISFACTORY for all resources that begin with 'A.B.C', code the following

statement:

DUIFEDST MYNAME=A.B.C*,ALERT=03,STATUS=UNSATISFACTORY

The last statement in DUIFEDST must be as follows:

 This statement must appear immediately before the END statement in your

assembler source file.

DUIFEDST END

Alerts and Resolutions Reference

Chapter 6. Customizing GMFHS to Process and Receive Alerts and Resolutions 177

Table 22 contains the default alert translations that exist in DUIFEIBM.

 Table 22. Default Alert Translations in DUIFEIBM

Alert Type DisplayStatus Value

01 UNSATISFACTORY

02 UNSATISFACTORY

03 UNSATISFACTORY

04 INTERMEDIATE

0A INTERMEDIATE

0F SATISFACTORY

10 UNSATISFACTORY

11 INTERMEDIATE

12 RESERVED

14 INTERMEDIATE

15 INTERMEDIATE

Alerts and Resolutions Reference

178 Resource Object Data Manager and GMFHS Programmer’s Guide

Part 3. Using RODM for Network Automation

Chapter 7. Writing Automation Code 181

Advantages of Using the NetView-Supplied Data

Models for Automation 181

Notifying Your Application about Changes in

GMFHS Fields 181

Accessing and Changing GMFHS-Defined Fields 182

Using GMFHS Methods 183

DUIFCCAN: Clear All Notes 183

DUIFCATC: Aggregation Threshold Change . . 183

DUIFCLRT: Link Resource Type 183

DUIFCUAP: Update Aggregation Path 183

DUIFCUUS: Update User Status 184

DUIFECDS: Change Display Status 184

DUIFFAWS: Aggregation Warm Start 184

DUIFFIRS: Set Initial Resource Status 184

DUIFFRAS: Recalculate Aggregate Status . . . 184

DUIFFSUS: Set Unknown Status 184

DUIFRFDS: Refresh DisplayStatus Change

Method DUIFCRDC 185

DUIFVCFT: Change Exception State 185

DUIFVINS: Install View Notification Granularity

Method 185

GMFHS Methods That Cannot Be Used . . . 185

GMFHS Automation Example 185

Sample Automation Application and Method 186

Chapter 8. Using the RODM Automation

Platform 189

RODM Automation Platform Services 189

Sample Automation Code 190

© Copyright IBM Corp. 1997, 2007 179

180 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 7. Writing Automation Code

This chapter describes how you can write automation applications and methods to

interface with the NetView-supplied data models, including the GMFHS data

model and the SNA topology manager data model. It also describes the rules and

considerations involved in extending a NetView-supplied data model to meet your

automation needs. When you design automation applications involving RODM,

you can either design your own data model or use the NetView-supplied data

models.

Advantages of Using the NetView-Supplied Data Models for

Automation

Though you can create your own data model instead of using the

NetView-supplied data models, consider the following advantages of designing

your automation routines around the NetView-supplied data models:

v The NetView-supplied data models are designed to model networks, and if you

use them, you avoid the extra step of having to design and implement your own

data model, which can be time consuming and costly.

v The NetView-supplied data models provide many fields and objects that your

automation routines can use, such as the DisplayStatus field. After objects are

defined in RODM using the NetView-supplied data models these fields are

maintained by NetView code. Because you do not have to write the code to keep

the fields up to date, you save resources.

v The NetView management console uses the information in the NetView-supplied

data models to dynamically construct views of the network for workstation

operators who are monitoring the network. Operators make inferences as to the

cause of problems, based on the relationships of resources shown in the views

and issue commands to initiate corrective action. If you are using the same data

model for your automation that operators are using, you can correlate your

automation with the people involved in operating and maintaining your

network, as well as design automation routines for the network operators’ tasks.

The GMFHS data model that is supplied with the NetView product as a RODM

load file might not meet all of your automation needs. For example, your

automation code might require a line speed field on link objects that is not

currently provided by the GMFHS data model. You can modify the shipped source

data to meet your needs. Refer to IBM Tivoli NetView for z/OS Data Model Reference,

which describes all of the classes and fields in the data model, for information

about modifying the GMFHS data model.

Notifying Your Application about Changes in GMFHS Fields

RODM can notify user applications when the value of a field in the data model

changes. See “RODM Notification Process” on page 318 for a description of how to

set up this notification. You can create notification subscriptions for fields on

individual objects or for fields on classes. If you create a notification subscription

for a field on a class, your user application is notified when that field changes on

any object of the class.

© Copyright IBM Corp. 1997, 2007 181

The NetView product supplies general purpose notification methods for use with

RODM. You can use these notification methods to notify your user application of

changes to fields in the data model. Methods are supplied to notify when any

change to a field or to notify only when the value of a field exceeds or equals a

specified value or values. You first define the notification method on the field of

the object or class. Then your application subscribes to the notification queue of

that notification method. See “NetView-Supplied Methods” on page 479 for a

description of these methods. You can also write your own notification methods if

the NetView-supplied methods do not meet your needs.

One useful field for automation is the DisplayStatus field. This field indicates the

status of the resource. If you register your automation code on this field, your code

is notified by RODM when the status of a resource changes. For example, if the

status of a resource changes from satisfactory to unsatisfactory, your code can

check the relationship of this object and its status to other objects connected to it in

order to determine whether this is a new problem or the symptom of a

higher-level problem. The example program in “GMFHS Automation Example” on

page 185 performs this task.

Because RODM notifies your automation code when specified fields change, your

automation code can focus on analyzing the information provided by the

notification and taking appropriate action.

Accessing and Changing GMFHS-Defined Fields

Your automation code can access all fields defined in the GMFHS Data Model to

determine the values of these fields. Your automation code can also change some

fields. The code must reflect the following rules:

v Do not change the values of class fields. Change values of object fields only. The

exceptions to this rule are the CodePage field of the

Global_NLS_Parameters_Class and the UnknownThreshold field of the

Global_Aggregation_Parameters_Class.

v Do not change the value of the fields of any object that is a descendant of one

these classes:

– Agent_Parent_Class

– Domain_Parent_Class

– View_Information_Reference_Class

– View_Information_Object_Class
v Do not change the value of the DefaultAggregationPriorityCopy field on any

objects.

v Do not change the value of the following fields of the

GMFHS_Aggregate_Objects_Class:

– SuspendedCount

– TotalRealResourceCount

– StatusGroupCounts

– PriorityXCPTCount

– XCPTCount

– NOXCPTCount

– UnknownCount
v For GMFHS data model fields on which change methods are installed, your

automation code must use the functions which trigger methods. For example,

use the EKG_ChangeField or EKG_ChangeMultipleFields functions instead of

the EKG_ChangeSubfield function. If the change method is not triggered,

operations such as aggregation calculations are not performed.

Notifying Your Application about Changes in Fields

182 Resource Object Data Manager and GMFHS Programmer’s Guide

v GMFHS installs a notification method on all fields used by GMFHS to construct

graphical workstation views. Your automation code must use the functions that

trigger methods when it changes fields in the GMFHS data model on which

notification methods are installed. For example, use the EKG_LinkTrigger

function instead of the EKG_LinkNoTrigger function. If the notification method

is not triggered, GMFHS cannot notify operators monitoring views of the

change. See the specific field description to determine if GMFHS installs a

notification method on the field.

v Some fields must be changed only by using the NetView-supplied methods

designed to change those fields. The methods that can change these fields are

described in “Using GMFHS Methods.”

v Do not add query methods to fields in the GMFHS data model.

v Do not add change methods to any IBM-created fields in the GMFHS data

model. You can add change methods to fields you add to the data model.

Using GMFHS Methods

This section briefly describes the GMFHS methods that your automation

applications and methods can access. See “GMFHS Methods” on page 487 for more

information including the input and output parameters for each method.

DUIFCCAN: Clear All Notes

Use the DUIFCCAN method to clear all note fields without going through the

topology console for each real and aggregate object. An operator ID of DUIFCCAN

is set to indicate that the note was cleared by this method, instead of an operator.

DUIFCATC: Aggregation Threshold Change

This is a change method installed on the aggregation threshold field of the

GMFHS_Aggregate_Objects_Class and is triggered if any of these field’s values are

changed. Your application does not directly run this method. However, when you

design your application, consider that if more than one threshold value is being

changed for an object, use the non-triggering (subfield) form of the change request

for all but the last change. This eliminates unnecessary triggering of the

aggregation calculation method.

DUIFCLRT: Link Resource Type

This object-independent method links Display_Resource_Type_Class objects with

real and aggregate objects. This method is intended to be triggered using the

INVOKED_WITH RODM load function primitive statement when you create your

network definition statements for GMFHS. Use this method for any application

that links or unlinks objects of the Display_Resource_Type_Class with objects of

the GMFHS_Managed_Real_Objects_Class, or its child classes, or with objects of

the GMFHS_Aggregate_Objects_Class. The DUIFCLRT method ensures that the

DisplayStatus of aggregate resources is recalculated if necessary because of the link

or unlink. See “DUIFCLRT: Link Resource Type Method” on page 488 for a

description of the parameters for this method.

DUIFCUAP: Update Aggregation Path

This object-independent method is intended to be run using the INVOKED WITH

primitive of the RODM load function. Use this method for any application that is

changing the aggregation hierarchy. Use of this method ensures that the count

fields and DisplayStatus of aggregate resources is recalculated as required by the

Accessing and Changing GMFHS-Defined Fields

Chapter 7. Writing Automation Code 183

change. Note that running the DUIFFAWS method (aggregation warm start) after

such a change accomplishes the same thing, but it is more expensive and is

intended to be an initialization method.

DUIFCUUS: Update User Status

This named method can be used by an application to update the UserStatus field

of objects within the GMFHS_Displayable_Objects_Parent_Class. While the

UserStatus field value can be changed directly, use the DUIFCUUS method to

prevent changes that are irrelevant or incorrect, such as suspending aggregation for

a shadow object.

DUIFECDS: Change Display Status

This named method can be used by an application to update the DisplayStatus

field of objects within GMFHS_Managed_Real_Objects_Class. This method offers

the advantage of checking the SourceStatusUpdateTime field value in the target

object against one provided by the invoker to ensure that updates are not applied

if the status provided is older than that in the object.

DUIFFAWS: Aggregation Warm Start

Run this object-independent method by any application that needs to ensure that

the count and DisplayStatus values of aggregate resources are correct before

proceeding. It requires no short-lived parameters.

You might need to run this method if you receive message DUI4020A with method

name DUIFCUAC. This indicates a problem with status being propagated through

the aggregation hierarchy. You trigger the DUIFFAWS method when you use the

GMFHS CONFIG NETWORK command to reinitialize GMFHS.

You can also trigger this method with the following RODM load function primitive

statement: OP DUIFFAWS INVOKED_WITH.

DUIFFIRS: Set Initial Resource Status

This object-independent method is used by GMFHS to set the DisplayStatus of all

of the real resource objects linked to the ContainsResource field of a

Non_SNA_Domain_Class object to the InitialResourceStatus value of that domain

object. You might find this method useful for an application that is initializing and

maintaining its own real resource DisplayStatus (in place of GMFHS).

DUIFFRAS: Recalculate Aggregate Status

This object-independent method can be run by any application to cause the

DisplayStatus value of all the GMFHS_Aggregate_Objects_Class objects to be

recalculated. This method is useful if it is believed that the count fields of the

aggregate objects are correct but that the DisplayStatus might be incorrect. The

DUIFFRAS method requires no input parameters. If fields other than DisplayStatus

might be corrupted, use the DUIFFAWS method instead.

This method can also be triggered with the following RODM load function

primitive statement: OP DUIFFRAS INVOKED_WITH.

DUIFFSUS: Set Unknown Status

This object-independent method is used by GMFHS to set the DisplayStatus of all

of the real resource objects linked to the ContainsResource field of a

Non_SNA_Domain_Class object to the unknown value. You might find this

Using GMFHS Methods

184 Resource Object Data Manager and GMFHS Programmer’s Guide

method useful for an application that is initializing and maintaining its own real

resource DisplayStatus (in place of GMFHS).

DUIFRFDS: Refresh DisplayStatus Change Method DUIFCRDC

This object-independent method can be called by any application to change the

DisplayStatus field to the current DisplayStatus value for every real and aggregate

resource defined in RODM. This method is useful when the DisplayStatus

mapping table (DUIFSMT) has been changed. Instead of waiting on a status

change from the network to trigger an exception view update, method DUIFRFDS

can be run to cause the status change which recalculates the exception state for the

objects. The appropriate exception views are then updated. For more information,

see “Customizing the DisplayStatus Mapping Table for Exception Views” on page

104.

DUIFVCFT: Change Exception State

This object-independent method can be called by a user method to change the

exception state of an object. The user method is specified by the USRXMETH

keyword in DisplayStatus mapping table DUIFSMT. Sample user methods

DUIFCUXM and DUIFCUX2 run method DUIFVCFT to set either value XCPT or

NOXCPT in the ResourceTraits field the same way a real DisplayStatus change is

processed. DUIFVCFT then triggers a method to determine whether the change in

exception state will cause the object to be added to or deleted from any open

exception views.

DUIFVINS: Install View Notification Granularity Method

This object-independent method is used by GMFHS to install the view notification

granularity method, DUIFVNOT, on a field. See “DUIFVINS: Install View

Granularity Method (DUIFVNOT)” on page 498 for a description of this method.

GMFHS Methods That Cannot Be Used

In addition to the GMFHS methods described in this section, GMFHS uses other

methods that cannot be used by your programs. See “GMFHS Methods” on page

487 for a list of GMFHS methods that you cannot use.

GMFHS Automation Example

This section presents an automation example, which consists of an application and

a method. It is intended to describe how you might set up your own application

for automating a complex task. Though this example uses a DisplayStatus field

that is defined on the GMFHS_Managed_Real_Objects_Class, this example applies

to any object class that has a DisplayStatus field defined.

In this example, the automation application runs under the NetView product, but

an application can also run in its own address space. This example connects to

RODM and requests to be notified when the DisplayStatus field of a

GMFHS_Managed_Real_Objects_Class object changes in value. This change occurs

as a result of an alert coming in for the object that is analyzed by GMFHS.

In this example, the application is registered to be notified if the status changes for

either of the two minicomputers contained in the sample network described in

Chapter 2, “Defining Your Network to GMFHS,” on page 17 and illustrated in

Figure 7 on page 20. When the application determines that the status of one of

these resources has changed to unsatisfactory, it runs an object-independent

method running under RODM. This method queries the ParentAccess field of the

Using GMFHS Methods

Chapter 7. Writing Automation Code 185

resource whose status has changed and its parents, until it either encounters a

resource with Unsatisfactory status or encounters a resource with no ParentAccess

link. The method then informs the running application whether or not it has found

an ancestor resource that is in an unsatisfactory state.

If the method finds an ancestor resource in an unsatisfactory state, the running

application assumes that the alert is a symptom of a higher-level problem and does

nothing further. If the method does not find an ancestor resource in an

unsatisfactory state, the running application assumes that the alert represents a

new problem. In this case, the application might open a problem report for the

new problem using the NetView Bridge or issue appropriate commands to bypass

the problem. The action taken depends upon the installation, and so is not shown

in the code.

The GMFHS automation example is intended to illustrate a possible use of RODM

automation and to demonstrate how to write code that uses the RODM interface;

do not view this as a solution to a particular automation problem. The program

does not check for loops in the parent-child path. The logic of the program is

based on the assumption that if a higher-level resource is down, the alert for a

lower-level resource is a symptom of that problem, or at least represents a problem

that cannot be attended to until the higher-level problem is solved. This

assumption is not always valid; its validity depends upon the installation and

network resources involved. The example illustrates an automation of the work of

GMFHS operators and their inferences and actions as they monitor configuration

and status information on workstations.

Sample Automation Application and Method

The CNMSNIFF sample application program accepts a RODM name, a RODM user

name, and a RODM password from the NetView command line. The application

then uses the three parameters to perform the following functions:

1. Sends a connect request to the specified RODM.

2. Subscribes to the DisplayStatus fields of the DEC network.

3. Issues EKGWAIT and waits for the DisplayStatus fields of the DEC network to

change.

4. Triggers the EKGSNIFF sample object-independent method when one or more

DisplayStatus fields change.

5. The sample code does no processing at this step. If you were creating a

working automation application, you might create appropriate code for your

system to correct the problem or to log a problem record based on the return

and reason code returned by the EKGSNIFF method after the EKGSNIFF

method finishes processing.

6. Issues EKGWAIT and waits until either a problem occurs or RODM ends.

The CNMSNIFF application is written in C and runs in the NetView address space.

The source code for this example application is shipped as a NetView sample. The

sample name is CNMS4402 (alias CNMSNIFF) in data set CNMSAMP.

The EKGSNIFF sample object-independent method is triggered by the CNMSNIFF

sample automation application program. The EKGSNIFF method accepts an

ObjectID of the target object as a parameter. When triggered, the EKGSNIFF

method queries the DisplayStatus fields of the target object and the object’s parent.

The method then returns a return and reason code, based on the values of the

DisplayStatus fields of the target object and its parent, to the CNMSNIFF

automation program that is in the transaction information block.

GMFHS Automation Example

186 Resource Object Data Manager and GMFHS Programmer’s Guide

The source code for the EKGSNIFF method is shipped as a NetView sample. The

sample name is CNMS4403 (alias EKGSNIFF) in data set CNMSAMP.

GMFHS Automation Example

Chapter 7. Writing Automation Code 187

GMFHS Automation Example

188 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 8. Using the RODM Automation Platform

This chapter is an overview of the RODM automation platform. The RODM

automation platform is a set of NetView services that make automation using RODM

easier.

Additional information about the RODM automation platform is contained in the

IBM Tivoli NetView for z/OS Automation Guide. This book also contains an extensive

RODM automation scenario which shows how the automation platform can be

used.

RODM Automation Platform Services

The following services make up the RODM automation platform:

v DSIQTSK task

v ORCONV command

v EKGSPPI method

v CNMQAPI service routine

v DSINOR service routine

v ORCNTL command

The DSIQTSK task is dedicated to communicating with the RODM address space.

It receives command requests from EKGSPPI and dispatches the commands to an

autotask. Each RODM that you want to manage from the NetView address space

must be defined to DSIQTSK.

The ORCONV command enables the NetView automation table, command lists,

and applications to issue requests to RODM that change values of fields and

trigger methods. The ORCONV command requires that the DSIQTSK task is

running in the NetView from which the commands are issued, and that RODM is

defined to the DSIQTSK task.

The EKGSPPI NetView-supplied method sends commands from RODM to the

DSIQTSK task in the NetView product using the program-to-program interface. See

“EKGSPPI: Send a command to NetView” on page 484 for a description of the

EKGSPPI method.

The CNMQAPI service routine is an enhanced API that enables applications in the

NetView address space to issue RODM functions with less programming effort.

CNMQAPI can be used with the PL/I and C high-level languages. CNMQAPI

enables an application to issue requests while RODM is processing a checkpoint

request. CNMQAPI queues the requests and sends them to RODM when the

checkpoint process is complete. Refer to the IBM Tivoli NetView for

z/OS Programming: PL/I and C for the syntax of CNMQAPI.

The DSINOR assembler-language macro provides an API like CNMQAPI for

assembler applications running in the NetView address space. Refer to the IBM

Tivoli NetView for z/OS Programming: Assembler for the syntax of DSINOR.

The ORCNTL command manages the administrative details about the RODMs

defined to the DSIQTSK task. See the ORCNTL command in NetView online help

for more information.

© Copyright IBM Corp. 1997, 2007 189

Sample Automation Code

The NetView product supplies sample code that you can use to learn how to use

some of the RODM automation platform services. This sample code is found in the

NETVIEW.V5R3M0.CNMSAMP sample library as follows:

CNMS4230

This sample shows you how to use the CNMQAPI service routine when

programming with the PL/I language.

CNMS4260

This sample shows you how to use the CNMQAPI service routine when

programming with the C language.

CNMS4290

This sample shows you how to use the DSINOR assembler-language

macro.

RODM Automation Platform Services

190 Resource Object Data Manager and GMFHS Programmer’s Guide

Part 4. Application Programming Using RODM

Chapter 9. Understanding RODM Concepts . . 195

RODM Classes 195

Class Names 195

Class Name Characteristics with

CHARACTER_VALIDATION(YES) 195

Class Name Characteristics with

CHARACTER_VALIDATION(NO) 196

System-Defined Classes 196

UniversalClass 197

EKG_SystemDataParent Class 198

EKG_System Class 198

EKG_User Class 201

EKG_NotificationQueue Class 204

EKG_Method Class 206

RODM Objects 208

Object Names 208

Object Name Characteristics with

CHARACTER_VALIDATION(YES) 209

Object Name Characteristics with

CHARACTER_VALIDATION(NO) 209

Object Identifiers 210

RODM Fields 210

Field Names 210

Field Name Characteristics with

CHARACTER_VALIDATION(YES) 210

Field Name Characteristics with

CHARACTER_VALIDATION(NO) 210

Field Identifiers 211

System-Defined Fields 211

RODM Subfields 213

Data Types for Subfields 215

Multivalued Fields and Links between Objects . . 216

Link and Unlink Action Functions 218

Subfields Associated with Fields 219

Indexed Fields 220

Object and Class Locking in RODM 220

Using the Application Program Interfaces 220

User Application Program Interface (API) . . . 220

Method Application Program Interface (API) 221

RODM Abstract Data Types 221

Null Values of Data Type 222

Data Type Identifiers 222

Types of Data in Fields 222

Abstract Data Type Reference 223

Anonymous(N) (Reserved) 223

AnonymousVar 223

ApplicationID (Reserved) 224

BERVar 224

CharVar 226

CharVarAddr (Reserved) 227

ClassID (Reserved) 227

ClassIDList (Reserved) 227

ClassLinkList (Reserved) 228

ECBAddress (Reserved) 228

FieldID 228

Floating 229

GraphicVar 229

Integer 229

IndexList 230

MethodName (Reserved) 230

method_parameter_list (Reserved) 231

MethodSpec 231

ObjectID (Reserved) 231

ObjectIDList (Reserved) 232

ObjectLink 232

ObjectLinkList 232

ObjectName (Reserved) 233

RecipientSpec (Reserved) 233

SelfDefining 234

ShortName (Reserved) 235

Smallint 235

SubscribeID (Reserved) 235

SubscriptSpec (Reserved) 236

SubscriptSpecList (Reserved) 236

TimeStamp 236

TransID (Reserved) 237

Chapter 10. Using the RODM Load Function 239

Considerations When Designing a Data Model . . 239

Introduction to the RODM Load Function 240

Load Function Statements 240

Load Function Operations 240

Loading the RODM Data Cache 241

Using Load Function Statements 241

High-Level Load Function Statements 242

Load Function Primitive Statements 242

When to Use High-Level or Primitive Load

Function Statements 243

Process for Loading the RODM Data Cache . . . 244

Identifying the Methods to Install 245

Creating the Class Structure and Object

Definitions 245

Data Definition Statement Labels 245

Concatenation of Data Sets 246

Definition Examples 246

Deciding on the Type of Load 246

Initialization Load 246

Structure Load Only 247

Object Load Only 248

Running the RODM Load Function 248

The Load Function as an Initialization

Method 248

Invoking the Load Function As a Batch Job 250

Calling the Load Function from a Module 251

Considerations When Running the RODM

Load Function 252

Checking the Output Listings 253

RODM Load Function Output Listing . . . 253

RODM Load Function Output Format . . . 254

Load Function Reference 258

Understanding the Verify Operation 258

Using CLASSID and OBJECTID Data Types . . 259

© Copyright IBM Corp. 1997, 2007 191

CLASSID 259

OBJECTID 259

Null Values for RODM Load Function Data

Types 260

Control Table—EKGCTABL 260

Relationships to Other Tables and DD Names 260

Method Name Table 261

Associated DD Statements and Control Table 262

Parameter Mapping Table 262

RODM Data Definition (DD) Statements . . . 264

Data Definitions Necessary for Initialization 265

Data Definitions Necessary for Structure

Load Only 265

Data Definitions Necessary for Object Load

Only 265

z/OS Linkage Conventions 265

Parameter Structure 266

DD List Structure 267

Access Block 267

Calling the RODM Load Function 267

RODM Load Function Parameter Syntax . . . 269

CODEPAGE 269

LISTLEVEL 269

LOAD 270

NAME 270

OPERATION 271

ROUTECODE 272

SEVERITY 272

Coding RODM High-Level Load Function

Statements 272

Syntax Rules for High-Level Load Function

Statements 273

Syntax for High-Level Load Function

Statements 274

Coding RODM Load Function Primitive

Statements 281

Global Character 281

Syntax Rules for Load Function Primitives 281

Syntax and Processing Logic for Load

Function Primitives 281

Common Syntactic Elements 290

Syntax for Common Syntactic Elements . . 290

Chapter 11. Writing Applications that Use

RODM 301

Tasks Best Performed with User Applications . . . 301

Using the User Application Program Interface . . 302

Register Conventions 302

Usage Notes 302

Compiling and Link-Editing 303

Compiling C Modules that Call EKGUAPI 303

Compiling PL/I Modules that Call EKGUAPI 303

Linking Modules that Call EKGUAPI

Directly 304

Linking Modules that Load and then Call

EKGUAPI 304

Using Control Blocks 304

Access Block 305

Transaction Information Block 307

Function Block 308

Entity Access Information Block 309

Field Access Information Block 312

Response Block 314

Error Conditions in Transactions 317

RODM Notification Process 318

Setup 319

Wait 321

Calling EKGWAIT 321

PL/I Coding Example 322

C Coding Example 323

EKGWAIT Usage Notes 323

Notification 324

Clean Up 325

Asynchronous Error Notification 325

Object Deletion Notification 326

Setup for Object-Deletion Notification 326

Wait for Object-Deletion Notification 327

Notification for Object-Deletion Notification . . 327

Cleanup for Object-Deletion Notification . . . 327

Connecting to RODM 327

Disconnecting from RODM 328

Chapter 12. Topology Object Correlation . . . 329

Enabling the Correlation Function 329

Enabling MultiSystem Manager Object

Correlation 329

Enabling SNA Topology Manager Object

Correlation 329

Enabling GMFHS Object Correlation 330

Correlation Concepts 330

Correlation Methods 330

Method FLCMCONI 330

Method FLCMCON 330

Method FLCMCOR 331

Objects Enabled for Correlation 331

Types of Correlation 331

Network Address Correlation 331

Free-Form Correlation 331

Correlated Aggregate Object Classes and Names 333

Correlated Object Relationships 333

Correlated Aggregate Object Display Labels . . 333

Correlated Aggregate Object Field Values . . . 334

Using Correlation for Objects You Create 335

Extending Correlation of Objects Created by

MultiSystem Manager and SNA Topology Manager 335

How to Determine Object Names 336

Correlating MultiSystem Manager Objects . . . 336

Correlating SNA Topology Manager Objects . . 336

Customizing the Correlation Function 336

Changing the Display Name Priority 337

Disabling Correlation for Specific Resources . . 338

Chapter 13. Writing RODM Methods 339

Tasks Best Performed with Methods 339

Types of Methods 340

Object-Independent Methods 340

Initialization Method 341

Object-Specific Methods 342

Change Methods 342

Query Methods 344

Notify Methods 346

Named Methods 349

192 Resource Object Data Manager and GMFHS Programmer’s Guide

Inheritance in Object-Specific Methods . . . 350

Null Method 352

Deciding Which Method Type to Use 352

When to Use an Object-Independent Method 352

When to Use an Object-Specific Method . . . 352

Query Method 353

Change Method 353

Notify Method 353

Named Method 353

Using the Method API 353

Register Conventions 354

Usage Notes 355

Method Parameters 355

Long-Lived Parameters 355

Short-Lived Parameters 356

Installing and Freeing Methods 356

Synchronous and Asynchronous Execution of

Functions 357

Method Anchor Service 357

Coding Your RODM Method 358

Installation Written Methods 358

NetView-Supplied Methods 358

Programming Language Specific Preprocessor

Statements 359

Compiling IBM C Methods 359

Compiling IBM PL/I Methods 359

Linking Methods that Call EKGMAPI

Directly 360

Restrictions on Methods 360

PL/I Language Restrictions 360

C Language Restrictions 361

Restrictions in General 362

RODM Method Services 363

Services Available to both Object-Specific and

Object-Independent Methods 363

Other Services Available to Object-Independent

Methods 364

Other Services Available to Object-Specific

Methods 364

Services Available to the Initialization Method 364

RODM Method Library 365

Chapter 14. Application Programming

Reference 367

Summarizing RODM Functions 367

Access Functions 367

Control Functions 367

Administrative Functions 367

Action Functions 368

Query Functions 369

RODM User API Services 370

RODM Method API Services 370

Function Reference 371

Function Reference Format 371

Purpose 371

Function block format 371

Examples 371

Summary 372

Usage Notes 372

EKG_AddNotifySubscription — Add

Notification Subscription 373

EKG_AddObjDelSubs — Add Object Deletion

Subscription 374

EKG_ChangeField — Change a Field 376

EKG_ChangeMultipleFields — Change Multiple

Fields 377

EKG_ChangeSubfield — Change a Subfield . . 378

EKG_Checkpoint — Checkpoint RODM to

DASD 380

EKG_Connect — Connect to RODM 383

EKG_CreateClass — Create a Class 384

EKG_CreateField — Create a Field 385

EKG_CreateObject — Create an Object 387

EKG_CreateSubfield — Create a Subfield . . . 388

EKG_DeleteClass — Delete a Class 389

EKG_DeleteField — Delete a Field 390

EKG_DeleteNotifySubscription — Delete

Notification Subscription 392

EKG_DeleteObject — Delete an Object 393

EKG_DeleteSubfield — Delete a Subfield . . . 394

EKG_DelObjDelSubs — Delete Object Deletion

Subscription 396

EKG_Disconnect — Disconnect from RODM 397

EKG_ExecuteFunctionList — Execute a List of

Functions 399

EKG_LinkNoTrigger, EKG_LinkTrigger — Link

Two Objects 401

EKG_Locate—Locate Objects Using Public

Indexed Field 403

EKG_LockObjectList — Lock List of Objects . . 404

EKG_MessageTriggeredAction — Trigger an

Action by a Message 405

EKG_OutputToLog — Output to Log 407

EKG_QueryEntityStructure — Query Structure

of an Entity 408

EKG_QueryField — Query a Field 409

EKG_QueryFieldID — Query Field Identifier 411

EKG_QueryFieldName — Query a Field Name 412

EKG_QueryFieldStructure — Query Structure of

a Field 414

EKG_QueryFunctionBlockContents — Query

Function Block Contents 415

EKG_QueryMultipleSubfields — Query Multiple

Value Subfields 417

EKG_QueryNotifyQueue — Query Notification

Queue 419

EKG_QueryObjectName — Query Object Name 422

EKG_QueryResponseBlockOverflow — Query

for Response Block Overflow 423

EKG_QuerySubfield — Query a Subfield . . . 425

EKG_ResponseBlock — Output to Response

Block 426

EKG_RevertToInherited — Revert to Inherited

Value 428

EKG_SendNotification — Send a Notification 429

EKG_SetReturnCode — Set Return and Reason

Codes 431

EKG_Stop — Stop RODM 433

EKG_SwapField — Swap a Field 434

EKG_SwapSubfield — Swap a Subfield . . . 435

EKG_TriggerNamedMethod — Trigger a Named

Method 437

Part 4. Application Programming Using RODM 193

EKG_TriggerOIMethod — Trigger an

Object-Independent Method 439

EKG_UnlinkNoTrigger, EKG_UnlinkTrigger —

Unlink Two Objects 440

EKG_UnlockAll — Unlock All Held Entities . . 442

EKG_WhereAmI — Where Am I 443

Function Parameter Descriptions 444

RODM Return and Reason Codes 451

Reason Codes for Return Code 0 452

Reason Codes for Return Code 4 452

Reason Codes for Return Code 8 456

Reason Codes for Return Code 12 466

List of Reason Codes for Each Function . . . 469

List of Functions for Each Reason Code . . . 471

List of Function Names by Function ID 477

List of Reason Codes from NetView-Supplied

Methods 478

Maximizing RODM Performance 479

Data Model Structure and Size 479

Method Design 479

User Application Design 479

Customization Parameters and System Fields 479

Indexed Fields 479

NetView-Supplied Methods 479

RODM Notification Methods 480

EKGNOTF: General Notification 481

EKGNEQL: Notify If Equal 481

EKGNLST: Notify if Equal to List 482

EKGNTHD: Notify If Outside Threshold . . 482

RODM Change Methods 483

EKGCTIM: Trigger Object-Independent

Method 483

RODM Named Methods 484

EKGMIMV: Increment Value 484

EKGCTIM: Trigger Object-Independent

Method 484

RODM Object-Independent Methods 484

EKGSPPI: Send a command to NetView . . 484

GMFHS Methods 487

DUIFCCAN: Clear All Notes 488

DUIFCLRT: Link Resource Type Method . . 488

DUIFCUAP: Update Aggregation Path

Method 490

DUIFCUUS: Update User Status Method . . 491

DUIFECDS: Change Display Status Method 493

DUIFFAWS: Aggregation Warm Start Method 494

DUIFFIRS: Set Initial Resource Status Method 495

DUIFFRAS: Recalculate Aggregate Status

Method 496

DUIFFSUS: Set Unknown Status Method . . 496

DUIFRFDS: Refresh DisplayStatus Change

Method DUIFCRDC 497

DUIFVCFT: Change Exception State 497

DUIFVINS: Install View Granularity Method

(DUIFVNOT) 498

194 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 9. Understanding RODM Concepts

This chapter describes the structure of the RODM data cache, methods, and

applications. This chapter will help you understand RODM concepts so that you

can create your own data models and associated methods and applications.

This chapter explains the RODM abstract data types. These data types, such as

Integer and MethodSpec define the format of data stored in RODM.

RODM Classes

The ability to group objects and the ability to group or arrange groups of objects is

useful in network management. RODM implements this concept of grouping

through the use of classes. Classes define the data structure of the data cache.

A class represents a grouping and defines fields for all classes and objects below

that class. If you view the RODM data cache as a tree structure, classes represent

the branches of the tree with the UniversalClass as the top-most class. Figure 41 on

page 196 shows an example of the tree structure.

RODM classes:

v Can have:

– No children

– Class children only

– Object children only

– Both class and object children
v Define the complete data organization for their class children or for their object

children.

v Consist of public fields that contain data for the object.

v Include private fields that are not inherited.

v Define the inheritance structure.

Class Names

Each RODM class has a character string in its MyName field called the class name.

RODM system-defined class names are reserved by RODM and cannot be deleted.

All system-defined names, except for UniversalClass, begin with EKG_.

The CHARACTER_VALIDATION keyword in EKGCUST specifies what degree of

validity checking RODM performs for characters used in object names (see “Object

Names” on page 208), field names (see “Field Names” on page 210), and class

names.

Class Name Characteristics with CHARACTER_VALIDATION(YES)

When CHARACTER_VALIDATION(YES), which is the default, is coded in

EKGCUST, valid class names have the following characteristics:

v The name consists of 1 to 64 characters that conform to the ShortName data type

with the PL/I syntax of CHAR(64) VARYING.

v The first character of the string must be alphabetic or numeric. The others, if

any, can be alphabetic, numeric, the break character (_), the commercial “at” sign

(@), the number sign (#), or the period (.).

© Copyright IBM Corp. 1997, 2007 195

v The EKG_ prefix is reserved for RODM created classes. Do not use this prefix in

the names of classes that you create.

v Both uppercase and lowercase alphabetic characters are permitted, and names

are case-sensitive.

v Each class name in the RODM data cache is unique. RODM supports a

maximum of 4,079 classes.

Class Name Characteristics with CHARACTER_VALIDATION(NO)

When CHARACTER_VALIDATION(NO) is coded in EKGCUST, valid class names

have the following characteristics:

v The name consists of 1 to 64 characters that conform to the ShortName data type

with the PL/I syntax of CHAR(64) VARYING.

v The first character cannot be the number sign (#) because it is reserved for

MultiSystem Manager.

v Blank characters are not valid.

v Null characters are not valid.

v The EKG_ prefix is reserved for RODM created classes. Do not use this prefix in

the names of classes that you create.

v Both uppercase and lowercase alphabetic characters are permitted, and names

are case-sensitive.

v Each class name in the RODM data cache is unique. RODM supports a

maximum of 4,079 classes.

System-Defined Classes

When RODM is cold started, RODM initialization occurs and the class definitions

are created. This data model provides the starting point for all RODM classes and

objects. These system-defined classes enable users to access information about their

application and about RODM itself. Figure 41 shows the RODM system-defined

classes and their hierarchy.

 RODM has the following system-defined classes:

UniversalClass

The root of the inheritance tree structure of the RODM data cache

EKG_SystemDataParent

The system data parent class, the parent of all RODM predefined system

classes

EKG NotificationQueueEKG System EKG User EKG Method

EKG SystemDataParent

UniversalClass

Figure 41. RODM System-Defined Classes

RODM Classes

196 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_System

The system object class, all the RODM system data created by RODM

when you start RODM

EKG_User

The user object class, the fields and methods that RODM creates when an

application connects to RODM

EKG_NotificationQueue

The notification queue object class, the fields and methods that RODM

creates when an application creates a notification queue

EKG_Method

The method object class, the fields and methods that RODM creates when

you install a method

The following six sections describe the six RODM system-defined classes.

Information, which is common to all six classes, includes the following:

v The fields that are created by RODM and can be accessed by application

programs and methods.

v The subfields that are created by RODM on system-defined fields. User

applications cannot add subfields to fields of system-defined classes. You can

add notification subscriptions to the specified fields using the

EKG_AddNotifySubscription function.

v The specification of the notify subfield identifies the fields to which an

application can subscribe for notification. RODM notifies each application which

has subscribed to a field when the value of the field changes.

v Applications can change write-access fields only.

v Applications can change values in the fields of objects only.

UniversalClass

UniversalClass is the RODM universal class, the root of the hierarchy of RODM

classes. All classes and objects are descendents of the universal class. Each class

and object in RODM inherits the fields of the UniversalClass. The contents of these

fields are not inherited, just the field definitions.

The UniversalClass has no parent.

Table 23 describes the fields of UniversalClass, the access for each field, the data

type of the field, and the subfields defined on each field.

 Table 23. UniversalClass Fields

Field Name Access Data Type Query Change Notify Time

stamp

MyName Read ObjectName or

ShortName

X

MyID Read ObjectID or

ClassID

X

MyPrimaryParentName Read ShortName X

MyPrimaryParentID Read ClassID X

WhatIAm Read Enumerated

Integer

X X

MyClassChildren Read ClassIDList X X

MyObjectChildren Read ObjectIDList X X

RODM Classes

Chapter 9. Understanding RODM Concepts 197

The UniversalClass fields are:

MyName

The name of the object or class. The data type of this field is ObjectName

when the field is created for an object, and ShortName when the field is

created for a class. You supply the class name or object name when you create

the class or object.

MyID

The numerical identifier of the object or class assigned by RODM. When you

create a class or object in RODM, you supply RODM with the name of the

class or object. RODM then assigns a numerical identifier to the class or object.

It is more efficient to refer to a class by its class ID and to refer to an object by

its object ID than it is to refer to them by their names.

MyPrimaryParentName

The name of the class of this object, or the name of the parent class of this

class

MyPrimaryParentID

The ID of the class of this object, or the ID of the parent class of this class

WhatIAm

This field indicates the type of object or class. The values that are valid follow:

Value Meaning

1 Object

2 Class with no children

3 Class with object children

4 Class with class children

5 Class with class and object children

MyClassChildren

A list of the class children of this class, which is valid when the value of the

WhatIAm field is 4 or 5. This field is set to the null value when the class has

no class children.

MyObjectChildren

A list of the object children of this class, which is valid when the value of the

WhatIAm field is 3 or 5. This field is set to the null value when the class has

no object children.

EKG_SystemDataParent Class

EKG_SystemDataParent is the parent class of all RODM system data.

The EKG_SystemDataParent class provides a named parent for all of the system

data classes and objects that RODM creates. It separates the system-defined classes

from all other classes defined under the UniversalClass.

The parent of the EKG_SystemDataParent is the UniversalClass.

SystemDataParent inherits all of its fields from the UniversalClass. All fields in

EKG_SystemDataParent are read access only.

EKG_System Class

The EKG_System class is a child of the EKG_SystemDataParent class and contains

all of RODM’s system data.

At cold start, RODM creates the EKG_System class and one object of the

EKG_System class. The object contains system data for this RODM.

RODM Classes

198 Resource Object Data Manager and GMFHS Programmer’s Guide

When RODM is warm started, RODM updates most of the EKG_System fields. The

EKG_TransSegment and EKG_WindowSize fields retain the values they contained

at the last checkpoint. Any user-defined fields or subscriptions you add to this

class also retain their values from the last checkpoint.

Initial values for some of the fields in EKG_System are read from the RODM

customization file when RODM is started. Refer to the IBM Tivoli NetView for

z/OS Administration Reference for information about the RODM customization file.

Table 24 describes the fields of the EKG_System class, the access for each field, the

data type, and the subfields for each field.

 Table 24. EKG_System Fields

Field Name Access Data Type Query Change Notify Time

stamp

EKG_Name Read CharVar X

EKG_APIVersion Read Integer

EKG_ReleaseID Read CharVar

EKG_ExternalLogState Write Enumerated

Integer

 X X

EKG_LastCheckpointID Read TransID X X

EKG_LastCheckpointResult Read SelfDefining X X

EKG_LastAsyncError Read AnonymousVar X

EKG_AsyncTasks Read Integer

EKG_ConcurrentUsers Read Integer

EKG_PLI_ISA Read Integer

EKG_SSBChain Read Integer

EKG_TransSegment Read Integer

EKG_WindowSize Read Integer

The field definitions are:

EKG_Name

RODM name. This field contains the name of this RODM. RODM sets the

timestamp subfield of this field to the time at which RODM was started.

EKG_APIVersion

The API version. This field contains the latest API level supported by this

RODM.

EKG_ReleaseID

The release level. For service, RODM generates a string that identifies the

version and release in the form product_acronym version release. The current

value of this field is RODMN530. The value RODMN530 indicates Tivoli NetView for

z/OS V5R3.

EKG_ExternalLogState

The administrative state (log or no log) for external logging. You can

dynamically control logging to the RODM log by changing this field. Valid

values are:

Value Meaning

1 Log

2 No log

RODM Classes

Chapter 9. Understanding RODM Concepts 199

|

This logging applies only to the external file data set. When the external log is

full, RODM automatically switches to the secondary log if one was allocated.

Otherwise, RODM overwrites the primary log.

EKG_LastCheckpointID

The transaction ID of the last successful checkpoint operation. User

applications can subscribe to this field for successful checkpoint notification

because this field is only updated on a successful checkpoint. Applications can

query the timestamp subfield of this field for the time of the last successful

checkpoint. During warm start operation, RODM initializes this field to the last

transaction ID contained in the checkpoint files from before the warm start.

EKG_LastCheckpointResult

A SelfDefining value as shown in Table 25 that indicates the status and a

transaction ID for the last checkpoint attempt, including canceled checkpoints.

 If the checkpoint is requested by a checkpoint MODIFY command, RODM

updates this field with the current transaction ID. Otherwise, the transaction ID

is that of the requesting User API.

 User applications can subscribe to the EKG_LastCheckpointResult system field

for the notification of checkpoint attempt completions. Applications can query

the field for the return_code and reason_code to determine success, and if

unsuccessful the reason for failure. Applications can also query the timestamp

subfield of this field for the time of the last checkpoint attempt.

 Table 25. EKG_LastCheckpointResult System Field

Offset Length Type Use Parameter

000 2 Integer — Length of SelfDefining

002 2 Integer — Data type identifier

004 4 Integer Out Return_code

008 2 Integer — Data type identifier

010 4 Integer Out Reason_code

014 2 Integer — Data type identifier

016 8 TransID Out Transaction_ID

EKG_LastAsyncError

The last asynchronous error that occurred in RODM. Applications can

subscribe to this field for notification of any asynchronous error occurring

within RODM. When an asynchronous error occurs, RODM puts a copy of the

log record created for the error into this field. RODM might or might not

actually write the record to the RODM log.

 An asynchronous error is an error in a RODM function or method which is

running asynchronously. Functions which are executed using the

EKG_MessageTriggeredAction function run asynchronously. Methods can also

run asynchronously.

 RODM also defines an EKG_LastAsyncError field on the EKG_User class.

EKG_LastAsyncError on EKG_System contains the last error for any user of

RODM. EKG_LastAsyncError on EKG_User contains the last error for the user

of RODM defined by a particular object under EKG_User.

EKG_AsyncTasks

Maximum number of asynchronous tasks. This field specifies the maximum

number of asynchronous tasks that can be active concurrently.

RODM Classes

200 Resource Object Data Manager and GMFHS Programmer’s Guide

This field is filled in from the ASYNC_TASKS operand in the RODM

customization file at warm start and at cold start.

EKG_ConcurrentUsers

Maximum number of concurrent users. This field specifies the maximum

number of users that can have an active transaction concurrently executing

within the RODM address space.

 This field is filled in from the CONCURRENT_USERS operand in the RODM

customization file at warm start and at cold start.

EKG_PLI_ISA

PL/I initial storage area. This field specifies the size of the initial storage area

preallocated for each PL/I environment.

 This field is filled in from the PLI_ISA operand in the RODM customization

file at warm start and at cold start.

EKG_SSBChain

SSB chain size. This field specifies the number of same-name system status

blocks (SSBs) that can exist concurrently. These entries contain RODM

activation records.

 This field is filled in from the SSB_CHAIN operand in the RODM

customization file at warm start and at cold start.

EKG_TransSegment

Translation segment size. This field specifies the size of the RODM translation

segment in millions of bytes. The translation segment is used to store internal

RODM tables.

 This field is filled in from the TRANS_SEGMENT operand in the RODM

customization file at cold start only.

EKG_WindowSize

Data window size. This field specifies the size of the RODM data windows.

The data windows are used for storing RODM data.

 This field is filled in from the WINDOW_SIZE operand in the RODM

customization file at cold start only.

EKG_User Class

EKG_User is the class of application programs that use RODM. This class defines

the fields of the objects that represent application programs connected to RODM.

An application can query its EKG_User object to get information about itself.

The parent of EKG_User is EKG_SystemDataParent.

When an application connects to RODM, RODM creates an object of the EKG_User

class to represent that application. When the application disconnects from RODM,

RODM deletes the object. If an application has notification queues or subscriptions

defined, RODM deletes the object in EKG_User based on the value of the

EKG_StopMode field of that object.

Initial values for some of the fields in EKG_User are read from the RODM

customization file when RODM is started. Refer to the IBM Tivoli NetView for

z/OS Administration Reference for information about the RODM customization file.

At warm start, RODM sets the status of all EKG_User objects to disconnected.

RODM then deletes any objects that do not have notification queues.

RODM Classes

Chapter 9. Understanding RODM Concepts 201

An EKG_User object inherits the fields of the UniversalClass through the

EKG_SystemDataParent class and the EKG_User class. Query the

MyObjectChildren field of the EKG_User class to get a list of applications

connected to RODM.

Table 26 describes the fields of EKG_User class, the access for each field, the data

type, and the subfields defined for each field.

 Table 26. EKG_User Fields

Field Name Access Data Type Query Change Notify Time

stamp

EKG_Status Read Enumerated

Integer

 X X

EKG_StopMode Write Enumerated

Integer

 X

EKG_LastAsyncError Read AnonymousVar X

EKG_Uses_Q Read ObjectLinkList

EKG_RBOverflowAction Write Enumerated

Integer

 X

EKG_LogLevel Write Integer

EKG_MLogLevel Write Integer

EKG_MTraceType Write 4-Byte Integer

The field definitions are:

EKG_Status

The current user application status. RODM updates the timestamp subfield of

EKG_Status each time status changes. Query the timestamp subfield to

determine the time of connection to RODM. Valid values are:

Value Meaning

1 Connected

2 Disconnected

3 Unknown

EKG_StopMode

The stop mode. This field specifies the processing that RODM does for a user

application when the user application disconnects. The default action is to

purge all notification queues and all subscriptions. Your application programs

can change the setting of this field to specify that RODM purge only the

notification queues or to purge nothing. Valid values are:

Value Meaning

1 Purge notification queues and subscriptions

2 Purge notification queue elements only

3 Do not purge notification queues or subscriptions

If one of your applications disconnects with a setting that preserves queues,

subscriptions, or both, and then some event changes this field while your

application is disconnected, the new setting of the field has immediate effect.

But if the new setting is to preserve the queues, the subscriptions, or both, the

new setting cannot take effect until your application reconnects and establishes

new queues and subscriptions.

 Purging queues without purging subscriptions causes RODM to purge only the

data associated with notification queues. RODM retains the

RODM Classes

202 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_NotificationQueue object. If your application or RODM purges all of the

subscriptions for a specified queue, RODM also purges the

EKG_NotificationQueue object for that queue.

EKG_LastAsyncError

Last asynchronous error. Users can subscribe to this field for notification of any

asynchronous error associated with transactions that this user ID has initiated.

When RODM logs an error, it writes a copy of the error record into this field,

even if it does not write the error record to the RODM log. RODM then

notifies the users subscribed to this field.

 RODM also defines an EKG_LastAsyncError field on the EKG_System class.

EKG_LastAsyncError on EKG_System contains the last error for any user of

RODM. EKG_LastAsyncError on EKG_User contains the last error for the user

of RODM defined by a particular object under EKG_User.

EKG_Uses_Q

A list of links to notification queue objects. This list contains a link for each

queue specified by a notification subscription for this user. RODM creates the

links in this list in response to subscription requests. The link is between the

EKG_Uses_Q field of the User object and the EKG_UsedBy field of the

EKG_NotificationQueue object.

EKG_RBOverflowAction

Response block overflow action control. Valid values are:

Value Meaning

1 Save

2 Discard

If your application sets the value of this field to save, RODM automatically

collects response block overflow data in a buffer.Your application then must

get the overflow data from the buffer before it can query other data. If your

application sets the value of this field to discard, RODM discards any overflow

data. If the value of this field is changed from save to discard, RODM

immediately discards all collected overflow data associated with the

User_appl_ID. The default value for this field is save.

 If a single user is running concurrent transactions through multitasking and

one thread causes a response block overflow and a different thread changes

this field to discard, the transaction causing the overflow might receive a

return code indicating the overflow. However, the overflow data is discarded.

EKG_LogLevel

Logging level control for user API functions. After the processing of a

transaction is complete, this parameter determines whether or not to write a

log record to record this transaction. The basis of the log control is the

transaction return code. If the transaction return code is greater than or equal

to EKG_LogLevel, RODM writes a log record. Your application can override

the default value for the class by specifying a new value in this field. If your

application specifies a value of 0, RODM writes for that application a log

record of all transactions across the user API.

 RODM reads the customization file to determine the default value to assign to

the class level field. If the customization file contains a LOG_LEVEL parameter,

the value of that parameter determines the class default value. If the

customization file does not contain a value for LOG_LEVEL, the default value

of 8 is used.

EKG_MLogLevel

Specifies the log level for tracing method API function calls. RODM generates

RODM Classes

Chapter 9. Understanding RODM Concepts 203

a log record when the return code from a method API function call is greater

than or equal to the value of EKG_MLogLevel.

 This field is filled in from the MLOG_LEVEL operand in the RODM

customization file at warm start and at cold start.

EKG_MTraceType

Specifies whether RODM traces method entry and exit and specifies the type

of methods RODM traces. This field is filled in from the MTRACE_TYPE

operand in the RODM customization file at warm start and at cold start.

 The first three bytes of EKG_MTraceType are always X'000000'. The right-hand

byte is used as seven flag bits:

Bit Meaning if bit is set

1... Trace object deletion methods

.1.. Trace object independent methods

..1. Trace named methods

...1 Trace notify methods

.... 1... Trace change methods

.... .1.. Trace query methods

.... ..1. Trace method exit and storage

.... ...1 Trace method entry and storage

 You can set any combination of these 7 bits. If the trace method entry and trace

method exit bits are both zero, method tracing is inactive. If all bits are zero,

all tracing is inactive.

 RODM generates a log record when method entry or method exit tracing is

specified.

 The EKG_MTraceFlag field for each method object, in addition to the

corresponding method-type bit in EKG_MTraceType, specifies whether a

method is enabled for tracing. If either the corresponding method-type bit in

EKG_MTraceType is set or the EKG_MTraceFlag field in the associated method

object is one, the method is traced.

EKG_NotificationQueue Class

EKG_NotificationQueue is the class of notification queues. Notification queues are

used for the RODM notification process. See “RODM Notification Process” on page

318 for more information about notification.

The parent is EKG_SystemDataParent.

An application or method creates a notification queue by creating an object of the

EKG_NotificationQueue class. The EKG_CreateObject function directs RODM to

create the notification queue object and assign a user specified event control block

(ECB) to the queue object. Once the queue is created, notification methods can

place notification blocks on the queue. Applications and methods can delete

notification queues by deleting the EKG_NotificationQueue object using the

EKG_DeleteObject function. When it creates the queue, RODM automatically

qualifies the name of any notification queue with the User_appl_ID from the access

block. Each notification queue created with a particular User_appl_ID must be

unique.

Table 27 on page 205 describes the fields of the EKG_NotificationQueue class, the

access for each field, the data type, and the subfields defined for each field.

RODM Classes

204 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 27. EKG_NotificationQueue Fields

Field Name Access Data Type Query Change Notify Time

stamp

EKG_Status Write Enumerated Smallint X X

EKG_ECBAddress Write ECBAddress X

EKG_ECBPostedStatus Read Enumerated Smallint X

EKG_UsedBy Read ObjectLink

EKG_SubscribedFromClass Read ClassLinkList

EKG_SubscribedFromObject Read ObjectLinkList

EKG_Maximum_Q_Entries Write Integer X

EKG_MessagesOnQueue Read Integer

EKG_SubscribedForDelete Read ObjectIDList

The field definitions are:

EKG_Status

The status of the notification queue. Valid values are:

Value Meaning

0 Inactive

1 Active

Active status causes RODM to attach notifications to this queue regardless of

the ECB value. If a queue accumulates entries when no ECB has been

established, RODM posts the ECB as soon as the application sets an ECB

value.

 Inactive status causes RODM to not attach notifications even if the ECB is

already set. This field has a default value of active except in the following

situation. User_A creates a notification queue for User_B and there is no user

object for User_B. RODM creates the required objects, sets EKG_Status in the

NotificationQueue object to inactive, and sets the EKG_Status of the user object

to disconnected.

EKG_ECBAddress

The address of an ECB. This is the address of the optional ECB that is posted

when a notification block is added to this notification queue. The ECB is

created in the address space of the user application that is using this

notification queue.

EKG_ECBPostedStatus

Posted status. Valid values are:

Value Meaning

0 False

1 True

This field is set to true if the application has been posted and the queue is not

empty. This field is set to false when the queue is empty.

EKG_UsedBy

This field specifies the user that created this notification queue.

EKG_SubscribedFromClass

This field is a list of classes that have a subscription to this notification queue.

The field is a one-way link.

RODM Classes

Chapter 9. Understanding RODM Concepts 205

The field has a data type of ClassLinkList; each list item consists of a ClassID

and a FieldID. The field referenced by the FieldID contains subscription

information in the form of a RecipientSpec data type. The RecipientSpec data

type contains an 8-byte SubscribeID that your application can use to locate the

notification queue object. For information about these data types, see “Abstract

Data Type Reference” on page 223.

EKG_SubscribedFromObject

This field is a list of objects that have a subscription to this notification queue.

The field is a one-way link.

 The field has a data type of ObjectLinkList; each list item consists of an

ObjectID and a FieldID. The field referenced by the FieldID contains

subscription information in the form of the RecipientSpec data type. The

RecipientSpec data type contains an 8-byte SubscribeID that your application

can use to locate the notification queue object. For information about these

data types, see “Abstract Data Type Reference” on page 223.

EKG_MessagesOnQueue

The number of messages currently on the EKG_NotificationQueue.

EKG_Maximum_Q_Entries

The maximum number of entries permitted on the EKG_NotificationQueue.

You can use this field to limit the amount of RODM storage used for unread

notifications. When the number of messages on the EKG_NotificationQueue

reaches the value of EKG_Maximum_Q_Entries, RODM does not place any

more messages on the queue. RODM issues return code 4 with reason code 158

to the notification method which explains that the message cannot be placed

on the queue.

 The default setting of this field is -1, which indicates no limit.

EKG_SubscribedForDelete

This field is a list of objects that have an object-deletion subscription to this

notification queue.

 The field has a data type of ObjectIDList; each list item consists of an ObjectID.

For information about these data types, see “Abstract Data Type Reference” on

page 223.

EKG_Method Class

EKG_Method is the class of all RODM methods.

The parent of EKG_Method class is EKG_SystemDataParent class.

Before your application program can refer to a method in a function request or

trigger a method, the method must:

v Have an object of the EKG_Method class that represents it

v Be present in memory or you must load it into memory through a method

installation process

If RODM cannot find or load the method, it generates an error return code. For

more information about installing methods, see “Installing and Freeing Methods”

on page 356.

When a method object is created, that method name is made executable for both

user API and method API functions. A method has different available functions or

different abilities to access data depending on whether it is an object-specific

method or an object-independent method. You can write a method that is both an

object-specific method and an object-independent method.

RODM Classes

206 Resource Object Data Manager and GMFHS Programmer’s Guide

The object name of the EKG_Method object you create is the same as the name of

the method you are installing. You can identify all installed methods by querying

the EKG_Method class using the EKG_QueryEntityStructure function.

The NetView-supplied null method, NullMeth, is not installed by user creation of

an object. This method is built into RODM.

You also use an object of the RODM Method class during the refreshing of the

method. Refreshing is accomplished by using the EKG_TriggerNamedMethod

function to invoke the method indicated by the EKG_Refresh field in the method

object of the method which is to be refreshed. Refreshing deletes the old copy of

the method from memory and loads a new copy of the method for all future

references.

You can create or delete all fields of EKG_Method.

Table 28 describes the fields of EKG_Method class, the access for each field, the

data type, and the applicable operations.

 Table 28. EKG_Method Fields

Field Name Access Data Type Query Change Notify Time

stamp

EKG_InstallerID Read CharVar X

EKG_UsageCount Read Integer

EKG_Refresh Read MethodSpec

EKG_MTraceFlag Write Integer X

The field definitions are:

EKG_InstallerID

The user ID associated with the installation of the method. The timestamp

subfield indicates when the method was installed.

EKG_UsageCount

The current number of references of this method from notify, change, and

query subfields, and from value subfields used for named methods. When you

delete an object of the EKG_Method class, the usage count, EKG_UsageCount,

must be zero. When you refresh an object of the EKG_Method class, there is no

restriction on value of EKG_UsageCount.

EKG_Refresh

The name of an internal RODM refresh method that must be invoked to

refresh the method represented by the method object. If an application queries

the EKG_Refresh value subfield, RODM returns a null value for the Object_ID

field of the MethodSpec data.

 When the refresh method is triggered using the EKG_TriggerNamedMethod

API, RODM loads a new copy of the method from the method library. The

Method_parms field of the EKG_TriggerNamedMethod function block is not

used by the refresh method.

 A method can be refreshed even though it is currently referenced in notify,

change, or query subfields. The refresh operation will wait until the method is

not executing before loading the new copy of the method. Subsequent

executions of the method are suspended until the new copy has been loaded.

RODM Classes

Chapter 9. Understanding RODM Concepts 207

EKG_MTraceFlag

Specific method trace enable flag. This field specifies if the method is enabled

for tracing. Valid values are:

Value Meaning

0 Defers the trace decision to EKG_MTraceType.

1 Ensures tracing.

The initial value is 0.

Tracing must also be enabled by the EKG_MTraceType field in the EKG_User

class before RODM can trace this method.

Deleting an Object of the EKG_Method Class: Deleting a method object checks

whether the specified method is assigned to any field or subfield as a named,

change, query, or notify method. If not, the method is removed from RODM’s

active methods and the corresponding load module can be freed from memory.

If the method is an object-specific method and is referenced by one or more fields,

then it cannot be deleted until all such references are first removed. To remove

these references to an object-specific method prior to deleting a method:

v Change the fields that have a data type of MethodSpec and reference the

object-specific method to the null value (NullMeth) using the EKG_ChangeField

or EKG_ChangeMultipleFields functions.

v Change all subfield that have a data type of MethodSpec and reference the

object-specific method to the null value (NullMeth) using the

EKG_ChangeSubfield function.

v Remove the notification subscriptions for the notification method using the

EKG_DeleteNotifySubscription function.

RODM Objects

Objects are the basic units of data in RODM. They are organized by class and

represented by a name containing up to 254 characters. Objects can represent

real-world objects, such as DASD devices or printers. Objects can also represent

management objects, such as a view on a graphical display, operator access

authority, or an application program. Objects can contain locally defined data or

inherit data from a class.

User applications and object-independent methods can create objects using the

EKG_CreateObject function. You can also create objects using the RODM load

function. When you create an object, you specify the name of the object and the

class to which the object belongs. RODM returns the numerical object identifier of

the new object. The object inherits the public fields that are defined on the class to

which the object belongs.

Object Names

Each RODM object has a character string name in its MyName field called the

object name.

Two objects, each in a separate class, can have the same object name. Each object

can be accessed with the combination of its class name and object name in the

form Class_Name.Object_Name.

RODM system-defined object names are reserved by RODM and cannot be deleted

by the user.

RODM Classes

208 Resource Object Data Manager and GMFHS Programmer’s Guide

RODM assigns an object name to any object you create if you do not specify a

name when you create the object. RODM assigns names of the form EKGddddddd,

where ddddddd ranges from 0000000 to 9999999, starting with EKG0000001. Note

that values in this range are for RODM use only.

If you are creating an object of the EKG_Method class or the

EKG_NotificationQueue class, the object name is limited to 8 characters. For the

EKG_NotificationQueue class, if the user ID and object name are combined to

produce a fully qualified notification queue name in the form

User_appl_ID.object_name, the resulting fully qualified notification queue name is

limited to 17 characters, including the separating period.

The CHARACTER_VALIDATION keyword in EKGCUST specifies what degree of

validity checking RODM performs for characters used in class names (see “Class

Names” on page 195), field names (see “Field Names” on page 210), and object

names.

Object Name Characteristics with

CHARACTER_VALIDATION(YES)

When CHARACTER_VALIDATION(YES), which is the default, is coded in

EKGCUST, valid object names have the following characteristics:

v The name consists of 1 to 254 characters with an abstract data type of

ObjectName that conforms to the PL/I syntax of CHAR(254) VARYING.

v The first character of the string must be alphabetic or numeric. The others, if

any, can be alphabetic, numeric, or any of the special characters: # @ . , : ; ? () ' "

- _ & + % * = < > /

v Both uppercase and lowercase alphabetic characters are permitted, and names

are case-sensitive.

v The EKG_ prefix is reserved for RODM-created classes and objects. Do not use

this prefix in the names of classes or objects that you create.

v EKGxxxxxxx (EKG followed by seven digits) is reserved for RODM use only. Do

not use this format for the names of objects that you create.

v Each object in a class must have a unique object name.

v RODM supports a maximum of 2097135 objects.

Object Name Characteristics with CHARACTER_VALIDATION(NO)

When CHARACTER_VALIDATION(NO) is coded in EKGCUST, valid object names

have the following characteristics:

v The name consists of 1 to 254 characters with an abstract data type of

ObjectName that conforms to the PL/I syntax of CHAR(254) VARYING.

v The first character cannot be the number sign (#) because it is reserved for

MultiSystem Manager.

v Blank characters are not valid.

v Null characters are not valid.

v Both uppercase and lowercase alphabetic characters are permitted, and names

are case-sensitive.

v The EKG_ prefix is reserved for RODM-created classes and objects. Do not use

this prefix in the names of classes or objects that you create.

v EKGxxxxxxx (EKG followed by seven digits) is reserved for RODM use only. Do

not use this format for the names of objects that you create.

v Each object in a class must have a unique object name.

v RODM supports a maximum of 2097135 objects.

RODM Objects

Chapter 9. Understanding RODM Concepts 209

|

|

Object Identifiers

To minimize access time, RODM supports another approach to accessing an object.

Any object in any class can be accessed in RODM based solely on the ObjectID of

the object. RODM provides functions that convert the fully qualified "class

name.object name" to an ObjectID, and convert the ObjectID to the fully qualified

"class name.object name".

You can locate objects using any one of the specifications listed below. These

specifications are listed in decreasing order of search performance.

1. ObjectID

2. ClassID plus ObjectName

3. ClassName plus ObjectName

RODM Fields

All classes consist of fields that are either public or private, but not both. They

must have a field name, and RODM assigns a field identifier. RODM supports a

maximum of 4079 fields.

Fields within objects can contain information about the relationships among objects

defined in RODM. You can determine these relationships by examining RODM

classes and objects.

Field Names

Each RODM field has a character string name, called the field name. RODM

system-defined field names are reserved by RODM and cannot be deleted by the

user. See “System-Defined Fields” on page 211 for a list of the RODM

system-defined fields.

The CHARACTER_VALIDATION keyword in EKGCUST specifies what degree of

validity checking RODM performs for characters used in object names (see “Object

Names” on page 208), class names (see “Class Names” on page 195), and field

names.

Field Name Characteristics with CHARACTER_VALIDATION(YES)

When CHARACTER_VALIDATION(YES), which is the default, is coded in

EKGCUST, valid field names have the following characteristics:

v The name consists of 1 to 64 characters with a data type of ShortName that

conforms to the PL/I syntax of CHAR(64) VARYING.

v The first character of the string must be alphabetic or numeric. The others, if

any, can be alphabetic, numeric, the break character (_), the commercial at sign

(@), the number sign (#), or the period (.).

v You can use both uppercase and lowercase alphabetic characters. Field names

are case-sensitive under RODM, regardless of whether your application

translates them into a single case.

Field Name Characteristics with CHARACTER_VALIDATION(NO)

When CHARACTER_VALIDATION(NO) is coded in EKGCUST, valid field names

have the following characteristics:

v The name consists of 1 to 64 characters with a data type of ShortName that

conforms to the PL/I syntax of CHAR(64) VARYING.

v The first character cannot be the number sign (#) because it is reserved for

MultiSystem Manager.

v Blank characters are not valid.

RODM Objects

210 Resource Object Data Manager and GMFHS Programmer’s Guide

v Null characters are not valid.

v You can use both uppercase and lowercase alphabetic characters. Field names

are case-sensitive, regardless of whether your application translates them into a

single case.

Field Identifiers

RODM assigns a 4-byte field identifier to each field. A field identifier is a symbolic

representation of the name of a field. You can assign it and compare it to other

field IDs. You can use a field ID instead of a field name to address the field

through the user API. Using a field ID to address a field through the API is more

efficient than using the field name. RODM includes the EKG_QueryFieldName

function to convert a FieldID to a field name and the EKG_QueryFieldID function

to convert a field name to a FieldID.

RODM-generated internal identifiers exist because they are faster to process than

are character string names. These identifiers are always given preference over

character string names in resolving which field is to be addressed.

For example, if both the Field_ID and the Field_name_length parameters are not

null in a field access information block, the Field_ID is used, and the

Field_name_ptr parameter is ignored. RODM does not check that a supplied

Field_ID is consistent with a supplied field name. See Table 37 on page 313 for the

format and parameters in a field access information block.

Field identifiers differentiate field names from each other without regard to the

class or object where the field is located, a field identifier obtained for a field of

one class or object can be reused for any field with the identical name regardless of

the class or object. A field name does not contain any information about the class

or object with which it is associated; however, the classes and objects include the

information of what fields they contain.

System-Defined Fields

System-defined fields are fields that are predefined by RODM and must exist for

every class and object. These fields and their values are never inherited; RODM

creates the fields and sets their values when it creates or changes the object or class

to which they belong. Application programs and methods cannot change the

contents of these fields through the user API or the method API.

The names of the system-defined fields are reserved names in RODM. You cannot

define other fields in classes using these same names.

Of the system-defined fields, only the MyClassChildren, MyObjectChildren and

WhatIAm fields change during RODM execution. Therefore, these are the only

system-defined fields for which a notify subfield can be created.

Note: Notification methods assigned to these fields to detect deletions of class or

object children cannot access the deleted class or object. RODM executes the

notification method after it completes the delete process.

Every RODM class and object contains the following system-defined fields:

MyPrimaryParentID

The class ID of the parent class in the primary hierarchy. For objects, this

field contains the class ID of the class of the object. For classes (other than

the universal-class), this field contains the class ID of the parent class in

RODM Fields

Chapter 9. Understanding RODM Concepts 211

the primary hierarchy. The universal-class is the only class that has no

parent, and therefore, a null MyPrimaryParentID field.

 The data type of this field is ClassID.

MyPrimaryParentName

The name of the parent class in the primary hierarchy.

 The data type of this field is ShortName.

MyID The ID of the object or class upon which the field resides. For objects, the

contents of MyID is the object ID. For classes, the contents of MyID is the

class ID.

 The data type of this field is ObjectID for objects and ClassID for classes.

MyName

The full name of the current object or class. For objects, this field contains

the object name. For classes, this field contains the class name.

 The data type of this field is ObjectName for objects and ShortName for

classes.

WhatIAm

The object or class type.

 The data type for this field is Integer and has the following values:

1 An object

2 A class with no children

3 A class with object children

4 A class with class children

5 A class with both class children and object children

Every RODM class contains the following additional system-defined fields:

MyClassChildren

A list of class IDs of the class children of this class. Each entry in the list is

the class ID of one child class.

 The data type of this field is ClassIDList.

 When a class is created, the value of this field is set to null. Thereafter,

entries are added, set, and deleted from this list by the creation and

deletion of classes that are specified at creation as having this class as

primary parent.

MyObjectChildren

A list of object IDs of the object children of this class. Each entry in the list

is the object ID of one child object.

 Data type is ObjectIDList.

 When a class is created, the value of this field is set to null. Thereafter,

entries are added, set, and deleted from this list by the creation and

deletion of objects that are specified at creation as having this class as

primary parent.

The MyClassChildren and MyObjectChildren fields are never created for objects.

RODM Fields

212 Resource Object Data Manager and GMFHS Programmer’s Guide

RODM Subfields

The RODM data types, defined in “Abstract Data Type Reference” on page 223,

restrict the values that RODM considers valid for a field. But network management

applications require more information about a field than just its value. A field must

contain several pieces of data or logic to be useful in a data cache that stores both

persistent and volatile information.

When a field is created, RODM automatically creates a value subfield for the field.

If no other subfields are explicitly defined for the field, any reference to the field is

the same as a reference to the value subfield of the field.

Suppose that the dominant value to be preserved in the

number_of_waiting_print_jobs field of a printer object is the number of print jobs

waiting to be printed. This value is volatile and the contents of this field are of

little use if the value is several hours old. Suppose also that you can save the

number of jobs waiting to be printed and also the time at which the value was

obtained. You can now use this timestamp to invalidate the data that is old and

indicate that current data is required.

A time stamp alone does not solve the problem. When an application requests the

contents of the number_of_waiting_print_jobs field, there must be some logic in place

to compare the contents of the timestamp with the current time and take an

appropriate action based on the age of the data in the field. The design of RODM

permits a field to be composed of several subfields. These subfields can refer to

methods that can be set to automatically do such things as check time stamps

before responding to a query.

There is a fixed list of subfields that can appear in a field. All subfields are

optional except for the value subfield, which contains the data stored in the field

and so must exist if the field exists. The following list contains each kind of

subfield and its intended use.

The value and prev_val subfields have the same data type as the corresponding

field. All other subfields have predetermined data types that are set based on the

kind of subfield. The data type of each subfield is specified in the following list

along with a description of each subfield. When a subfield is created, RODM

assigns it a null value based on the subfield data type requirements.

RODM defines the following subfields:

Value (Required)

The actual data associated with the field. The value is defined in terms of

RODM abstract data types, such as Integer, CharVar, or Floating.

 The data type must be one of those defined in “Abstract Data Type Reference”

on page 223 and is identical to the data type of the field. The value subfield is

the only system-defined subfield of a field. All other subfields are optional

with their presence obtained by a transaction against the field of the class

through the user API.

Query

A method specification (data type MethodSpec) for a query method.

v Querying a field invokes a query method if this subfield has a value.

v A query method can modify the queried data from a field.

The query subfield contains a method that is invoked before the field contents

are returned to a caller in response to a query of the field. If a query method is

RODM Subfields

Chapter 9. Understanding RODM Concepts 213

defined, the query method is responsible for returning a value in response to

the query. If a query method does not return a value in response to the query,

RODM returns one.

 The data type of a query subfield is MethodSpec. The MethodSpec type

includes the object identifier of the method to be invoked, plus a list of

parameters to be passed to the method.

 The parameters indicate fields of the object that the user has set up to be used

by the method. The parameters in those fields are most frequently set when

the method is installed in the subfield. However, some or all of those

parameters can be set by assigning values to the corresponding fields

immediately before the query transaction that triggers the query method is

requested.

Change

A method specification for a change method.

v A change field request invokes a change method if this subfield has a value.

v A change method modifies the data in the field on which it is defined.

The change subfield is a method that is invoked to change the contents of a

field as requested by an EKG_ChangeField or EKG_ChangeMultipleFields

function request, either from a user outside of RODM, or by another method.

If a field receives a change request and has a change subfield, the change

method must make the change to the value of field; RODM does not change

the value of a field that has a change subfield defined.

 The data type of a change subfield is MethodSpec. The subfield includes the ID

of a method and the locations in fields of the object where parameters for the

method are to be found.

 The change subfield cannot exist for any system-defined field, such as

MyName, MyID, MyPrimaryParentID, MyPrimaryParentName, WhatIAm,

MyClassChildren, and MyObjectChildren.

Notify

A method specification for one or a list of notification methods.

v Changing a field invokes a notification method if this subfield has value.

RODM invokes the notification method after the change in the field is

complete.

v A notify method can notify subscribed users of changes to fields.

The notify subfield contains a list of methods and associated parameters. Each

method in the list is invoked one at a time after every change in the value of

the field as requested by a change request from a user. Methods in the list are

intended to notify other objects or to notify RODM users when changes in

state take place. The data type of each entry in the list is SubscriptSpec.

 The data type of the subfield is SubscriptSpecList. A method name, parameters

for the method from object fields, and a description of who is to be notified are

included in each entry. When the method is invoked, the logic in the method

decides, based on the data in the object, whether to notify anyone. The method

can notify the original subscriber or it can be programmed to notify another

application or to submit transactions to other RODM objects. Notification

methods can submit transactions, other than the EKG_QueryObjectName

function, to other RODM objects only through the

EKG_MessageTriggeredAction method API function.

RODM Subfields

214 Resource Object Data Manager and GMFHS Programmer’s Guide

Timestamp

The time at which the value subfield of the field was last changed. RODM

manages this subfield. This subfield is read-only. The data type of the subfield

is TimeStamp.

 The timestamp subfield is created and deleted using the EKG_CreateSubfield

and EKG_DeleteSubfield functions. When it is defined, RODM updates the

timestamp subfield for every successful change transaction against the field,

including when the new value is the same as the old value. The timestamp

subfield is always associated with the value subfield of the same field. A

change transaction against the value subfield, rather than against the field,

does not cause the timestamp subfield to be updated. If you issue the

EKG_RevertToInherited function and the field contains a local value and

corresponding time-stamp, the time-stamp subfield is also reverted to its

inherited value.

Prev_val

A copy of the previous contents of the value subfield. RODM manages this

subfield. This subfield is read-only. The data type of this subfield is the same

as the data type of the value subfield. You cannot create a prev_val subfield for

system-defined fields. See “Data Types for Subfields” for a list of abstract data

types that the prev_val field can contain.

 The prev_val subfield is created and deleted using the EKG_CreateSubfield

and EKG_DeleteSubfield functions. When it is defined, RODM updates the

prev_val subfield for every successful change transaction against the field,

including when the new value is the same as the old value. The prev_val

subfield is always associated with the value subfield of the same field. A

change transaction against the value subfield, rather than against the field,

does not cause the prev_val subfield to be updated. If you issue the

EKG_RevertToInherited function and the field contains a local value and

corresponding prev_val, the prev_val subfield is also reverted to its inherited

value.

Data Types for Subfields

Certain RODM abstract data types can be used for each subfield. The abstract data

types are defined in “Abstract Data Type Reference” on page 223.

Subfield Valid Abstract Data Types

Value

v AnonymousVar

v BERVar

v CharVar

v FieldID

v Floating

v GraphicVar

v IndexList

v Integer

v MethodSpec

v ObjectLink

v ObjectLinkList

v SelfDefining

v Smallint

v TimeStamp

Query

v MethodSpec

RODM Subfields

Chapter 9. Understanding RODM Concepts 215

Change

v MethodSpec

Notify

v SubscriptSpecList

Time Stamp

v TimeStamp

Prev_val

v AnonymousVar

v BERVar

v CharVar

v FieldID

v Floating

v GraphicVar

v IndexList

v Integer

v MethodSpec

v SelfDefining

v Smallint

v TimeStamp

Multivalued Fields and Links between Objects

RODM permits the use of multivalued fields to establish the relationships between

objects. Multivalued fields support the creation of one-to-one, one-to-many,

many-to-one, and many-to-many relationships between objects.

Note: The links described in this section are RODM-defined relational links. These

links are defined between two objects in the RODM data cache and must

not be confused with physical links, such as network links, which are

represented by GMFHS-defined link objects.

The EKG_LinkNoTrigger and EKG_LinkTrigger functions enable user applications

and methods to create links between two objects. The EKG_UnlinkNoTrigger and

EKG_UnlinkTrigger functions enable user applications and methods to delete links

between two objects. Use an ObjectLink type field to link to one object. Use an

ObjectLinkList type field to link to one or more objects. An ObjectLink field of one

object always links to an ObjectLink or ObjectLinkList field of another object. An

ObjectLinkList field of one object always links to ObjectLink or ObjectLinkList

fields of other objects.

The reserved data types ObjectID and ObjectIDList are used by RODM for links

between system-defined fields. These system-defined fields, such as the

MyObjectChildren field, are managed by RODM and cannot be changed directly

by user applications or methods.

Figure 42 on page 217 shows single-value links using fields of data type ObjectLink

and a multivalue link using a field of data type ObjectLinkList.

RODM Subfields

216 Resource Object Data Manager and GMFHS Programmer’s Guide

Figure 42 contains three RODM objects. Two of the objects represent host

processors in a network, and the third object is a resource type object which is

used to identify types of objects. Each of the two host objects, NETA.A01MPU and

NETV.B01MPU, has a single-value link to the resource type object. The resource

type object, DUIXC_RTS_HOST, has a multivalue link to each of the two host

objects.

The object NETA.A01MPU has a field named DisplayResourceType, which is data

type ObjectLink. The DisplayResourceType field contains the ObjectID (�I�) of the

object being linked to (�J�), and the FieldID (�L�) of the field being linked to (�M�).

The object NETB.B01MPU also has a field named DisplayResourceType linked to

the field Resource of object DUIXC_RTS_HOST. DisplayResourceType contains the

ObjectID (�K�) of DUIXC_RTS_HOST (�J�) and the FieldID (�N�) of Resources

(�M�).

The object DUIXC_RTS_HOST has the field Resources that is linked to both of the

host objects. The ObjectLinkList field Resources contains the number of objects it is

linked to (�O�). The first list element of Resources contains the ObjectID (�A�) of

object NETA.A01MPU (�B�) and the FieldID (�C�) of field DisplayResourceType

(�D�). The second list element of Resources contains the ObjectID (�E�) of object

NETB.B01MPU (�F�) and the FieldID (�G�) of field DisplayResourceType (�H�).

Object: NETA.A01MPU

Field= My Name

Field= My ID

Field= Display Resource Type

Object: NETB.B01MPU

Field= My Name

Field= My ID

Field= Display Resource Type

Object: DUIXC RTS HOST

Field= My Name

Field= My ID

Field= Resources

Field ID= X'12344321'

Va lue= 2

Type= Object Link List

X'01234567'

X'F7E65432'

X'23456789'

X'F7E65432'

Field ID= X'F7E65432'

Value= X'12345678'

Type= Object Link

X'12344321'

Field ID= X'F7E65432'

Value= X'12345678'

Type= Object Link

X'12344321'

Number of links in list

Field ID= X'00000004'
Value= NETA.A01MPU
Type= Object Name

Field ID= X'00000003'
Value= X'01234567'
Type= Object ID

Field ID= X'00000004'
Value= DUIXC RTS HOST
Type= Object Name

Field ID= X'00000003'
Value= X'12345678'
Type= Object ID

Field ID= X'00000004'
Value= NETB.B01MPU
Type= Object Name

Field ID= X'00000003'
Value= X'23456789'
Type= Object ID

Figure 42. Examples of Links between Objects in RODM

Links between Objects

Chapter 9. Understanding RODM Concepts 217

When you create links using the EKG_LinkNoTrigger or EKG_LinkTrigger

functions, you specify the pair of objects and fields to be linked, and RODM fills in

the ObjectID and FieldID values in both objects. Both objects must exist in RODM

before they can be linked.

Link and Unlink Action Functions

The link and unlink action functions can be invoked by users through the method

API and user API. The EKG_LinkNoTrigger function and the EKG_LinkTrigger

function are used to establish a link between two fields on two objects. The

EKG_UnlinkNoTrigger function and the EKG_UnlinkTrigger function delete a link

between two objects. Each of these functions require two objects and two fields

specified through the Entity_access_info_ptr and Field_access_info_ptr parameters.

The fields must be of data type ObjectLinkList or ObjectLink. See

“EKG_LinkNoTrigger, EKG_LinkTrigger — Link Two Objects” on page 401 and

“EKG_UnlinkNoTrigger, EKG_UnlinkTrigger — Unlink Two Objects ” on page 440

for function block formats and additional details.

Fields that are lists or of type ObjectLink are changed only by link and unlink

actions. For these actions, there are always two fields involved, one at each end of

the link. Change methods can be defined to these fields. These change methods are

triggered by the EKG_LinkTrigger or EKG_UnlinkTrigger functions. The change

methods must set a return code with EKG_SetReturnCode to indicate whether the

link or unlink can proceed.

v A nonzero return code prevents the link or unlink.

v If no change method exists on one (or both) of the fields, RODM assumes the

return code is zero and the link or unlink proceeds.

v If a change method exists, but it does not set the return code explicitly, RODM

assumes the return code is zero and the link or unlink proceeds.

The change methods are triggered in the order in which the fields appear in the

function block.

To be symmetric, the RODM program invokes the appropriate notify methods at

both ends of a link when a link or unlink action is requested and the subfields

exist at both ends of the link. If two methods are invoked, the one invoked first is

the top field specified in the function block that specifies the desired action. For

notify methods, first one list is processed, then the other list is processed. If the

link or unlink is prevented by the nonzero return code, the notify methods are not

triggered.

Link and unlink action functions are applicable only in linking two objects

together. It is not possible, using the link action function, to link a class to another

class or object. An object inherits the existence of fields of type ObjectLink from its

class, but an object can only inherit the null value from its class for these fields.

Likewise, in the hierarchy of classes, the existence of fields of type ObjectLink is

inherited by children classes, but values in all such fields are null.

If the type of a field to be linked is ObjectLinkList, the link action creates a new

entry in the list and sets that entry to contain the ObjectID and FieldID of the other

object-field pair. Links constructed for fields of data type ObjectLinkList are not

guaranteed to be ordered within the field according to any particular algorithm

like FIFO or LIFO. If the type is a simple ObjectLink, the value of that field is set

to contain the ObjectID and FieldID of the other object-field pair. Because the link

applies to each object-field pair, it establishes a two-way link between the two

Links between Objects

218 Resource Object Data Manager and GMFHS Programmer’s Guide

objects. Unlink removes such links. Link and unlink actions are the only actions

available to RODM users that change fields of type ObjectLink.

If a field is a single ObjectLink, a query of that field yields a response of type

ObjectLink, which is an 8-byte ObjectID followed immediately by a 4-byte FieldID

for a total of twelve bytes. If a field is an ObjectLinkList, a query of the field

through either the user API or method API causes an array of ObjectLink entries to

be returned to the user. In other words, each element in the array is a 12-byte pair

of ObjectID and FieldID. RODM users cannot query the entries of an

ObjectLinkList, individually.

The same principle applies to queries of a MyObjectChildren field. A query of such

a field yields an array where each element in the array is of data type ObjectID for

MyObjectChildren field. The length of the array is identical to the length of the list

in the queried field.

Links between objects established with the link action function are used to

represent both peer-to-peer relationships and to represent secondary parent-child

relationships. Primary parent-child relationships are required and are embodied in

the system-defined fields MyClassChildren, and MyObjectChildren of objects and

classes.

Subfields Associated with Fields

You cannot create a query subfield for fields that are of data types ObjectLink or

ObjectLinkList. For fields that are not of data types ObjectLink or ObjectLinkList,

the value subfield is the single field entry and can be queried and manipulated

without triggering methods. For fields that are of data types ObjectLink or

ObjectLinkList, the value subfield consists of an entire list of entries, and the value

subfield can only be queried without triggering a query method.

Change transactions are not applicable to fields of data types ObjectLink or

ObjectLinkList, and similarly, change transactions are not applicable to the value

subfield of a field that is of data types ObjectLink or ObjectLinkList. Only link and

unlink functions exist for changing the values in fields of type ObjectLinkList, and

only creation and deletion of children changes a MyObjectChildren field.

To perform the link and unlink action functions, without triggering notify methods,

the RODM program supports the EKG_LinkNoTrigger function and the

EKG_UnlinkNoTrigger function.

The subfields possible for fields that are of type ObjectLink are query, notify, and

timestamp subfields. For fields of type ObjectLink and ObjectLinkList, change

subfields are enabled. However, the RODM program supports only one subfield

for the entire list; separate subfields are not supported for each entry in the list.

Any change to any entry of the list is considered a change to the entire list.

Therefore, if there is a notify list, any change to any entry in the list of links (the

field) results in all the methods in the notify list being invoked.

If a child object inherits the existence of a field that is of data types ObjectLink or

ObjectLinkList, the child object also sees the field as a data type ObjectLink or

ObjectLinkList field. But the RODM program does not support the inheritance of

values in fields of data types ObjectLink or ObjectLinkList. The entries in fields of

data types ObjectLink or ObjectLinkList are independent of the entries in any other

fields of data types ObjectLink or ObjectLinkList. They are created one at a time by

Links between Objects

Chapter 9. Understanding RODM Concepts 219

the EKG_LinkNoTrigger function or the EKG_CreateObject function, and they are

deleted one at a time by the EKG_UnlinkNoTrigger function or the

EKG_DeleteObject function.

Indexed Fields

The EKG_Locate function retrieves a list of Object IDs of objects having a specified

value in a specified field. This function makes it easier for an application to

retrieve the list of Object IDs. Rather than scanning the user’s entire data model

using the query field functions (looking for the specified field and value), the

application invokes the EKG_Locate function with the desired field and field value.

For a field to be located by the EKG_Locate function, that field must have been

created as a public_indexed field. For public_indexed fields, RODM maintains

tables of Object IDs by field name and field value. Because additional processing is

required to maintain these tables, users must create public_indexed fields only for

fields that exploit the EKG_Locate function. An example of this is a data model

with Employees as a class, each employee name as an object under that class, and

EmployeePhoneNumber as an indexed field. In this example, an application can

locate all of the objects that have a specified phone number in field

EmployeePhoneNumber without performing a query on every object in the data

model.

Indexed Fields can be of CharVar or IndexList data type. IndexList fields generate

multiple ObjectID table entries - one for each value in the list. For both CharVar

and IndexList, EKG_Locate accepts one character string (maximum length 254

bytes) for comparison, pointed to by Indexed_data_ptr.

See “Indexed Fields” on page 479 for performance-related information about

defining public_indexed fields.

Object and Class Locking in RODM

RODM now controls locking automatically. The following functions are no longer

necessary, but remain available for compatibility with existing applications.

v EKG_LockObjectList function

v EKG_UnlockAll function

No changes to existing applications that use these functions are required.

Using the Application Program Interfaces

This section briefly explains the two RODM application program interfaces.

User Application Program Interface (API)

A RODM user application is an external program that accesses RODM data

through the user API to perform a task. This RODM user application can be coded

in any language that enables you to meet the parameter passing conventions of

RODM. However, RODM supplies control block structures only for PL/I and C.

Figure 43 on page 221 illustrates how user applications access RODM data in a

z/OS environment using EKGUAPI, the user API module. The steps for coding a

full RODM application are described in Chapter 11, “Writing Applications that Use

RODM,” on page 301.

Links between Objects

220 Resource Object Data Manager and GMFHS Programmer’s Guide

Method Application Program Interface (API)

Methods are small executable programs that reside in the RODM address space.

Methods can be invoked by user applications, by changes to fields in RODM, by

other methods, and at RODM initialization.

The NetView program supplies several general-purpose methods that might meet

your needs; if not, you can write your own using PL/I or C.

Figure 43 illustrates how methods access RODM data in a z/OS environment using

EKGMAPI, the method API module. The steps and information associated with

coding a RODM method are described in Chapter 13, “Writing RODM Methods,”

on page 339.

RODM Abstract Data Types

This section describes how to use the RODM data types. Different data types can

be used in different contexts, such as the types of data in fields, subfields, fields of

the user API or method API, or parameters passed to methods.

Several of the RODM data types are compound data types; they correspond to

structures in programming languages. PL/I macro declarations and C typedef

statements are provided for these compound data types. Ensure that there is no

compiler-generated padding when you map these declarations to storage. You can

do this in PL/I by adding the UNALIGNED attribute to each declaration, and, in

C, by using the _Packed qualifier.

RODM Address Space

User
Appl.

User
Appl.

User
Appl.

(EKGUAPI)

(EKGUAPI)

(EKGUAPI)

User

API

RODM Program

Data Spaces

Method API

Method Method

(EKGMAPI)

Operator
MODIFY Command

Figure 43. RODM System Structure (z/OS)

Using the Application Program Interfaces

Chapter 9. Understanding RODM Concepts 221

Null Values of Data Type

The RODM program specifies a null value for each data type. Typically, you use

null values for:

v Locator types

Locator types are data that locates or points to other data. A null value means

that the data is pointing to nothing.

v Types that contain non-locator information

For types that contain non-locator information, such as numbers, counts, or

flags, the null value always implies no information here or not yet set to a value.

The RODM program sets the value of a field or a subfield to the null value for the

type of field or subfield whenever it first creates it on a class. When a class or

object inherits a field from its parent class, the value of the field is set to the value

on the parent class.

See “Abstract Data Type Reference” on page 223 for a specification of the null

value for each data type.

Data Type Identifiers

When user applications pass data to the RODM program, the RODM program

usually requires that they also pass the data type of the data along with the data.

When the RODM program passes data to an application, the RODM program

usually includes the data type of the data along with the data. To efficiently

identify data types, there is a decimal data type identifier for each RODM data

type.

To find the data type identifier for a particular data type, see “Abstract Data Type

Reference” on page 223.

Types of Data in Fields

Your application programs and methods must assign a data type to each field in a

class when they issue an API call to create a field. After the API has created the

field, you cannot change the data type during the life of the field.

List abstract data types are specified for fields that are to contain lists of

information instead of a single value. The list data type is available to form lists of

type IndexList, ObjectLink, ObjectID, and ClassID. This field type enables the

specification of multiple-to-single relationships and multiple-to-multiple

relationships of classes and objects.

Some data types that can be specified for fields are restricted, depending on the

nature of the field. The RODM program limits the possible relationships of objects

and classes in order to assure that incorrect identifiers are not left in RODM after

an object or a class is deleted. For example, the following conceptually feasible

relationships are prohibited by RODM:

v Relationships between an object and classes other than the parent child

relationships in the primary hierarchy. Class relationships must be inheritance

relationships.

v Relationships between two objects other than those that are represented by

ObjectLinks, using the EKG_LinkNoTrigger and EKG_LinkTrigger functions.

RODM Abstract Data Types

222 Resource Object Data Manager and GMFHS Programmer’s Guide

Abstract Data Type Reference

This section describes the abstract data types defined by the RODM program.

Include the macro EKG1IADT for PL/I or EKG3CADT for C in your user

applications and methods. Including this macro enables you to declare the

variables in your programs to be the data types needed to use RODM functions.

For example, if you need to specify the name of a method in a RODM function

block, the parameter you pass must be declared as the MethodName abstract data

type. To declare a variable named ThisMethodName in PL/I, use the statements:

 %include EKGLIB(ekg1iadt); /* Abstract data declaration */

 DCL ThisMethodName MethodName; /* 8-byte char */

To declare the same variable in C, use the statements:

 #include "ekg3cadt.h" /* Abstract data declaration */

 MethodName ThisMethodName; /* 8-byte char */

Examples of declaring variables of each type are provided in the file EKG5VDCL

for PL/I and in the file EKG6VDCL for C.

In the data type definitions that follow, some of the data types are specified as

being reserved. You cannot specify these data types when you create a field

definition; these data types are reserved for fields created by the RODM program.

Anonymous(N) (Reserved)

Data Type Identifier: 29

Description: A variable length sequence of data bytes in which only the creator of

the data knows the value of the data contents. The maximum length of the string

is 254 bytes. The actual length is implicit and based on where a variable of this

type has been defined for use. The format of the variable contents is unknown at

the user API level. Only the application program or method that is using RODM

and that set the value understands this type. This abstract data type cannot be

used in a SelfDefining data string.

Null Value: Unknown

PL/I Declaration:

% Anonymous = ’CHAR’;

C Declaration:

typedef char Anonymous;

AnonymousVar

Data Type Identifier: 30

Description: A variable length string of data that consists of up through 32767

bytes. Constructed as a 2-byte length field followed by the number of data bytes

specified by the length field. This data string can be binary data bytes of any

value.

The format of the variable contents is unknown at the user API level. Only the

application program or method that set the value can understand the format.

Null Value: Length field is zero.

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 223

PL/I Declaration:

% AnonymousVar = ’CHAR(32767) VARYING’;

C Declaration:

typedef _Packed struct {

 Smallint Length;

 Anonymous Text[1];

 } AnonymousVar;

ApplicationID (Reserved)

Data Type Identifier: 3

Description: An 8-byte token containing the user application name. This

application ID is verified by your system authorization facility. Characters are

positioned left-justified within the 8 bytes and padded with blanks on the right.

The host system code page defines the blank; for S/370, the assumed code page is

code page 00500, on which a blank is X'40'.

Null Value: All bytes are blank (for code page 00500, X'40').

PL/I Declaration:

% ApplicationID = ’CHAR(8)’;

C Declaration:

typedef _Packed struct {

 char Data_char[8];

 } ApplicationID;

BERVar

Data Type Identifier: 31

Description: The BERVar data type specifies BER data to the RODM load

function. RODM verifies part of the BER data format but does not interpret any of

it. The following description identifies the information verified by RODM.

The maximum length of the BER data type (including the identifier, length and

contents bytes) must not exceed 32767. Figure 44 shows the format of BER data.

 RODM verifies the following BER data:

v Identifier bytes. Identifier bytes can take two forms, short or long. The form is

determined by the tag number (bits 5 to 1) in the first byte.

– If the tag number is less than or equal to 30 (’11110’b), the identifier byte is in

the short form and only a single identifier byte is needed.

Identifier
Bytes

Length
Bytes

Contents
Bytes

Bytes 0...x x+1..y y+1...z

Figure 44. Format of BER Data

RODM Abstract Data Types

224 Resource Object Data Manager and GMFHS Programmer’s Guide

– If the tag number in the first byte is equal to 31 (’11111’b), the identifier byte

is long. For the long form, more than one identifier byte exists. In each byte

following the leading byte, bit 8 is set to 1 until the last identifier byte. In the

last identifier byte bit 8 is set to 0 (zero).

Figure 46 shows the long form with three identifier bytes.

v Length bytes. The length byte specifies the length of the contents bytes and can

take 2 forms, short or long.

– If bit 8 equals 0, the length byte is short. In this form, bits 7 to 1 represent the

length of the contents bytes as an unsigned binary integer. The contents bytes

can only be less than or equal to 127 bytes with the short form.

Figure 47 shows the short form of a length byte with the value of 86 bytes.

– If bit 8 equals 1, the length byte is long. For this form, bits 7 to 1 represents

the number of subsequent bytes that comprise the length bytes and is an

unsigned binary integer. Each subsequent byte is an unsigned binary integer,

and when added together, represents the length of the contents bytes. If the

contents bytes are greater than 127 bytes, you must use the long form.

Bits

Leading Byte

Tag Number

8 7 6 5 4 3

1 1 1 1 0

2 1

Figure 45. Identifier Byte in Short Form

Bits

Bits

Bits

Bits

Leading Byte

Second Byte

Third Byte

Last Byte

8

8

8

8

7

7

7

7

1

1

1

0

5

5

5

5

6

6

6

6

1

4

4

4

4

1

3

3

3

3

1

2

2

2

2

1

1

1

1

1

Figure 46. Identifier Byte in Long Form

Bits 8

0

7

1

6

0

5

1

4

0

3

1

2

1

1

0

Figure 47. Length Byte in Short Form

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 225

Figure 48 shows the long form of a length byte with the value of 357 bytes.

Two length bytes are needed to represent 357.

Null Value: Length field is zero.

PL/I Declaration:

% BERVar = ’CHAR(32767) VARYING’;

C Declaration:

typedef _Packed struct {

 Smallint Length;

 Anonymous Text[1];

 } BERVar;

CharVar

Data Type Identifier: 4

Description: Variable-length character string of up through 32767 bytes. The

structure of this data type is a 2-byte length field followed by the characters in the

string. CharVar data can be optionally terminated with a null byte with value X'00'

by the user for C string support. When RODM formats character strings, it always

adds the null terminator. For example, a CharVar field specified with the null byte

that contains the string “RODM” has the value X'0004D9D6C4D400'. Note that the

null terminator byte is not included in the length field of the CharVar data.

For information about specifying a CharVar string in a SelfDefining data string, see

“SelfDefining” on page 234.

For DBCS (double-byte character set) support, the special control character

shift-out (X'0E') can begin a DBCS string, and the control character shift-in (X'0F')

can end a DBCS string. When embedded between the shift-out and shift-in control

characters, each double-byte character is counted as two bytes. In addition, the

shift-out and shift-in characters are included in the length of the DBCS string. The

valid double-byte characters are the same as those for the GraphicVar data type;

see “GraphicVar” on page 229.

Null Value: Length field is zero.

Bits

Bits

Bits

Leading Byte

Second Byte

Third Byte

8

8

8

7

7

0

7

1

0001

0

0

5

5

0

5

0

6

6

0

6

1

0

4

4

0

4

0

0

3

3

0

3

1

1

2

2

0

2

0

0

1

1

1

1

1

Figure 48. Length Byte in Long Form

RODM Abstract Data Types

226 Resource Object Data Manager and GMFHS Programmer’s Guide

PL/I Declaration:

% CharVar = ’CHAR(32767) VARYING’;

C Declaration:

typedef _Packed struct {

 Smallint Length;

 char Text[1];

 } CharVar;

CharVarAddr (Reserved)

Data Type Identifier: 7

Description: Pointer to any variable-length character string. The pointer does not

imply any maximum length requirements.

Null Value: NULL pointer.

PL/I Declaration:

% CharVarAddr = ’POINTER’;

C Declaration:

typedef Pointer CharVarAddr;

ClassID (Reserved)

Data Type Identifier: 1

Description: A full-word integer that identifies a class to RODM. ClassID is the

data type only of the MyID field on a class and the MyPrimaryParentID field on

classes and objects.

Null Value: All bits are zero.

PL/I Declaration:

% ClassID = ’FIXED BINARY(31)’;

C Declaration:

typedef long ClassID;

ClassIDList (Reserved)

Data Type Identifier: 2

Description: A list of Class IDs. This is the data type only of the MyClassChildren

field of a class. The Length field of ClassIDList is the number of elements in the

list, not the length in bytes.

Null Value: Length field is zero.

PL/I Declaration:

DCL

 1 ClassIDList EKG_BOUNDARY,

 3 Len Integer,

 3 List(1) ClassID;

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 227

Note: EKG_BOUNDARY is a character substitution for the UNALIGNED and

BASED PL/I attributes and is used with all abstract data type Pl/I

definitions using DCL statements.

C Declaration:

typedef _Packed struct {

 Integer Length;

 ClassID List[1];

 } ClassIDList;

ClassLinkList (Reserved)

Data Type Identifier: 6

Description: A 4-byte length field followed by a list in which each entry is a

concatenated Class ID and Field ID. The Length field of ClassLinkList is the

number of elements in the list, not the length in bytes. Each entry specifies a link

to some field of a class, required for a system-class definition of the

MyClassChildren field of a class.

Null Value: Length field is zero.

PL/I Declaration:

DCL

 1 ClassLinkList EKG_BOUNDARY,

 3 Len Integer,

 3 List(1),

 5 ClassIdentifier ClassID,

 5 FieldIdentifier FieldID;

C Declaration:

 typedef _Packed struct {

 Integer Length;

 ClassLink List[1];

 } ClassLinkList;

ECBAddress (Reserved)

Data Type Identifier: 8

Description: The 4-byte address of an ECB that the RODM program uses to post

an application when an event occurs. The EKG_NotificationQueue class requires

this data type.

Null Value: Null pointer

PL/I Declaration:

% ECBAddress = ’POINTER’;

C Declaration:

typedef void *ECBAddress;

FieldID

Data Type Identifier: 26

Description: A full-word integer for field identifiers. This data type is used for

fields that contain the identifier of other fields.

RODM Abstract Data Types

228 Resource Object Data Manager and GMFHS Programmer’s Guide

Null Value: All bits are zero.

PL/I Declaration:

% FieldID = ’FIXED BINARY(31)’;

C Declaration:

typedef long FieldID;

Floating

Data Type Identifier: 9

Description: A floating point number for general use. The number is represented

in eight bytes.

Null Value: All bits zero

PL/I Declaration:

% Floating = ’FLOAT BINARY(53)’

C Declaration:

typedef double Floating;

GraphicVar

Data Type Identifier: 5

Description: A sequence of data constructed as a 2-byte length field followed by a

set of double-byte characters. The value of the length field must be no more than

16,383 double-byte units. One 16-bit double-byte character has a length of one

double-byte unit. Valid characters must have both the first and second byte of data

defined in the range X'41' through X'FE'. The characters X'4040' are also valid.

GraphicVar data is terminated by two null bytes with value X'0000'. The null

terminator bytes are not included in the length field of the GraphicVar data.

Null Value: Length field is zero.

PL/I Declaration:

DCL

 1 GraphicVar EKG_BOUNDARY,

 3 Len Smallint,

 3 Text CHAR(1);

C Declaration:

typedef _Packed struct {

 Smallint Length;

 Smallint Text[1];

 } GraphicVar

Integer

Data Type Identifier: 10

Description: Full-word integer intended for general use.

Null Value: All bits are zero.

PL/I Declaration:

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 229

% Integer = ’FIXED BINARY(31)’;

C Declaration:

typedef long Integer;

IndexList

Data Type Identifier: 32

Description: A variable-length string of data that is composed of multiple values

up through a maximum of 32767 bytes. The data is a list of AnonymousVar data

values, and each individual data value in the list has the following characteristics:

v Must be unique within the field.

v Has a maximum length of 254 bytes

v Is composed of a 2-byte length field followed by the number of data bytes

specified by the length field. The AnonymousVar data type identifier is not part

of the value.

Figure 49 shows an example Indexlist string that contains three AnonymousVar

values:

v 00 08 C9 D5 C4 C5 E7 F1 40 40

v 00 06 C9 95 84 85 E7 F1

v 00 08 93 95 C4 C5 A7 C5 C5 C5

Null Value: Length field is zero.

PL/I Declaration:

% IndexList = ’CHAR(32767) VARYING’;

C Declaration:

typedef _Packed struct {

 Smallint Length;

 char Text[1];

 } IndexList;

MethodName (Reserved)

Data Type Identifier: 11

Description: An 8-character data type for the name of a method.

Null Value: NullMeth.

Figure 49. Example IndexList Field

RODM Abstract Data Types

230 Resource Object Data Manager and GMFHS Programmer’s Guide

PL/I Declaration:

% MethodName = ’CHAR(8)’;

C Declaration:

typedef _Packed struct {

 char Data_char[8];

 } MethodName;

method_parameter_list (Reserved)

Data Type Identifier: 12

Description: Long-lived parameters retained by RODM and passed to a method.

The maximum length is 254 bytes, excluding the 2-byte header of X'000C'.

Null Value: Length field is zero.

PL/I Declaration:

% method_parameter_list = ’SelfDefining’;

C Declaration:

typedef SelfDefining method_parameter_list

MethodSpec

Data Type Identifier: 13

Description: A method object ID plus a method parameter list that specify an

object-specific method and the parameters that it has when you trigger it.

Null Value: Method object ID for the reserved method named NullMeth

concatenated with a null method parameter list.

PL/I Declaration:

DCL

 1 MethodSpec EKG_BOUNDARY,

 3 ObjectIdentifier ObjectID,

 3 MthdParmList SelfDefining;

C Declaration:

typedef _Packed struct {

 ObjectID ObjectIdentifier;

 SelfDefining MthdParmList;

 } MethodSpec;

ObjectID (Reserved)

Data Type Identifier: 14

Description: Double word for an object ID, required on the MyID field of an

object.

Null Value: All bits are zero.

PL/I Declaration:

% ObjectID = ’BIT(64)’;

C Declaration:

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 231

typedef _Packed struct {

 Smallint Collision_number;

 Smallint Class_identifier;

 Integer Object_identifier;

 } ObjectID;

ObjectIDList (Reserved)

Data Type Identifier: 15

Description: A list in which the entries are Object IDs. The data type of the

MyObjectChildren field on a class. A sequence of data constructed as a 4-byte

length field followed by a concatenation of the ObjectIDs that are the entries in the

list. The Length field of ObjectIDList is the number of elements in the list, not the

length in bytes. All object IDs in the list are concatenated and contiguous.

Null Value: Length field is zero

PL/I Declaration:

DCL

 1 ObjectIDList EKG_BOUNDARY,

 3 Len Integer,

 3 List(1) ObjectID;

C Declaration:

typedef _Packed struct {

 Integer Length;

 ObjectID List[1];

 } ObjectIDList;

ObjectLink

Data Type Identifier: 16

Description: Double-word object ID plus field ID for specifying a link to a field in

another object.

Null Value: A NULL Object ID concatenated with a NULL field ID.

PL/I Declaration:

DCL

 1 ObjectLink EKG_BOUNDARY,

 3 ObjectIdentifier ObjectID,

 3 FieldIdentifier FieldID;

C Declaration:

typedef _Packed struct {

 ObjectID ObjectIdentifier;

 FieldID FieldIdentifier;

 } ObjectLink;

ObjectLinkList

Data Type Identifier: 17

Description: A list of Object Links. A sequence of data constructed as a 4-byte

length field followed by the concatenation of the Object Links that are the entries

in the list. The Length field of ObjectLinkList is the number of elements in the list,

not the length in bytes. All object IDs in the list are concatenated and contiguous.

RODM Abstract Data Types

232 Resource Object Data Manager and GMFHS Programmer’s Guide

Null Value: Length field is zero

PL/I Declaration:

DCL

 1 ObjectLinkList EKG_BOUNDARY,

 3 Len Integer,

 3 List(1),

 5 ObjectIdentifier ObjectID,

 5 FieldIdentifier FieldID;

C Declaration:

typedef _Packed struct {

 Integer Length;

 ObjectLink List[1];

 } ObjectLinkList;

ObjectName (Reserved)

Data Type Identifier: 18

Description: The data type of the MyName field of an object. The name consists

of no more than 254 characters, terminated by one byte of X'00'. The structure of

ObjectName data is a 2-byte length field followed by the characters in the string.

The null terminating character is not included in the length field. See “Object

Names” on page 208 for information about valid object names.

Null Value: Length field is zero; in PL/I, set with string = ’

PL/I Declaration:

% ObjectName = ’CHAR(254) VARYING’;

C Declaration:

typedef _Packed struct {

 Smallint Name_length;

 char Name_content[255];

 } ObjectName;

RecipientSpec (Reserved)

Data Type Identifier: 20

Description: Information that notification methods require to notify an

application program. A sequence of data including an 8-byte ApplicationID, an

8-byte notification-queue SubscribeID, and an 8-byte user word of data type

Anonymous.

Null Value: Concatenation of a null Application ID, a null SubscribeID, and a null

Anonymous(8) string.

PL/I Declaration:

DCL

 1 RecipientSpec EKG_BOUNDARY,

 3 User_appl_ID ApplicationID,

 3 Notification_queue SubscribeID,

 3 User_word Anonymous(8);

C Declaration:

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 233

typedef _Packed struct {

 ApplicationID User_appl_ID;

 SubscribeID Notification_queue;

 Anonymous User_Word[8];

 } RecipientSpec;

SelfDefining

Data Type Identifier: 19

Description: A SelfDefining data string of no more than 32767 bytes. The string is

a concatenation of tagged data items, where each tagged data item comprises a

RODM abstract data-type ID followed by its corresponding data. All reserved

abstract data types can be used in SelfDefining data strings except the

Anonymous(N) data type.

Figure 50 shows the format of SelfDefining data.

 The following variables are used in the SelfDefining syntax:

length

A 2-byte integer that specifies the total length of the SelfDefining data string

excluding the 2-byte length field itself.

identifier

A 2-byte unsigned integer that specifies the RODM data type of the data that

immediately follows the identifier in the SelfDefining data string. Data type

identifiers are specified in the RODM data type definitions in “Abstract Data

Type Reference” on page 223.

value

The value of the data that is specified by identifier. For values that are of data

type ObjectName and ShortName, the null terminator is not included in the

SelfDefining data string.

When specifying a CharVar inside a SelfDefining data string, you must include the

1-byte null terminator in the length field of the SelfDefining data string, but do not

include it in the length field of the CharVar specification within the SelfDefining

data string.

Figure 51 on page 235 shows an example SelfDefining string that contains a

Smallint with the decimal value 1992, a CharVar with the value RODM, and an

ApplicationID with the value NETV23.

Self_Defining

��

�

length

identifier

value

��

Figure 50. SelfDefining Data Type Syntax

RODM Abstract Data Types

234 Resource Object Data Manager and GMFHS Programmer’s Guide

Null Value: Length field is zero.

PL/I Declaration:

% SelfDefining = ’CHAR(32767) VARYING’;

C Declaration:

typedef _Packed struct {

 Smallint Data_length;

 Anonymous Data_content;

 } SelfDefining;

ShortName (Reserved)

Data Type Identifier: 23

Description: Data type of the MyName field on a class and

MyPrimaryParentName field on any object or class. The name consists of no more

than 64 characters, terminated by one byte of X'00'. The structure of ShortName

data is a 2-byte length field followed by the characters in the string. For

information about constructing field names, see “RODM Fields” on page 210.

Null Value: Length field is zero; in PL/I, set with string = ’.

PL/I Declaration:

% ShortName = ’CHAR(64) VARYING’;

C Declaration:

typedef _Packed struct {

 short Name_length;

 char Name_content[65];

 } ShortName;

Smallint

Data Type Identifier: 21

Description: A 2-byte (half-word) signed integer for general use.

Null Value: All bits are zero.

PL/I Declaration:

% Smallint = ’FIXED BINARY(15)’;

C Declaration:

typedef short Smallint;

SubscribeID (Reserved)

Data Type Identifier: 22

Length Identifier
for
Smallint

Contents
of
Smallint

Identifier
for
CharVar

00 00 03 D5 C5 E3 E5 F2 F3 40 4004 00 04 D9 D6 C4 D4

Contents of
ApplicationID

Identifier for
ApplicationID

Contents
of
CharVar

00 17 00 15 07 C8 00

Figure 51. Example SelfDefining Field

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 235

Description: The 8-character notification queue name that is used to associate a

field with a notification queue when the field is subscribed to. The association is

established during the subscription process. The characters are positioned

left-justified within the eight bytes and padded with blanks (for code page 00500,

X'40') on the right.

Null Value: All bytes are blank (X'40' for code page 00500).

PL/I Declaration:

% SubscribeID = ’CHAR(8)’;

C Declaration:

typedef _Packed struct {

 char Data_char[8];

 } SubscribeID;

SubscriptSpec (Reserved)

Data Type Identifier: 24

Description: A method specification plus a recipient specification used to record a

notification request in the RODM program. The SubscriptSpec includes information

about the method, the method parameters, and the intended recipient of the

notification.

Null Value: Concatenation of a null MethodSpec and a null RecipientSpec

Note: The MethodSpec data type, a part of the SubscriptSpec data type, consists of

an ObjectID and a method parameter list. The method parameter list is

self-defining and is, in PL/I syntax, CHAR(254) VARYING.

SubscriptSpecList (Reserved)

Data Type Identifier: 25

Description: The data type of a notify subfield. This data type contains a list of

SubscriptSpec elements, where each SubscriptSpec element represents a notification

subscription. The length field of SubscriptSpecList is the number of elements in the

list, not the length in bytes. All SubscriptSpec elements in the list are concatenated

and contiguous.

Null Value: All bits are zero.

PL/I Declaration:

DCL

 1 SubscriptSpecList EKG_BOUNDARY,

 3 Len Integer,

 3 Text CHAR(1);

C Declaration:

typedef _Packed struct {

 Integer Length;

 char Text[1];

 } SubscriptSpecList;

TimeStamp

Data Type Identifier: 27

RODM Abstract Data Types

236 Resource Object Data Manager and GMFHS Programmer’s Guide

Description: The time value represented in Lilian milliseconds (eight bytes).

Lilian milliseconds is the number of milliseconds since midnight 14 October 1582,

which marks the beginning of the use of the Gregorian calendar. The time range

provided is from 14 October 1582 through 31 December 9999. This is similar to the

time format that is supported by the Common Execution Library for IBM

compilers. To use this time with the Common Execution Library routines, divide

the value by 1000.

Generation of this time format assumes that the Time-of-day (TOD) clock is set to

Greenwich Mean Time (GMT) and based on the standard epoch.

Null Value: All bits are zero.

PL/I Declaration:

% TimeStamp = ’FLOAT BINARY(53)’;

C Declaration:

typedef double TimeStamp;

TransID (Reserved)

Data Type Identifier: 28

Description: The transaction ID is a unique identifier of a RODM transaction.

Null Value: All bits are zero.

PL/I Declaration:

% TransID = ’CHAR(8)’;

C Declaration:

typedef _Packed struct {

 char Content[8];

 } TransID;

RODM Abstract Data Types

Chapter 9. Understanding RODM Concepts 237

RODM Abstract Data Types

238 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 10. Using the RODM Load Function

This chapter describes how to create your own data model and load object

definitions using the RODM load function. You create a data model as part of

creating a new RODM application that does not use an IBM-supplied data model.

This can be done by modifying an existing model or creating an entirely new data

model using RODM load function statements.

The RODM load function enables you to create a data model and define its initial

data values. It enables you to create, modify, and delete RODM classes and objects

while the RODM program is running. You create sequential data sets that contain

the load function statements. The load function reads the input data sets and loads

the information into the RODM data cache.

This chapter contains five sections:

v Considerations when designing a data model

v Introduction to the RODM load function

v Using load function statements

v Process for loading the data cache

v Load function reference

You can use the load function to update an existing data model while RODM is

running. You can run the load function using an initialization method so that it

runs before RODM accepts any other transactions.

Considerations When Designing a Data Model

RODM classes can have objects as children, other classes as children, or both

objects and other classes as children. You can add a new class or a new object to a

parent class, as shown in Figure 52.

Child
Class

Child
Class

Parent
Class

Class

Object Object
New

Object

New

Child

Class

New

Child

Class

Object

Figure 52. Adding Objects and Classes

© Copyright IBM Corp. 1997, 2007 239

Introduction to the RODM Load Function

The RODM load function is a part of RODM that shares libraries with RODM, but

operates like an application program through the RODM user application program

interface (API). It performs operations on the RODM data cache using load

function statements. You code these statements in sequential files which are used

as input to the RODM load function.

Load Function Statements

Two different levels of load function statements are processed by the RODM load

function:

v High-level load function statements

v Load function primitive statements

RODM high-level load function statements are the statements most commonly

used when defining your data model hierarchy. During RODM load function

processing each of these statements is parsed into one or more RODM load

function primitive statements. These primitive statements are then processed for

syntax and action.

RODM load function primitive statements are the low-level syntax statements.

They are either generated by the RODM load function from processing high-level

statements or used directly as input to the RODM load function for loading and

managing the RODM data cache. Each primitive statement corresponds closely to a

user API call, but in some cases can include more than one user API call.

In addition, there are common syntactic elements which are a group of described

variables used in RODM high-level load function syntax and RODM load function

primitive syntax.

Load Function Operations

The RODM load function provides three different operations that enable you to

load, update, and validate the contents of the RODM data cache. These three

operations are:

v Parse

v Load

v Verify

The parse operation processes the load function input files and tests the syntax of

all of the statements. No changes are made to the data cache, and RODM does not

need to be running when you use the parse operation. This operation returns error

messages for any statements in the load function input files that contain syntax

errors. However, it cannot generate errors for problems such as assigning a value

to a field that does not exist.

The load operation parses the load function input files and updates the contents of

the RODM data cache. The load function input files can contain both high-level

load function statements and load function primitive statements.

The RODM load function returns error messages for any statements in the load

function input files that contain syntax errors. The load function also returns error

messages for any request that does not complete successfully, even if the syntax

was correct. For example, if you try to assign a value to a field which does not

exist, the load function returns an error. Because the load function converts each

high-level load function statement into several load function primitive statements

240 Resource Object Data Manager and GMFHS Programmer’s Guide

as part of its processing, you might receive error messages which describe

problems with load function primitives when you code a high-level load function

statement.

Before you run the load operation, run the parse operation and correct any syntax

errors. Then, use the load operation to create or update the contents of the data

cache. You can update the data cache using the load function any time RODM is

running.

The verify operation parses the load function input files and compares the

statements with the contents of the data cache. No changes are made to the data

cache, but RODM must be running to use the verify operation. The verify

operation enables you to determine if specified classes, objects, and fields exist in

the data cache. You can also determine if a field has a specified value. See

“Understanding the Verify Operation” on page 258 for a more detailed description

of the verify operation.

Loading the RODM Data Cache

After you create the RODM load function input files, you need to run the load

function to load the RODM data cache. You call the RODM load function either as:

v An initialization method run at RODM start

v A module call from a program

v A JCL batch job

You have different types of loads from which to choose:

Initialization You load the methods, the class structure, and the object definitions

at RODM start.

Structure only You load only the methods and the class structure definitions—a

structure load.

Object only You load only the object definitions—an object load.

The RODM load function loads the RODM data cache with a data model based on

definitions in the load function input data sets. These data sets are identified to the

RODM load function by the JCL data definition (DD) statements labeled:

EKGIN1 Class structure definitions

EKGIN2 Method name table

EKGIN3 Object definitions

For more information about loading the RODM data cache, see “Process for

Loading the RODM Data Cache” on page 244.

Using Load Function Statements

This section describes the RODM high-level load function statements and the

RODM load function primitive statements, and when to use them. The RODM

load function uses these statements to issue RODM user API calls that cause

RODM to:

v Create classes, objects, fields, and subfields

v Delete classes, objects, fields, and subfields

v Set fields to initial values

v Establish the parent-child relations that define the hierarchy

v Set the values of fields

v Trigger methods

Chapter 10. Using the RODM Load Function 241

High-Level Load Function Statements

This topic describes the RODM high-level load function statements. For

information about coding these statements, see “Coding RODM High-Level Load

Function Statements” on page 272.

The four RODM high-level load function statements are:

MANAGED OBJECT CLASS

The RODM high-level load function class structure syntax you use to build

the hierarchy of the data model in the RODM data cache by adding class

definitions and setting initial values.

CREATE

The RODM high-level load function object syntax you use to create an

object of a class in the RODM data cache.

DELETE

The RODM high-level load function object syntax you use to delete an

object from the RODM data cache.

SET The RODM high-level load function object syntax you use to set the values

of fields of objects in the RODM data cache.

When RODM high-level load function statements are processed, each RODM

high-level load function statement is first converted to RODM load function

primitive statements. For example, the following MANAGED OBJECT CLASS

high-level load function statement defines a child class named SNA_Domain_Class

with a field named SNANet under the class named Domain_Parent_Class:

 SNA_Domain_Class MANAGED OBJECT CLASS;

 PARENT IS Domain_Parent_Class;

 ATTRLIST

 SNANet CHARVAR;

 END;

The high-level statement is parsed by the RODM load function and results in the

following RODM load function primitive statements:

 OP SNA_Domain_Class HAS_PARENT Domain_Parent_Class;

 OP SNA_Domain_Class HAS_FIELD (CHARVAR) SNANet;

Each RODM load function primitive statement is then processed for syntax and

action. See “Load Function Primitive Statements” for more information about

RODM load function primitive statements.

If any of the RODM load function primitive statements generated for a RODM

high-level load function statement encounters an error, any subsequent RODM

load function primitive statements for that RODM high-level load function

statement will be ignored. That means any syntax errors following the detected

error within the bounds of the RODM high-level load function statement being

processed will not be detected.

Load Function Primitive Statements

The RODM load function primitives are an external interface that is at a lower

level than the RODM high-level load function statements described in “High-Level

Load Function Statements.” For information about how to code RODM load

function primitive statements, see “Coding RODM Load Function Primitive

Statements” on page 281.

242 Resource Object Data Manager and GMFHS Programmer’s Guide

RODM load function primitives come directly from user-generated input files or

are generated by the RODM load function from RODM high-level load function

statements within the input files. Both RODM load function primitives and RODM

high-level load function statements can be used in the same RODM load function

input file, but load function primitives cannot be coded within a high-level

statement.

The load function processes primitive statements sequentially, one primitive

statement at a time. The RODM load function interprets each of them according to

their processing options and issues the appropriate user API calls to perform

RODM functions. The primitives correspond very closely to the user API calls, but

in some cases they can include more than one user API call.

When to Use High-Level or Primitive Load Function

Statements

Use RODM high-level load function statements when you are:

v Performing the initial loading of a data model

v Making changes to the structure of the data model

v Adding a large number of classes or objects into the RODM data cache, where

using RODM load function primitives is cumbersome

Use RODM load function primitives to define class structure changes that involve

the deletion of classes, the modification of classes, the modification of the

hierarchy, or when a desired function cannot be performed by a high-level

statement.

The following RODM load function primitives perform functions that cannot be

performed by RODM high-level load function statements for objects or classes:

FORCE_HAS_NO_INSTANCE

Unconditionally, deletes an object after unlinking any links the object has.

FORCE_NOT_A_CLASS

Unconditionally, deletes a class and any children of the class, regardless of

links.

HAS_NO_FIELD

Deletes a field within a class.

HAS_NO_SUBFIELD

Deletes a subfield within a field.

INVOKED_WITH

Triggers a named or object-independent method.

NOT_A_CLASS

Conditionally deletes a childless class.

The following RODM load function primitives perform functions that cannot be

performed on classes by RODM high-level load function statements:

Note: RODM high-level load function statements can perform these functions on

objects.

HAS_VALUE

Defines a value for a field within a class.

Chapter 10. Using the RODM Load Function 243

The RODM high-level load function statement MANAGED OBJECT

CLASS can define an initial value for the field of a specific class, but it

cannot be used to change the value.

INHERITS

Removes the locally defined value for the specified class field and reverts

the field value to the value that it inherited from its parent.

SUBFIELD_HAS_VALUE

Defines a value for a subfield within a class.

 Only the value subfield can be initialized for the class by the RODM

high-level load function statement MANAGED OBJECT CLASS.

SUBFIELD_INHERITS

Removes the locally-defined value for the specified class subfield and

reverts the subfield value to the value that it inherited from its parent.

 You can code the primitives for either a structure load or an object load, but you

must define all of the structure first and then define the objects because you must

ensure that parent classes are created before their class children or their object

children are created.

When it is easier to perform an operation with a RODM load function primitive

than with a RODM high-level load function statement, use a RODM load function

primitive. For example, the field value of the field named SNANet of the object

named CNM01 under the class named SNA_Domain_Class can be set to a new

value with the SET high-level statement, but you need several lines of SET

statement syntax:

SET INVOKER ::= 0001;

 MODE ::= non-confirmed;

 OBJCLASS ::= SNA_Domain_Class;

 OBJINST ::= MyName = (CHARVAR) ’CNM01’;

 MODLIST SNANet ::= (CHARVAR) ’NETC’;

END;

Whereas, you can use the HAS_VALUE primitive to set the field value of the object

with only one line of syntax:

OP SNA_Domain_Class.CNM01.SNANet HAS_VALUE (CHARVAR) ’NETC’;

Process for Loading the RODM Data Cache

This section describes the process used to load the RODM data cache using the

RODM load function. The process steps are first listed in order and described in

the same order.

To load the RODM data cache:

1. Identify the methods to install

2. Create the class structure and object definitions

3. Decide on the type of load

4. Run the RODM load function

5. Check the output listings

There are also optional steps which enable you to change member names and

parameter mapping:

v Modify the control table

v Modify the parameter mapping table

244 Resource Object Data Manager and GMFHS Programmer’s Guide

Identifying the Methods to Install

When you load the class structure as part of an initial load or a class structure

change, you can also install the methods. You identify the methods to be installed

in the RODM address space in the method name table (EKGINMTB). The table is a

member of the partitioned data set identified by the EKGIN2 DD statement. See

“Method Name Table” on page 261 for information about the format of the table

and other associated DD statements.

When you run the RODM load function and specify LOAD=STRUCTURE, the

RODM load function performs the following steps for each method name specified

in the method name table:

1. Searches STEPLIB DD data sets to ensure method is available

2. Creates a method object

3. Installs the method

If the method is already installed or is specified twice in the method name table,

the RODM load function will issue the error message:

EKG8568W -

THE METHOD method_name HAS NOT BEEN INSTALLED AS IT ALREADY EXISTS

You must have an EKGIN2 file. If you are installing no methods, the EKGIN2 file

is an empty file. The methods must reside in one of the data sets identified by the

STEPLIB DD statement in the target RODM start up JCL.

Creating the Class Structure and Object Definitions

Create sequential files that contain your class structure and object definitions, when

you are:

v Performing the initial load of the class structure and object definitions into the

RODM data cache

v Making changes to the structure of the data model or defined objects in the data

cache

These definitions consist of RODM high-level load function statements and RODM

load function primitives. See “Using Load Function Statements” on page 241 for

more information about using RODM high-level load function statements and

RODM load function primitives.

Data Definition Statement Labels

The RODM load function expects to find the DD statements that declare the

sequential data set or the concatenation of sequential data sets that contain the

load function input definitions to be labeled:

v EKGIN1 for the class structure definitions

v EKGIN3 for the object definitions

Although this is the load function’s expectation, practically, you can put all your

definitions into a single sequential data set or concatenation of sequential data sets.

You choose either EKGIN1 or EKGIN3 as the DD name of the DD statement that

identifies the data set depending on the type of load. See “Deciding on the Type of

Load” on page 246 for information about the type of load dependency.

This technique is especially useful for incremental data cache changes, but it is

very important that you observe the concatenation caveats described in

“Concatenation of Data Sets” on page 246.

Chapter 10. Using the RODM Load Function 245

Concatenation of Data Sets

You can divide the class structure and object definitions into several sequential

data sets and then concatenate the data sets that contain these definitions. The

order of the data sets in the concatenation is important. Whether you use RODM

high-level load function statements or RODM load function primitives, you must

arrange the files containing the definitions so that:

v RODM load function creates any parent class before it creates its children

v Class structure definitions precede any associated object definitions

v The statements that create objects are processed before the statements that create

links between objects

You can concatenate object definitions so that each data set contains one or more

object definitions, and a data set can represent a domain, a subarea, or whatever

makes sense. By structuring your data sets in this way, you can facilitate adding or

refreshing information for a domain.

Definition Examples

RODM provides two sample files in the samples library partitioned data set named

CNMSAMP.

Member Contents

EKGIN1 An example of load function statements designed to:

v Create a class under the UniversalClass

v Create fields for all data types supported

v Set initial values for the fields

EKGIN3 An example of load function statements designed to:

v Create 3 objects

v Set initial values

Deciding on the Type of Load

The steps in the loading process differ, depending on how you intend to run the

RODM load function and on what type of load you are performing. You can run

the RODM load function as an initialization method during a cold start of RODM

or during a warm start of RODM. You can run the RODM load function by means

of a JCL job. You can run the RODM load function by means of a module call from

an application. The RODM load function offers the following of load types:

v Initialization load

v Structure load only

v Object load only

Initialization Load

In an initialization load, you can load the class structure, the names of the methods

to install, and the object definitions. This is done at RODM cold start by invoking

EKGLISLM.

Initialization requires three DD statements for input data with the following labels:

EKGIN1

Class structure definitions

EKGIN2

Method name table

EKGIN3

Object definitions

246 Resource Object Data Manager and GMFHS Programmer’s Guide

When RODM initialization takes place, the RODM load function (EKGLISLM), is

triggered to create the RODM structure. This initial load method runs an

object-independent method that sets the values of the objects in the RODM data

cache. After completion of the initial load, further changes are usually

modifications of defined objects or the addition of new object definitions.

In an initial load, you cannot directly specify the RODM load function parameters.

RODM uses a parameter mapping table (EKGPTENU). If you want to change the

default values of the parameters, change the default values in the parameter

mapping table. When the load function is initially run, the load function

parameters get their default values from the parameter mapping table. However,

the load function ignores any abbreviations or string substitutions in the table. See

“Parameter Mapping Table” on page 262 for information about creating your own

parameter mapping table or modifying the table copied during RODM installation.

For a display of the parameter mapping table that EKGPTENU supplied with

RODM, see Figure 64 on page 263.

Structure Load Only

A structure load is a load in which you load only the methods and the class

structure into RODM. This is generally done as a job containing JCL or a module

call while RODM is running.

EKGIN2 Data Definition: RODM load function first processes the data definition

statement with the label EKGIN2, which specifies the partitioned data set that

contains the method name table in one of its members. The name of the member

that contains the method name table is found by RODM in the control table

EKGCTABL. For information about control table EKGCTABL and how to

optionally modify or create a new table, see “Control Table—EKGCTABL” on page

260.

For each entry in the method name table, the RODM load function:

1. Searches the data sets identified by the STEPLIB DD statement in the RODM

start up JCL to see if the method is installed. If the method is not installed, a

return code of 8 and a reason code of 81 is returned and the load function

issues an error message.

2. Converts into RODM user API calls the load function primitives that associate

the entries in the method name table with the MethodName fields of the

appropriate classes. In other words, adds an object to the RODM EKG_Method

class.

3. Loads the method into the RODM address space.

EKGIN1 Data Definition: During a structure load, whether an initial structure

load or a structure change, the RODM load function processes the EKGIN1 data

definition statement after the EKGIN2 data definition statement processing is

complete.

EKGIN1 identifies the sequential data set or concatenation of sequential data sets

that contain the load function input statements that specify the classes and their

parents.

The RODM load function reads this input as a stream of class definitions in

sequential order, and parses all RODM high-level load function statements into

RODM load function primitives. The RODM load function then converts the load

function primitives to a succession of RODM user API calls, which create the

classes in your RODM data cache.

Chapter 10. Using the RODM Load Function 247

When concatenating data sets, the order of the data sets in the EKGIN1 DD

statement is important. Load the data sets that contain parent classes before those

that contain their children. Figure 53 shows a concatenation of data sets for the

EKGIN1 DD statement.

Object Load Only

In an object load, you can load only the object definitions. You can load object

definitions as a job or as a module call while RODM is running. The object load

uses one DD statement labeled EKGIN3 to identify the sequential data set or

concatenation of sequential data sets that contain the object definitions for the load.

When you concatenate data sets, be sure that the statements that create objects are

processed before the statements that create links between objects. Both objects

being linked must be in RODM when the link statement is processed.

Concatenation takes the standard z/OS format for concatenated data sets. Figure 54

shows a concatenation of data sets for the EKGIN3 DD statement.

Running the RODM Load Function

This topic contains a description of invoking the RODM load function, plus

considerations when running the load function, in the following order:

v The load function as an initialization method

v Invoking the load function as a batch job

v Running the load function from a module

v Considerations when running the load function

You can run the RODM load function by running it as an initialization method, as

a job, or as a module call. A RODM load function job can parse the data model,

load the data model into the RODM data cache, or verify the data model.

A good practice is to parse your data model definition before you attempt to load

it. This can reduce the number of errors that occur during the load. This practice

enables you to identify and correct errors in your load function input statement

syntax prior to loading these definitions into your RODM data cache.

The Load Function as an Initialization Method

Use the initialization method provided with NetView or you can write one. In

either case, before the initialization method can be triggered, an object with the

name of the method must be created in the EKG_Method class by the user or by

the RODM load function.

The NetView-supplied initialization has two parts:

EKGLISLM

Loads the methods defined in the method name table identified by the

EKGIN2 DD statement; loads the class structure definitions in the

//EKGIN1 DD DSN=parent.class.input.dataset1,DISP=SHR (All parent classes)

// DD DSN=child.class.input.dataset1,DISP=SHR (Domain 1 children)

// DD DSN=child.class.input.dataset2,DISP=SHR (Domain 2 children)

// DD DSN=child.class.input.dataset3,DISP=SHR (Domain 3 children)

Figure 53. Data Set Concatenation for EKGIN1

//EKGIN3 DD DSN=object.instance.input.dataset1,DISP=SHR (Domain 1)

// DD DSN=object.instance.input.dataset2,DISP=SHR (Domain 2)

// DD DSN=object.instance.input.dataset3,DISP=SHR (Domain 3)

Figure 54. Data Set Concatenation for EKGIN3

248 Resource Object Data Manager and GMFHS Programmer’s Guide

sequential data set or concatenation of sequential data sets identified by

the EKGIN1 DD statement; and then triggers EKGLIILM.

EKGLIILM

Loads the object definitions in the sequential data set or concatenation of

sequential data sets identified by the EKGIN3 DD statement.

EKGLISLM and EKGLIILM run as methods in the RODM address space. These

methods use the environment that RODM passes to them and operate as

object-independent methods.

Cold Start (Initialization): To initialize RODM and load the data cache from a

cold start, you specify the name of the initialization method using the INIT=

parameter of the RODM start up command. You run a program (EKGTC000),

which triggers EKGLISLM, the load function initialization method, which in turn

triggers EKGLIILM. Because a cold start requires a structure load, you do not

specify INIT=EKGLIILM as a parameter of the RODM start up command for a

cold start.

NetView provides an example of a RODM start up procedure named EKGXRODM.

This procedure performs an initialization load, but before running this start up

procedure, make the following modifications to the start up procedure JCL:

v Change the specification of USER.METHODS for DSN= parameter on the

STEPLIB DD statement to reflect the name of the partitioned data set containing

your user-written methods. If there are none, comment out or delete this

statement.

v Ensure that EKGIN1 and EKGIN3 DD statements identify your class structure

and object definitions. The supplied procedure identifies data sets that contain

examples of how to code the definitions.

v Remove the comment delimiters from all other JCL statements.

You run the procedure by entering:

S EKGXRODM,TYPE=C,INIT=EKGLISLM

In this example:

v EKGXRODM is the procedure name

v TYPE=C specifies a cold start operation

v INIT=EKGLISLM specifies the name of the method to trigger

Warm Start: Although you can use EKGLISLM to load the class structure and

object definitions into the data cache at warm start, just like a cold start, you

normally specify EKGLIILM for the INIT= parameter to load only the object

definitions. Usually you are warm starting to change the network configuration or

as a result of an error.

NetView provides an example RODM start up procedure named EKGXRODM. Use

it to perform the object definition load. Before running the procedure, make the

following modifications to the sample procedure’s JCL to load only the object

definitions:

v Comment out the C Library in the STEPLIB DD, if necessary, as described in the

notes in the procedure heading.

v Ensure that the EKGIN3 DD statement identifies your definitions. The supplied

procedure identifies the data set that contains examples of how to code the

object definitions.

Chapter 10. Using the RODM Load Function 249

v Remove the comment delimiters from only the EKGLUTB, EKGPRINT and

EKGIN3 DD statements.

Run the procedure by entering:

S EKGXRODM,TYPE=W,INIT=EKGLIILM

where:

v EKGXRODM is the procedure name

v TYPE=W specifies a warm start operation

v INIT=EKGLIILM specifies the name of the method to trigger

Invoking the Load Function As a Batch Job

You can run the RODM load function as a batch job. The RODM load function

uses the verified user ID of the job submitter as the User_appl_ID to connect to

RODM. The verified user ID is obtained from the system authorization facility.

This user ID must have a minimum RODM authorization level of 3 or 5,

depending on the load function statements used. See “Authorization and

Authorization Levels” on page 252 for the required authorization level.

Your job can load:

v The object definitions only

v The methods and class structure definitions

v The methods and all the definitions

NetView supplies a sample job and procedure to run the RODM load function as a

batch job. The sample job EKGLLOAD calls the procedure EKGLOADP and passes

the parameters you specify. The following sections show how to update the

EKGLLOAD sample job for each of the three ways you can load RODM.

Loading Object Definitions Only: Copy the sample job EKGLLOAD and update

it to load object definitions into RODM. Update the system level qualifier in the

EKGLOADP procedure if you do not use NETVIEW.V5R3M0 as the high-level

qualifiers of the RODM data sets on your system. The following steps give

example values for the parameters passed by the EKGLLOAD job to the

EKGLOADP procedure. Provide your own values for each parameter.

1. Update the JOB statement with your accounting information.

2. Fill in RODMNAME with the name of your RODM.

3. Fill in EKGIN3 with the name of the data set that contains your object

definitions.

4. Ensure RODM is running and submit the EKGLLOAD job.

Figure 55 shows the lines in EKGLLOAD updated with example values.

Loading Method Names and Class Structure: Copy the sample job EKGLLOAD

and update it to load class and method definitions into RODM. Update the system

level qualifier in the EKGLOADP procedure if you do not use NETVIEW.V5R3M0

on your system. The following steps give example values for the parameters

passed by the EKGLLOAD job to the EKGLOADP procedure. Provide your own

values for each parameter:

//STEP01 EXEC EKGLOADP,

// RODMNAME=EKGXRODM,

// EKGIN3=NETVIEW.V5R3M0.CNMSAMP(EKGIN3)

Figure 55. Object Load Batch Job Using EKGLLOAD Sample

250 Resource Object Data Manager and GMFHS Programmer’s Guide

|
|
|

1. Update the JOB statement with your accounting information.

2. Fill in RODMNAME with the name of your RODM.

3. Fill in EKGIN1 with the name of the data set that contains your class

definitions.

4. Specify LOAD=STRUCTURE for a class and method load.

5. Ensure RODM is running and submit the EKGLLOAD job.

Your methods are defined in the method table in NETVIEW.V5R3M0.CNMSAMP.

You do not need to specify this data set name. Figure 56 shows the lines in

EKGLLOAD updated with example values.

Loading Method Names and All Definitions: You have two options to load the

classes, methods, and objects using the EKGLLOAD sample job:

v Load the classes and methods first, following the steps in “Loading Method

Names and Class Structure” on page 250 and then load the objects, following

the steps in “Loading Object Definitions Only” on page 250.

v Put all of the class, method, and object definitions in a single data set and load

that data set by following the steps in “Loading Object Definitions Only” on

page 250.

Instead of putting all of the definitions in a single data set, you can concatenate

separate data sets. This requires updating the EKGLOADP procedure, because the

EKGLLOAD job can pass only one data set as a parameter.

Calling the Load Function from a Module

To run the RODM load function from a module, call the appropriate entry point

for the language that you are using. The RODM load function uses the verified

user ID, associated with the calling program at execution time, as the

User_appl_ID to connect to RODM. The verified user ID is obtained from the

system authorization facility. This user ID must have a minimum RODM

authorization level of 3 or 5, depending on the load function statements used. See

“Authorization and Authorization Levels” on page 252 for the required

authorization level. If a listing is requested, the listing and other information are

written to the specified data set for use by the calling module.

You must specify RMODE=24 when you link-edit the RODM load function

module.

From Modules Written in PL/I and C: User application programs written in PL/I

or C that call the RODM load function directly must call the EKGLJOB entry point.

The linkage to EKGLJOB must adhere to z/OS conventions as described in “z/OS

Linkage Conventions” on page 265. The RODM load function runs all load

functions in the user application program task control area environment.

From Modules Not Written in PL/I or C: User application programs not written

in PL/I or C that call the RODM load function directly must call the EKGLOTLM

entry point. The EKGLOTLM entry point creates a task control area environment

//STEP01 EXEC EKGLOADP,

// RODMNAME=EKGXRODM,

// EKGIN1=NETVIEW.V5R3M0.CNMSAMP(EKGIN1),

// LOAD=STRUCTURE

Figure 56. Class and Method Load Batch Job Using EKGLLOAD Sample

Chapter 10. Using the RODM Load Function 251

|
|
|
|

in which all load functions are run. Use the same linking conventions as for

EKGLJOB. See “z/OS Linkage Conventions” on page 265.

Considerations When Running the RODM Load Function

The RODM Load Function: When running the RODM load function, you can run

only one RODM load function job per address space. Ensure that the PL/I

run-time libraries are installed or available prior to submitting or running a job.

The RODM load function sets the value of the EKG_StopMode field to 3 before

disconnecting. (Do not purge notification queues or subscriptions.) This value

enables the RODM load function to disconnect without purging any notification

subscriptions, notification queues, or notification methods that are created as the

result of methods triggered by the RODM load function.

The RODM Program: The RODM program must be running for

OPERATION=LOAD and for OPERATION=VERIFY because the RODM load

function issues a connect request to RODM to access the data cache. If RODM is

not running, an error message is issued.

RODM does not need to be running for OPERATION=PARSE. With

OPERATION=PARSE, the RODM load function reads the load function input files

and parses them to find syntax errors. The RODM load function issues the connect

function to RODM and queries the RODM version and release. Errors found in the

connect and query function are logged in the Job log and RODM log. However,

these errors are not considered as errors of the RODM load Parse operation. For

more information about OPERATION=, see “OPERATION” on page 271.

Ensure that the name you use to run the RODM load function is the same as the

name of the RODM program that is running. The specification for the NAME=

parameter must equal the name of the running RODM program. For information

about parameter NAME=, see “NAME” on page 270.

Authorization and Authorization Levels: The TSO ID and TSO password that

you use to run the RODM load function and user application programs that run

the RODM load function must be authorized by your system authorization facility

to access RODM, unless the SEC_CLASS keyword is set to *TSTRODM in

customization file EKGCUST.

The ID that runs the load function must have an authorization level of at least 3 or

5, depending on the load function statements used. Table 29 shows the load

function statement, the statement type, the minimum authorization level, and a

reference to additional information about the statement.

 Table 29. Load Function Statements and Minimum Authorization Levels

Statement

Statement

Type

Minimum

Authorization Level See Page

CREATE High-level 3 277

DELETE High-level 3 278

FORCE_HAS_NO_INSTANCE Primitive 3 282

FORCE_NOT_A_CLASS Primitive 5 282

HAS_FIELD Primitive 5 283

HAS_INSTANCE Primitive 3 283

HAS_NO_FIELD Primitive 5 284

HAS_NO_INSTANCE Primitive 3 284

252 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 29. Load Function Statements and Minimum Authorization Levels (continued)

Statement

Statement

Type

Minimum

Authorization Level See Page

HAS_NO_SUBFIELD Primitive 5 285

HAS_PARENT Primitive 5 285

HAS_PRV_FIELD Primitive 5 285

HAS_SUBFIELD Primitive 5 286

HAS_VALUE Primitive 3 286

INHERITS Primitive 3 287

INVOKED_WITH Primitive 3 287

IS_LINKED_TO Primitive 3 288

IS_NOT_LINKED_TO Primitive 3 288

MANAGED OBJECT CLASS High-level 5 275

NOT_A_CLASS Primitive 5 289

SET High-level 3 279

SUBFIELD_HAS_VALUE Primitive 3 289

SUBFIELD_INHERITS Primitive 3 290

Checking the Output Listings

To understand the output listings, you must understand the format of the output

messages and the contents of the output listing.

Note: Refer to the NetView online help for a description of the messages issued by

the RODM load function. All RODM load function messages start with

EKG8.

Two output listings consisting of different types of information are created when

you run the RODM load function. One listing is created by the RODM load

function and is written to the data set specified by the EKGPRINT DD statement.

The other is system-generated output and is directed to SYSOUT. If the EKGPRINT

DD statement specifies SYSOUT as the output data set, the separate listings appear

as one report.

RODM Load Function Output Listing

The listing created by the RODM load function contains the date, the name of the

function with its current level, a list of the options used when the load function

was run, load function input, actions taken by the function, echoed syntax when

an error occurs, and messages including an END OF JOB message. See Figure 59

on page 257 for an example of the load function output listing for an object load.

When displaying the contents of the data set identified by the EKGPRINT DD

statement, ensure that the software and hardware used can do so in mixed case.

RODM data is case sensitive, and to display the data in other than mixed case

hinders your verification of the RODM load.

All syntax can be echoed, interleaved with messages, where appropriate, indicating

the success or failure of the primitive that was performed, or only syntax errors

can be echoed, with messages indicating where errors are detected. The

LISTLEVEL parameter as described on page 269 defines which level of syntax

echoing occurs.

Chapter 10. Using the RODM Load Function 253

RODM Load Function Output Format

Formats differ slightly for the RODM load function output, depending on the

following:

v Type of operation—PARSE, LOAD, or VERIFY

v Type of load—STRUCTURE or INSTANCE

v LISTLEVEL option—ERRORSYNTAX or ALLSYNTAX

For more information about these parameters, see “RODM Load Function

Parameter Syntax” on page 269.

Compare the following figures for format differences:

v Figure 57 on page 255, a PARSE operation output example

v Figure 58 on page 256, a structure load output example

v Figure 59 on page 257, an object load output example

254 Resource Object Data Manager and GMFHS Programmer’s Guide

OPTIONS USED

OPERATION:PARSE

NAME:RODMNAME

SEV:WARNING

LISTLEVEL:ALLSYNTAX

CODEP:EKGCP500

LOAD:INSTANCE

ROUTECODE:1

INSTANCE ELEMENTS PROCESSED

 .

 .

 .

--* DESCRIPTION: SAMPLE STRUCTURE LOAD INPUT FILE *--

 .

 .

 .

SUPERCLASS MANAGED OBJECT CLASS;

PARENT IS UNIVERSALCLASS;

ATTRLIST

 FIELD_ANONYMOUSVAR ANONYMOUSVAR INITIAL (X’4040’),

 FIELD_BERVAR BERVAR INIT(X’810499FF88FF’),

 FIELD_CHARVAR CHARVAR INIT (’ANYCHARACTER’),

 FIELD_INDEXCHAR1 CHARVAR INIT (’INDEXNAME’) PUBLIC_INDEXED,

 FIELD_CLASSID CLASSID,

 FIELD_FIELDID FIELDID INIT (SUPERCLASS.FIELD_CHARVAR),

 FIELD_FLOATING FLOATING INIT (50.00),

 FIELD_GRAPHICVAR GRAPHICVAR INIT (DBCSDATA) PRIVATE,

 FIELD_INTEGER INTEGER INIT(50) PUBLIC,

 FIELD_OBJECTID OBJECTID,

 FIELD_OBJECTLINK OBJECTLINK,

 FIELD_OBJECTLINKLIST OBJECTLINKLIST,

 FIELD_SMALLINT SMALLINT INIT(50),

 FIELD_TIMESTAMP TIMESTAMP INIT(X’41B8CCCCCCCCCCCD’),

 FIELD_METHODSPEC METHODSPEC INIT(’EKGNOTF’ ((INTEGER) 50)),

 FIELD_SELFDEFINING SELFDEFINING,

 FIELD_INDEXLIST1 INDEXLIST,

 FIELD_INDEXINDEXLIST1 INDEXLIST PUBLIC_INDEXED;

END;

BEGIN CLASS SUPERCLASS;* HAS_PARENT UNIVERSALCLASS;* HAS_FIELD (ANONYMOUSVAR)

HAS_VALUE (INTEGER) 50;* HAS_FIELD (OBJECTID) FIELD_OBJECTID;* HAS_FIELD

(OBJECTLINK) FIELD_OBJECTLINK;* HAS_FIELD (OBJECTLINKLIST)

HAS_VALUE (METHODSPEC) (’EKGNOTF’ ((INTEGER) 50));* HAS_FIELD (SELFDEFINING)

FIELD_SELFDEFINING;* HAS_FIELD (INDEXLIST) FIELD_INDEXLIST1;*

HAS_INDEXED_FIELD (INDEXLIST) FIELD_INDEXINDEXLIST1;END CLASS *;

 .

 .

 .

END OF JOB OVERALL RETURN CODE: 00 11:17:15

Figure 57. Example of PARSE Operation Output to EKGPRINT

Chapter 10. Using the RODM Load Function 255

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OPTIONS USED

OPERATION:LOAD

NAME:RODMNAME

SEV:WARNING

LISTLEVEL:ALLSYNTAX

CODEP:EKGCP500

LOAD:STR

ROUTECODE:1

STRUCTURE ELEMENTS PROCESSED

 .

 .

 .

--* DESCRIPTION: SAMPLE STRUCTURE LOAD INPUT FILE *--

 .

 .

 .

SUPERCLASS MANAGED OBJECT CLASS;

PARENT IS UNIVERSALCLASS;

ATTRLIST

 FIELD_ANONYMOUSVAR ANONYMOUSVAR INITIAL (X’4040’),

 FIELD_BERVAR BERVAR INIT(X’810499FF88FF’),

 FIELD_CHARVAR CHARVAR INIT (’ANYCHARACTER’),

 FIELD_INDEXCHAR1 CHARVAR INIT (’INDEXNAME’) PUBLIC_INDEXED,

 FIELD_CLASSID CLASSID,

 FIELD_FIELDID FIELDID INIT (SUPERCLASS.FIELD_CHARVAR),

 FIELD_FLOATING FLOATING INIT (50.00),

 FIELD_GRAPHICVAR GRAPHICVAR INIT (DBCSDATA) PRIVATE,

 FIELD_INTEGER INTEGER INIT(50) PUBLIC,

 FIELD_OBJECTID OBJECTID,

 FIELD_OBJECTLINK OBJECTLINK,

 FIELD_OBJECTLINKLIST OBJECTLINKLIST,

 FIELD_SMALLINT SMALLINT INIT(50),

 FIELD_TIMESTAMP TIMESTAMP INIT(X’41B8CCCCCCCCCCCD’),

 FIELD_METHODSPEC METHODSPEC INIT(’EKGNOTF’ ((INTEGER) 50)),

 FIELD_SELFDEFINING SELFDEFINING,

 FIELD_INDEXLIST1 INDEXLIST,

 FIELD_INDEXINDEXLIST1 INDEXLIST PUBLIC_INDEXED;

END;

* HAS_PARENT UNIVERSALCLASS;

EKG8258I - THE HAS_PARENT PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

* HAS_FIELD (ANONYMOUSVAR) FIELD_ANONYMOUSVAR;

EKG8258I - THE HAS_FIELD PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

* HAS_FIELD (BERVAR) FIELD_BERVAR;

EKG8258I - THE HAS_FIELD PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

* HAS_FIELD (CHARVAR) FIELD_CHARVAR;

EKG8258I - THE HAS_FIELD PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

* HAS_INDEXED_FIELD (CHARVAR) FIELD_INDEXCHAR1;

EKG8258I - THE HAS_INDEXED_FIELD PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

 .

 .

 .

EKG8258I - THE SUBFIELD_HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

END OF JOB OVERALL RETURN CODE: 00 13:58:29

Figure 58. Example of Structure Load Output to EKGPRINT

256 Resource Object Data Manager and GMFHS Programmer’s Guide

OPTIONS USED

OPERATION:LOAD

NAME:RODMNAME

SEV:WARNING

LISTLEVEL:ALLSYNTAX

CODEP:EKGCP500

LOAD:INSTANCE

ROUTECODE:1

INSTANCE ELEMENTS PROCESSED

 .

 .

 .

--* DESCRIPTION: SAMPLE INSTANCE LOAD INPUT FILE *--

 .

 .

 .

CREATE INVOKER ::= 1;

 OBJCLASS ::= SUBCLASS_2;

 OBJINST ::= MYNAME = (CHARVAR) ’INSTANCE_4’;

 ATTRLIST

 FIELD_ANONYMOUSVAR ::= (ANONYMOUSVAR) X’ABCD’,

 FIELD_BERVAR ::= (BERVAR) X’810499FF88FF’,

 FIELD_CHARVAR ::= (CHARVAR) ’CHARTEST’,

 FIELD_FIELDID ::= (FIELDID) SUPERCLASS.FIELD_INTEGER,

 FIELD_FLOATING ::= (FLOATING) 100.00,

 FIELD_INTEGER ::= (INTEGER) 100,

 FIELD_SMALLINT ::= (SMALLINT) 100,

 FIELD_TIMESTAMP ::= (TIMESTAMP) X’41B8CCCCCCCCCCCD’,

 FIELD_METHODSPEC ::= (METHODSPEC) (’EKGNOTF’ ((INTEGER) 100));

END;

SUBCLASS_2 HAS_INSTANCE *;

EKG8258I - THE HAS_INSTANCE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

EKG8258I - THE HAS_VALUE PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

 .

 .

 .

-- DELETE SUBFIELDS USING THE HAS_NO_SUBFIELD PRIMITIVE --

OP SUPERCLASS.FIELD_CHARVAR HAS_NO_SUBFIELD NOTIFY;

EKG8258I - THE HAS_NO_SUBFIELD PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

OP SUPERCLASS.FIELD_CHARVAR HAS_NO_SUBFIELD PREV_VALUE;

EKG8258I - THE HAS_NO_SUBFIELD PRIMITIVE STATEMENT COMPLETED SUCCESSFULLY.

END OF JOB OVERALL RETURN CODE: 00 13:58:46

Figure 59. Example of Object Load Output to EKGPRINT

Chapter 10. Using the RODM Load Function 257

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Load Function Reference

This section contains additional reference information for the RODM load function.

It describes the following:

v Verify operation of the load function

v Usage of data types

v Null values for load function data types

v RODM tables:

– Control table—EKGCTABL

– Method name table

– Parameter mapping table
v Required and optional data definition names

v z/OS linkage conventions for the load function

v Syntax for RODM load function:

– Parameters used to run the load function

– High-level statements

– Primitives

– Common syntactic elements

Understanding the Verify Operation

The verify operation parses the RODM load function input files and compares the

statements with the contents of the data cache. No changes are made to the data

cache. The verify operation parses both high-level load function statements and

load function primitive statements. The load function primitive statements are

easier to understand, so they are described first.

Each load function primitive statement description in “Syntax and Processing Logic

for Load Function Primitives” on page 281 includes an explanation of the verify

operation logic for that statement. The verify operation logic describes how the

load function compares the statement to the contents of the data cache. If the

comparison is true, the load function issues a return code of zero. If the

comparison is not true, the load function returns an error message.

For example, if you want to ensure that one class in the data cache is the parent of

another class, you can use the verify operation with the HAS_PARENT load

function primitive statement. The verify operation logic for the HAS_PARENT load

function primitive statement directs the load function to check if the specified child

class and parent class exist in the data cache. The load function then checks if the

MyPrimaryParentID field of the child class points to the parent class. RODM must

be running when you use the verify operation of the load function.

The RODM load function processes high-level load function statements by first

converting them to load function primitive statements. The load function primitive

statements are then processed as in the previous example.

For example, the following high-level load function statement can be processed by

the load function.

 ClassA MANAGED OBJECT CLASS;

 PARENT IS UniversalClass;

 ATTRLIST

 Field_1 CHARVAR INIT(’abc’),

 Field_2 CHARVAR PRIVATE INIT(’gsb’),

 Field_3 CHARVAR;

 END;

258 Resource Object Data Manager and GMFHS Programmer’s Guide

When you run the verify operation, the load function converts the statement to

load function primitive statements. The first two lines of the statement are

converted to the following:

 OP ClassA HAS_PARENT UniversalClass;

This load function primitive statement is processed as in the first example.

Each line of the field definition list is converted to one statement to create the field

and a second statement to assign the initial value if one is supplied. The first field

definition in this example is converted to the following:

 OP ClassA HAS_FIELD (CHARVAR) Field_1;

 OP ClassA..Field_1 HAS_VALUE (CHARVAR) ’abc’;

Each of the load function primitive statements is then processed as described in

“Syntax and Processing Logic for Load Function Primitives” on page 281.

When you use the verify operation with load function statements that specify

values for fields, be careful because values often change. Only test for a specific

value when you are interested in that value. In the high-level load function

statement example, the initial value of Field_1 caused the load function to generate

a statement to test Field_1 for the value abc. Remove the initial values from field

definitions before using the verify operation if all you need to test for is the

structure of the data cache.

Using CLASSID and OBJECTID Data Types

The RODM load function enables you to specify the CLASSID and OBJECTID data

types for fields. However, the corresponding ClassID and ObjectID abstract data

types in RODM are reserved; you cannot create fields with these data types, except

within a SELFDEFINING variable.

CLASSID

If you create a field of type CLASSID using the RODM load function, the field is

created in the RODM data cache with the Integer abstract data type. The RODM

load function gets the class ID for the class name you specify and puts the class ID

value in the target field in the RODM data cache which must be of type Integer.

When you assign a value of type CLASSID using the RODM load function, you

supply a class name, but be sure the class name specified already exists. If you

create a field of type CLASSID using the RODM load function, but do not assign

an initial value, the field is created with a null value.

OBJECTID

If you create a field of type OBJECTID using the RODM load function, the field is

created in the RODM data cache with the AnonymousVar abstract data type. The

RODM load function gets the object ID for the object name you specify and puts

the object ID value in the target field in the RODM data cache which must be of

type AnonymousVar.

When you assign a value of type OBJECTID using the RODM load function, you

supply a class name and an object name, but be sure the object name and class

name you specify already exist. If you create a field of type OBJECTID using the

RODM load function, but do not assign an initial value, the field is created with a

null value.

Chapter 10. Using the RODM Load Function 259

Null Values for RODM Load Function Data Types

You can specify null values for some of the data types used in RODM load

function primitives and RODM high-level load function statements. This enables

you to set the value of a field to its null value as defined by RODM. The following

list shows how to specify each null value:

 (ANONYMOUSVAR) X’’

 (BERVAR) X’’

 (APPLICATIONID) ’’

 (CHARVAR) ’’

 (CHARVARADDR) X’00000000’

 (ECBADDRESS) X’00000000’

 (GRAPHICVAR) ’’

 (INDEXLIST) ()

 (METHODNAME) ’NullMeth’

 (METHODPARAMETERLIST) ()

 (OBJECTNAME) ’’

 (SELFDEFINING) ()

 (SHORTNAME) ’’

 (SUBSCRIBEID) ’’

Control Table—EKGCTABL

You can modify the member names contained in this required control table called

EKGCTABL. This table is a member of the partitioned data set identified by the

EKGLUTB DD statement which is a required DD statement. RODM expects the

member name to remain EKGCTABL and to be contained in the data set identified

by the EKGLUTB DD statement.

The EKGCTABL control table contains two entries:

PARAMETER_MAPPING_MEMBER

Specifies the name of the member of the partitioned data set identified by

the EKGLUTB DD statement that contains the parameter mapping table.

INSTALL_METHOD_MEMBER

Specifies the name of the member of the partitioned data set identified by

the EKGIN2 DD statement that contains the method name table.

Figure 60 shows an example control table. The column scale is inserted for

explanation purposes and is not part of the control table.

The required symbols PARAMETER_MAPPING_MEMBER and

INSTALL_METHOD_MEMBER must start in column 1. The member names,

EKGPTENU and EKGINMTB in this example, must start in column 41.

Relationships to Other Tables and DD Names

Figure 61 on page 261 shows the relationship between the control table

EKGCTABL, the parameter mapping table EKGPTENU, the method name table

EKGINMTB, and the DD names EKGLUTB and EKGIN2.

 1 2 3 4 5

1...+....0....+....0....+....0....+.....1...+....0...

PARAMETER_MAPPING_MEMBER: EKGPTENU

INSTALL_METHOD_MEMBER: EKGINMTB

Figure 60. Sample Control Table EKGCTABL with Column Scale

260 Resource Object Data Manager and GMFHS Programmer’s Guide

In the figure, the job stream to verify the structure of a RODM named

RODMNAME has DD statements EKGLUTB and EKGIN2. The DD statement

labeled EKGLUTB identifies the partitioned data set

NETVIEW.V5R3M0.CNMSAMP containing the members EKGCTABL and

EKGPTENU. The DD statement labeled EKGIN2 identifies the partitioned data set

NETVIEW.V5R3M0.CNMSAMP containing the member EKGINMTB. RODM uses

the control table EKGCTABL to obtain the member names of the parameter

mapping table and method name table.

Method Name Table

The method name table contains the names of the methods you want installed by

the RODM load function. A sample file named EKGINMTB that contains only one

entry (EKGNOTF) is shipped in the samples library

NETVIEW.V5R3M0.CNMSAMP. You can either copy that file and make

modifications or create your own.

You do not have to use the name of EKGINMTB for your method name table, but

if you use a different name you must modify the control table EKGCTABL because

in the IBM-supplied control table the member name specified for the method name

table is EKGINMTB. For more information about control table EKGCTABL, see

“Control Table—EKGCTABL” on page 260.

//*
//*
//LOADRODM EXEC EKGLOTLM SYS1.CNMSAMP (partitioned data set)

(EKGCTABL)

(EKGPTENU)

PARAMETER_MAPPING_MEMBER:

INSTALL_METHOD_MEMBER:

OPERATION

OPERATION

LOAD

VERIFY

VERIFY

PARSE

LOAD

...

OPERATION

OP

LOAD

VERIFY

VERIFY

PARSE

LOAD

...

SYS1. (partitioned data set)CNMSAMP

(EKGINMTB)

SOFTMTHD Change method

OSSOMTHD Change method

EKGPTENU

EKGINMTB

//EKGLUTB DD DSN=&SQ1. ,DISP=SHRCNMSAMP

//EKGIN2 DD DSN=&SQ1. ,DISP=SHRCNMSAMP

Figure 61. Relationship between EKGCTABL, EKGINMTB, EKGPTENU and JCL

Chapter 10. Using the RODM Load Function 261

Figure 62 shows a method name table (EKGINMTB) that declares two user-written

methods and seven NetView-supplied methods. The column scale is inserted for

explanation purposes and is not part of the method name table.

Each entry in a method name table consists of one row. Columns 1–8 contain the

name of the method, and columns 11–80 can optionally contain a comment, such

as the type of method.

To bypass the RODM method name table load, replace EKGINMTB with *NONE

in control table EKGCTABL as shown in Figure 63. The column scale is inserted for

explanation purposes and is not part of the method name table.

Associated DD Statements and Control Table

The DD statement that declares the partitioned data set containing the method

name table as one of its members is labeled EKGIN2. The member name for the

method name table is in control table EKGCTABL which is in the partitioned data

set identified by the DD statement labeled EKGLUTB. See Figure 61 on page 261

for a pictorial of this relationship.

Parameter Mapping Table

When you run the RODM load function, you must supply parameters, such as

NAME, OPERATION, CODEPAGE, and LOAD. According to JCL conventions,

these parameters go in parentheses on the PARM= part of the EXEC statement.

They take the form:

PARM=('keyword1=keyword_value1,keyword2=keyword_value2,...')

The parameter mapping table is a fixed-block table with an LRECL of 80. The table

enables string substitutions to be used for the syntax known by the RODM load

function (internal syntax). These string substitutions can be abbreviations, a

mapping to a national language, or both. This enables the RODM load function to

use other syntax formats.

The parameter mapping table (EKGPTENU) is a member of the partitioned data

set identified by the EKGLUTB DD statement. The EKGCTABL control block

contains the member name of the parameter mapping table. See Figure 61 on page

261 for a pictorial of this relationship.

 1 2 3 4 5

1...+..8..1...+....0....+....0....+....0....+....0...

EKGNOTF NOTIFICATION

EKGNLST Notify

EKGNEQL Notify

EKGNTHD Notify

EKGCTIM Change method to trigger an OI method

EKGMIMV Named method to increment a value

EKGSPPI Object-Independent method

SOFTMTHD Change Method - (user written)

OSSOMTHD Change Method - (user written)

Figure 62. Method Name Table Format with Column Scale

 1 2 3 4 5

1...+....0....+....0....+....0....+.....1...+....0...

INSTALL_METHOD_MEMBER: *NONE

Figure 63. Sample Control Table EKGCTABL with Column Scale

262 Resource Object Data Manager and GMFHS Programmer’s Guide

Table EKGPTENU has a one-to-one relationship between the internal syntax in

columns 1–30 and the substitution string in columns 31–80. See “RODM Load

Function Parameter Syntax” on page 269 for information about the load function

parameter data (internal syntax) in columns 1–30.

The syntax rules are:

v Internal keyword entries must start in column 1 and each related substitution

string entry must start in column 31.

v Internal keyword values must start in column 2 and each related substitution

string value must start in column 32.

v The internal keyword default value must start in column 3 and the substitution

string default value must start in column 33.

v For each keyword, the keyword entry is followed by the value entries for that

keyword, which are in turn followed by the default value entry for that

keyword.

Figure 64 documents the format of this table and shows examples of abbreviation

substitution strings. The column scale is inserted for explanation purposes and is

not part of the parameter mapping table.

You can modify an existing mapping table or create a new table. A sample load

function parameter mapping table can be found in member EKGPTENU of data set

CNMSAMP in the samples library supplied with RODM. Copy the sample and

 1 2 3 4 5

1...+....0....+....0....+.....1...+....0....+....0...

OPERATION OPERATION

OPERATION OP

 LOAD LOAD

 VERIFY VERIFY

 VERIFY VER

 PARSE PARSE

 PARSE PARS

 LOAD LOAD

NAME NAME

SEVERITY SEVERITY

SEVERITY SEV

 WARNING WARNING

 WARNING WARN

 ERROR ERROR

 ERROR ERR

 WARNING WARNING

LISTLEVEL LISTLEVEL

LISTLEVEL LISTLVL

 ERRORSYNTAX ERRORSYNTAX

 ERRORSYNTAX ERRORSNTX

 ALLSYNTAX ALLSYNTAX

 ALLSYNTAX ALLSNTX

 ERRORSYNTAX ERRORSYNTAX

CODEPAGE CODEPAGE

CODEPAGE CODEP

 EKGCP500 EKGCP500

 EKGCP500 EKGCP500

LOAD LOAD

 STRUCTURE STRUCTURE

 STRUCTURE STR

 INSTANCE INSTANCE

 INSTANCE INS

 INSTANCE INSTANCE

Figure 64. Sample Parameter Table EKGPTENU with Column Scale

Chapter 10. Using the RODM Load Function 263

make any updates to the copy. If you change the name of the parameter table, be

sure to update the EKGCTABL control table.

RODM Data Definition (DD) Statements

The DD statements that are used to run the load function declare the data sets.

Ensure that the data sets appropriate to the type of load you are running are

present. Ensure that the contents of the data sets are valid.

You can change DD names to match your needs by using the DD list structure,

which you can pass to RODM using a parameter list when the load function is

run. The DD list structure is described in “z/OS Linkage Conventions” on page

265.

STEPLIB (Required If You Do Not Use LNKLIST)

The data set identified as STEPLIB must be a partitioned data set that

contains the RODM load function code. STEPLIB is a required DD

statement when the RODM load function code is not in the z/OS

LNKLIST. Another DD statement must be concatenated to the STEPLIB DD

statement that identifies the Language Environment® runtime library. The

format of STEPLIB is the standard DCB (data control block) format for any

link-edited data set.

EKGLANG (Required)

The EKGLANG DD statement identifies the partitioned data set that

contains the message file for the RODM load function.

EKGLUTB (Required)

The EKGLUTB data definition identifies the partitioned data set that

contains the EKGCTABL control table file as one of its members. This

required control table contains the member name of the parameter

mapping table and the member name of the method name table. For more

information about modifying the EKGCTABL control table and its

relationship with the parameter mapping table and the method name table,

see “Control Table—EKGCTABL” on page 260.

 The data control block for the DD statement labeled EKGLUTB specifies

LRECL=80 and RECFM=FB for the data set. The block size must be a multiple

of 80.

EKGPRINT (Required)

The EKGPRINT data definition identifies the data set containing the

RODM load function output listing. This listing contains the load function

input, echoed syntax, a report of primitive success or failure, messages and

codes, and other information.

 You can direct the print to SYSOUT, to a sequential file, or to a member of

a partitioned data set. The data set or file must specify LRECL=80 and

RECFM=FB. The block size must be a multiple of 80.

EKGIN1 (Required for Class Structure Definition)

EKGIN1 identifies the sequential data set or concatenation of sequential

data sets that contain the class structure definitions. The data sets that

define the class structure must be sequential data sets with a data control

block that specifies LRECL=80 and RECFM=FB. The block size must be a

multiple of 80. The class structure definitions which represent the GMFHS

data model are contained in member DUIFSTRC of the CNMSAMP data

set in the samples library.

264 Resource Object Data Manager and GMFHS Programmer’s Guide

EKGIN2 (Required for Class Structure Definition)

EKGIN2 identifies the partitioned data set that contains the method name

table file as one of its members. EKGIN2 must be a partitioned data set

with a data control block that specifies LRECL=80 and RECFM=FB. The block

size must be a multiple of 80. The IBM-supplied method name table which

has one entry of EKGNOTF (notify method) is contained in member

EKGINMTB of the CNMSAMP data set in the samples library.

EKGIN3 (Required for Object Definition)

EKGIN3 identifies the sequential data set or concatenation of sequential

data sets that contain the object definitions. You create these definitions to

define your network. The data control block of each of the data sets

concatenated as EKGIN3 must specify LRECL=80 and RECFM=FB. The block

size must be a multiple of 80. The object definitions which define the

network described in Chapter 2, “Defining Your Network to GMFHS,” on

page 17 are contained in member DUIFSNET of the CNMSAMP data set in

the samples library as an example.

Data Definitions Necessary for Initialization

If you are running an initialization method, either during a cold start or a warm

start of RODM, you need data sets for the following data definition names:

 EKGIN1

 EKGIN2

 EKGIN3

 EKGLANG

 EKGPRINT

 EKGLUTB

Data Definitions Necessary for Structure Load Only

When running the RODM load function either through job posting or through a

module call to load only the class structure and install methods, you need data sets

for the following data definition names:

 EKGIN1

 EKGIN2

 EKGLANG

 EKGPRINT

 EKGLUTB

Data Definitions Necessary for Object Load Only

When running the RODM load function either through job posting or through a

module call to load only the object definitions, you need data sets for the following

data definition names:

 EKGIN3

 EKGLANG

 EKGPRINT

 EKGLUTB

z/OS Linkage Conventions

Figure 65 on page 266 shows the z/OS linkage requirements for running the

RODM load function by means of a module call to EKGLJOB.

Register 1 points to the parameter list, which contains up to three parameter

addresses. The first parameter address points to a parameter structure that you use

to specify the RODM load function parameters. The second parameter address is

optional unless the third parameter address is supplied. If it is supplied, it points

to a DD list structure that you use to change the default RODM load function DD

Chapter 10. Using the RODM Load Function 265

names. The third parameter address is optional. If it is supplied, it points to the

access block that was used to connect to RODM. The last address in this parameter

list must have the high-order bit set ON.

Parameter Structure

The parameters passed to the load function are the same as the ones specified in

the JCL except that you must provide the length of the parameter. The only

required parameter is NAME; all of the parameters that are not specified, default

to the values specified in the parameter mapping table.

The NAME parameter is ignored if the access block is specified.

The parameter structure consists of a 2-byte fixed field followed by a character

field. The fixed field must contain the length of the following character field. The

restrictions on JCL when running the load function require that the character field

to be no more than 100 bytes in length. The character field can contain any valid

combination of input parameter values.

The following is an example of the parameter structure in hextype format

(hexadecimal representation in the first line, EBCDIC in the second):

001CD5C1D4C57EC5D2C7E7D9D6C4D46BD3D6C1C47EE2E3D9E4C3E3E4D9C5

 N A M E = E K G X R O D M , L O A D = S T R U C T U R E

This parameter specifies that the character field has a length of X'1C' bytes. The

character field contains the required NAME parameter and the

LOAD=STRUCTURE parameter. The remaining load function parameters will

default to the default values specified in the parameter mapping table.

RODM Access Block

NAME=EKGXRODM, LOAD=STRUCTURE

Register 1

High
Order
Bit

Address of Parameter 1

Address of Parameter 2

Address of Parameter 3

0

0

1

Contents

Parameter List

Parameter Structure

2-byte
length

The access block that was used to connect to RODM

2-byte
length

DD List Structure

oldDD1

newDD2

newDD1

oldDD2

Figure 65. z/OS Linkage Conventions Required for Module Call to EKGLJOB

266 Resource Object Data Manager and GMFHS Programmer’s Guide

DD List Structure

The DD list structure, if specified, consists of a two-byte fixed field followed by a

character field with no maximum length restriction, although the length of the

character field must be a multiple of 16. The DD list structure is used to specify

DD names only, not data set names or member names.

The character field consists of an array of DD name pairs in which each element is

16 (X'10') bytes in length. The first eight bytes is the default or old DD name used

in the RODM load function, and the second eight bytes is the new DD name to be

used in the RODM load function. This array of DD name pairs can be in any order.

If no new DD names are provided, the default required DD names specified in

“RODM Data Definition (DD) Statements” on page 264 are used.

The following is an example of the DD list structure in hextype format

(hexadecimal representation in the first line, EBCDIC in the second):

0020C5D2C7C9D5F14040E2E3D9E4C3E34040C5D2C7C9D5F34040D6C2D1C5C3E34040

 E K G I N 1 S T R U C T E K G I N 3 O B J E C T

This parameter specifies that there are two DD name pairs and that the RODM

load function is to use the new DD name STRUCT instead of EKGIN1 and the new

DD name OBJECT instead of EKGIN3.

Access Block

The access block, if specified, is the access block that the user application used

when it connected to RODM. This allows a user application that is already

connected to RODM to use the RODM load function without first disconnecting

from RODM.

If the access block parameter is specified, the DD list structure must also be

specified. However, if you do not want to change the DD names, you can specify a

null string.

Calling the RODM Load Function

When you call the RODM load function, follow the linkage convention shown in

Figure 65 on page 266. The RODM load function linking convention follows a

standard z/OS approach. Use the ASM and INTER options when you define the

linkage of your modules to the RODM load function. Refer to Figure 66 on page

268 and locate the statement:

DCL EKGLJOB OPTIONS(ASM INTER) ENTRY EXTERNAL;

Figure 66 on page 268 is an example of how to call the RODM load function from

a PL/I program.

Chapter 10. Using the RODM Load Function 267

/**/

 /* Local Variables */

 /**/

 %DECLARE PL1_OR_C FIXED; /* Flag indicates whether this */

 %PL1_OR_C = 1; /* module is IBM PL/1 or C*/

 DCL MODULETYPE FIXED INIT(1); /* Input parm */

 /**/

 /* Declare the parms to pass to RODM LOAD function */

 /**/

 /* Keyword parms for load */

 DCL PARM_STRING CHAR(100) VARYING ALIGNED;

 /* Load DD name mapping */

 DCL DD_STRING CHAR(160) VARYING ALIGNED;

Figure 66. Calling the RODM Load Function from a PL/I Program (Part 1 of 4)

 /**/

 /* Declare the external entry */

 /**/

 /* This entry is used when */

 /* calling C or IBM PLI */

 /* modules */

 DCL EKGLJOB OPTIONS(ASM INTER) ENTRY EXTERNAL;

 /* This entry is used */

 /* otherwise */

 DCL EKGLTOLM OPTIONS(ASM INTER) ENTRY EXTERNAL;

Figure 66. Calling the RODM Load Function from a PL/I Program (Part 2 of 4)

 /**/

 /* Assign the value for the parms */

 /**/

 /* Load function input parms */

 PARM_STRING = ’OPERATION=LOAD,LOAD=INSTANCE,NAME=EKGXRODM’;

 /* DD name mapping */

 /* Must be multiple of 16 */

 /* First 8 bytes specific RODM*/

 /* DD name, and the second 8 */

 /* bytes specifics the DD */

 /* name user want to use */

 /* instead. */

 /* Use OBJECT1 DD name instead*/

 /* EKGIN3 DD name */

 DD_STRING = ’EKGIN3 OBJECT1 ’;

 /* Use SYSPRINT DD for load */

 /* messages. */

 DD_STRING = DD_STRING || ’EKGPRINTSYSPRINT’;

Figure 66. Calling the RODM Load Function from a PL/I Program (Part 3 of 4)

268 Resource Object Data Manager and GMFHS Programmer’s Guide

RODM Load Function Parameter Syntax

The following are descriptions and syntax for RODM load function parameters in

alphabetical order.

The syntax is shown in syntax diagrams.

CODEPAGE

Description: The code page for input scanning.

Syntax:

CODEPAGE

��
 CODEPAGE=EKGCP500

��

Usage Notes: To indicate code page 500 (U.S. English) for input scanning, you

code: CODEPAGE=EKGCP500

Note: RODM load function supports only code page 500.

LISTLEVEL

Description: The level of the listing to generate. You can list only the syntax that

is in error or list all syntax used as input to the RODM load function.

Syntax:

LISTLEVEL

��
 LISTLEVEL=ERRORSYNTAX

LISTLEVEL=

ERRORSYNTAX

ALLSYNTAX

��

 /**/

 /* Call load function. */

 /**/

 IF MODULE_TYPE = PL1_OR_C THEN /* If it is IBM PL/1 or C */

 DO; /* Check DD name mapping */

 IF LENGTH(DD_STRING) > 0 THEN /* If yes, pass both parms */

 /* If yes, pass both parms */

 CALL EKGLJOB(PARM_STRING,DD_STRING);

 ELSE /* If no,pass only PARM_STRING*/

 CALL EKGLJOB(PARM_STRING);

 END; /* End check DD name mapping */

 ELSE /* Use EKGLOTLM entry point */

 DO; /* Check DD name mapping */

 IF LENGTH(DD_STRING) > 0 THEN /* If yes, pass both parms */

 /* If yes, pass both parms */

 CALL EKGLOTLM(PARM_STRING,DD_STRING);

 ELSE /* If no,pass only PARM_STRING*/

 CALL EKGLOTLM(PARM_STRING);

 END; /* End check DD name mapping */

Figure 66. Calling the RODM Load Function from a PL/I Program (Part 4 of 4)

Chapter 10. Using the RODM Load Function 269

Usage Notes: When you specify:

LISTLEVEL=ALLSYNTAX

All syntax, including generated primitive statements, is listed with

messages indicating the success or failure of the high-level statements and

primitives that were performed interleaved where appropriate.

LISTLEVEL=ERRORSYNTAX

Only the statements in error, excluding primitive statements generated from

high-level statements, are listed with their error messages. Error messages for

generated primitive statements appear after their associated high-level

statement. The generated primitive statement that caused the error is not listed.

LOAD

Description: The type of load. A structure load or an object load.

Syntax:

LOAD

��
 LOAD=INSTANCE

LOAD=

INSTANCE

STRUCTURE

��

Usage Notes: When you specify:

LOAD=STRUCTURE

Only the input statements from the data sets identified by the EKGIN1 and

EKGIN2 data definition statements are used. Used for structure load.

LOAD=INSTANCE

Only the input statements from the data sets identified by the EKGIN3

data definition statement are used. Used for object load.

You can also use the LOAD=STRUCTURE specification to load object definitions as

well as class structure definitions. Concatenate the data sets that contain the object

definitions, normally identified by the EKGIN3 DD statement, to the EKGIN1 DD

statement.

You can also include class structure definition with object definitions when

specifying LOAD=INSTANCE. Using concatenation of data sets, arrange the JCL

statements for the EKGIN3 DD so that the class structure definitions, usually

identified by the EKGIN1 DD, are processed first with the object definitions

following.

NAME

Description: The name of the RODM on which the load is to be performed. This

is a required parameter for structure loads and object loads.

Syntax:

NAME

�� NAME=rodm_name ��

270 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage Notes: To specify a RODM name of MYRODM code: NAME=MYRODM

The NAME parameter is required for load and verify operations. If you specify

NAME for a parse operation, the RODM load function connects to the named

RODM, but this is not required.

The NAME parameter is not required for an initialization method load. Because a

particular RODM has run the RODM load function, the RODM name is known by

the load function.

OPERATION

Description: The operation the RODM load function is to perform. The operation

parameter can specify that the RODM load function parse the load function input

statement syntax for validity, load the RODM data cache, or verify that defined

contents exist prior to performing another operation.

Syntax:

OPERATION

��
 OPERATION=LOAD

OPERATION=

LOAD

PARSE

VERIFY

��

Usage Notes: You code:

OPERATION=PARSE

To parse the syntax of the data sets that contain your RODM load function

input parameters. RODM does not need to be running for

OPERATION=PARSE. With OPERATION=PARSE, the RODM load function

reads the load function input files and parses them to find syntax errors.

The RODM load function issues the connect function to RODM and

queries the RODM version and Release. Any errors found in the connect

and query function are logged in the Job log and RODM log. However,

these errors are not considered as errors of the RODM load Parse

operation.

OPERATION=LOAD

To parse the input statements and then load the data cache.

OPERATION=VERIFY

To parse and verify the contents of the RODM data cache.

Neither PARSE nor VERIFY performs the LOAD operation.

If you want to assign values to objects and wish to see which of the objects

actually exist instead of having them fail, use the VERIFY operation. For more

information about VERIFY see “Understanding the Verify Operation” on page 258.

If LOAD=STRUCTURE, the input statements from the data sets identified by the DD

labeled EKGIN1 is parsed, but the data identified by the DD labeled EKGIN2 is

not. If LOAD=INSTANCE, only the input statements from the data sets identified by

the DD labeled EKGIN3 are parsed. This occurs for LOAD, PARSE, or VERIFY

operations.

Chapter 10. Using the RODM Load Function 271

ROUTECODE

Description: Defines the route code to be used when the loader issues messages

to a console by way of the WTO or WTOR macros. Valid values are in the range 1

– 128. The default value is 1.

Messages that can be issued before this parameter is processed will use the default

route code 1, regardless of the value set here.

Syntax:

ROUTECODE

��
 ROUTECODE=1

ROUTECODE=nnn

��

SEVERITY

Description: The way that the application is to treat an error (return code 8) in

the processing of a class structure definition or an object definition: as an error

(return code 8) or as a warning (return code 4).

For SEVERITY=ERROR, when the RODM load function encounters an error in a

load function input statement, it ends processing at that statement and issues a

return code of 8. For SEVERITY=WARNING, when the RODM load function

encounters an error in a load function input statement, it continues processing and

issues a return code of 4 upon completion.

Syntax:

SEVERITY

��
 SEVERITY=WARNING

SEVERITY=

WARNING

ERROR

��

Usage Notes: If the application is to treat an error in the processing of a class

structure definition or an object definition as an error, you code: SEVERITY=ERROR

If the application is to treat an error in the processing of a class structure definition

or an object definition as a warning, you code: SEVERITY=WARNING

Use the WARNING option when you are parsing the syntax; use the ERROR

option when you are loading.

Coding RODM High-Level Load Function Statements

This topic of the reference section describes how to code RODM high-level load

function statements. It provides the syntax and associated rules for high-level load

function statements.

The syntax is shown in syntax diagrams.

272 Resource Object Data Manager and GMFHS Programmer’s Guide

Syntax Rules for High-Level Load Function Statements

This topic addresses syntax rules that apply to RODM high-level load function

statements.

Input Columns: The RODM load function reads all columns of an input record as

data. Do not use columns 73 to 80 for sequence or line numbers. You can use

sequence or line numbers if you mark them as comments using the comment (--)

characters.

Delimiters: Table 30 describes valid syntax delimiters for RODM high-level load

function statements.

 Table 30. Syntax Delimiters for RODM High-Level Load Function Statements

Delimiter Function

' ' Used to enclose a character string.

X'0E' (Shift-out) Marks the start of a DBCS mixed string data type.

X'0F' (Shift-in) Marks the end of a DBCS mixed string data type.

-- (two hyphens) Marks the beginning or end of a comment.

The RODM load function allows free-form syntax. Spaces can be used to improve

the readability of your load function input data because the RODM load function

allows one or more spaces between parts of a RODM high-level load function

statement. For example, the following MANAGED OBJECT CLASS high-level load

function statement is a valid use of spaces to improve readability:

Software MANAGED OBJECT CLASS;

 PARENT IS UniversalClass;

 ATTRLIST;

END;

Quoted Strings: A quoted string must begin and end on the same line. To create

a string longer than a single line, break it into separately quoted parts on multiple

lines. Multiple parts are concatenated by the RODM load function. For example,

the following two lines results in a single quoted string:

INIT(' This is the first line of two lines '

 ' that results in one quoted string ');

A quotation mark contained within quotation marks is represented by two single

quotation marks, for example:

INIT('This is '' a quote '' within a quote. ');

Quotation marks are used to enclose the entire string, including any keywords or

separators as a portion of the string. For example:

INIT(' Create the "MANAGED OBJECT CLASS" now ');

Double-Byte Character Strings: All data values between a X'0E' shift-out

character and a X'0F' shift-in character are treated by the RODM load function as

double-byte character string (DBCS) data. This means that any hexadecimal codes

that normally denote delimiters are treated as data within the double-byte

character string. The valid double-byte characters are the same as those for the

GraphicVar data type; see “GraphicVar” on page 229.

Chapter 10. Using the RODM Load Function 273

Field Definition Lists: When specifying a field definition list with the ATTRLIST

or MODLIST keyword, separate each member of the list with a comma and end

the list with a semicolon. Otherwise, the RODM load function treats each member

of the list as a separate statement.

Enabled data types and data type values for high-level statements are all those

enabled by RODM. For more information about these data types, see “Abstract

Data Type Reference” on page 223. For a list of these data type values and a syntax

diagram of the typed_value load function common syntactic element, see

“typed_value” on page 298.

Comments: Comments are delimited by two hyphens (--) at the beginning and at

the end. An example is:

 -- This is a comment --

If the end of comment delimiter is not specified, the end of the comment is

assumed to be at the end of the input line. The RODM load function ignores all

text between comment delimiters.

Syntax for High-Level Load Function Statements

This is a syntax reference for your use in coding the RODM high-level load

function statements for the data model definition to be created in your RODM data

cache. Each RODM high-level load function statement has a description containing

its name, purpose, external syntax, syntax parameter descriptions, and an example

of use.

Note: RODM high-level load function statement syntax is case sensitive.

The examples of use for the RODM high-level load function statements in this

section are subsets of the load function input statement stream as shown in

Figure 67. These statements create and use the hierarchical pseudo-structure shown

in Figure 68 on page 275. This structure and the associated fields are an example

for explanation purposes only, they are not part of RODM.

SDSF

Software

SystemSoftware

UniversalClass

Figure 67. Hierarchical Pseudo-Structure for Examples

274 Resource Object Data Manager and GMFHS Programmer’s Guide

MANAGED OBJECT CLASS:

Purpose: Use the MANAGED OBJECT CLASS high-level load function statement

to define the hierarchy and create the data model class structure in the RODM data

cache.

The following syntax declares class structure that the RODM load function adds to

the RODM data cache. It does not contain keywords for resetting values,

modifying, or deleting part or all of the class structure.

Software MANAGED OBJECT CLASS;

 PARENT IS UniversalClass;

 ATTRLIST;

END;

SystemSoftware MANAGED OBJECT CLASS;

 PARENT IS Software;

 ATTRLIST -- Field List --

 ProductName CHARVAR,

 ProgramNumber CHARVAR INIT(’None’),

 LatestPTFNumber CHARVAR INIT(’UY12345’),

 CorrespondingAPARNumber CHARVAR,

 DateApplied CHARVAR,

 Priority INTEGER INIT(3),

 UseInHost OBJECTLINKLIST;

END;

CREATE INVOKER ::= 0000003;

 OBJCLASS ::= SystemSoftware;

 OBJINST ::= MyName = (CHARVAR) ’SDSF’;

 ATTRLIST

 ProductName ::= (CHARVAR) ’SDSF’,

 ProgramNumber ::= (CHARVAR) ’5697-B82’,

 LatestPTFNumber ::= (CHARVAR) ’UY12903’,

 CorrespondingAPARNumber ::= (CHARVAR) ’PL45419’,

 DateApplied ::= (CHARVAR) ’03/01/97’,

 UseInHost ::= (OBJECTLINKLIST)

 (’Host_Class’.’HostA’.’UseSystemSoftware’)

 (’Host_Class’.’HostC’.’UseSystemSoftware’);

END;

SET INVOKER ::= 0000004;

 MODE ::= non-confirmed;

 OBJCLASS ::= SystemSoftware;

 OBJINST ::= MyName = (CHARVAR) ’SDSF’;

 MODLIST

 ProductName ::= (CHARVAR) ’SDSF V2’, REPLACE,

 ProgramNumber ::= (CHARVAR) ’5697-B82’,

 LatestPTFNumber ::= (CHARVAR), SET TO DEFAULT,

 CorrespondingAPARNumber ::= (CHARVAR) ’ ’,

 DateApplied ::= (CHARVAR) ’03/01/97’,

 UseInHost ::= (OBJECTLINKLIST)

 (’Host_Class’.’HostA’.’UseSystemSoftware’),

 REMOVE VALUE;

END;

DELETE INVOKER ::= 0000005;

 OBJCLASS ::= SystemSoftware;

 OBJINST ::= MyName = (CHARVAR) ’SDSF’;

END;

Figure 68. High-Level Input Statements for Pseudo-Structure

Chapter 10. Using the RODM Load Function 275

Syntax:

Keyword and Parameter Descriptions:

class The name or label of the class that you are defining.

PARENT IS parent_name

The name of the parent class of the class being created.

field type

Creates a field with name field of data type type for the class being created.

For a list of valid data types for this field, see “type” on page 297.

PUBLIC|PRIVATE|PUBLIC_INDEXED

Specifies if the field is a public, a public indexed, or a private field. Public

fields are inherited by children of this class, private fields are not inherited.

For more information about public indexed fields, see “Indexed Fields” on

page 220.

INIT (init_value)

An initial value setting for the field. INITIAL can be used instead of INIT.

Example: Consider the specification of a class named SystemSoftware that is a

child of the class named Software and has the following fields:

 ProductName

 ProgramNumber

 LatestPTFNumber

 CorrespondingAPARNumber

 DateApplied

 Priority

 UseInHost

Suppose that the initial value for the field named ProgramNumber is None, the

initial value for the field named LatestPTFNumber is UY12345, and the initial value

for the field named Priority is 3. The following MANAGED OBJECT CLASS

statement defines the class named SystemSoftware:

SystemSoftware MANAGED OBJECT CLASS;

 PARENT IS Software;

 ATTRLIST -- Field List --

 ProductName CHARVAR,

 ProgramNumber CHARVAR INIT(’None’),

 LatestPTFNumber CHARVAR INIT(’UY12345’),

 CorrespondingAPARNumber CHARVAR,

 DateApplied CHARVAR,

 Priority INTEGER INIT(3),

 UseInHost OBJECTLINKLIST;

END;

�� class MANAGED OBJECT CLASS ; PARENT IS parent_name ; �

�

�

 ,

ATTRLIST

PUBLIC

field type

PRIVATE

INIT (init_value)

PUBLIC_INDEXED

;

END

;

��

276 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage Notes: Observe the following rules when you specify the init_value

associated with the INIT or INITIAL keyword in a field definition list:

v Enclose all values in parentheses.

v Enclose character values in single quotation marks within the parentheses.

v Do not add additional parentheses to values for data types, such as

METHODSPEC and SELFDEFINING, that are already bound by parentheses.

v Enclose non-null GRAPHICVAR values in shift-out and shift-in characters within

the parentheses.

v Enclose a null GRAPHICVAR value in single quotation marks within the

parentheses.

CREATE:

Purpose: Use the CREATE high-level load function statement to create an object of

a specific class in the RODM data cache.

Syntax:

�� CREATE

INVOKER ::= invoke_value;
 OBJCLASS ::= class ; �

� OBJINST ::= MyName = (CHARVAR) 'object' ; �

�

�

,

ATTRLIST

;

field ::= typed_value

 END ; ��

Keyword and Parameter Descriptions:

INVOKER ::= invoke_value

The identifier value. The value is ignored by the RODM load function, but

can be used to number high-level load function statements in your

definition files.

OBJCLASS ::= class

The name of the parent class of the object being created.

OBJINST ::= MyName = (CHARVAR) object

The name of the object being created.

field ::= typed_value

Sets the field named field to the value typed_value. For a list of valid data

types and values, see “typed_value” on page 298.

Example: Consider the specifications necessary for creating an object to represent

system software called SDSF. SDSF is a child of the class named SystemSoftware

and has the following fields and values:

v ProductName with a value of SDSF

v ProgramNumber with a value of 5697-B82

v LatestPTFNumber with a value of UY12903

v CorrespondingAPARNumber with a value of PL45419

v DateApplied with a value of 03/01/97

v UseInHost field that links this object to HostA and HostC

Note: HostA and HostC must already exist for the links to be successful.

Chapter 10. Using the RODM Load Function 277

The following is the statement needed to create the object SDSF:

Usage Notes: When specifying the parameters of the OBJINST keyword of the

CREATE high-level statement you normally specify MyName as the name of the field

because the MyName field always represents the name of the object. For example:

OBJINST ::= MyName = (CHARVAR) ’SDSF’;

But if you want another of the object’s fields to also have the object name as its

value, you specify that field name instead of MyName in the OBJINST definition. The

MyName field and that field are then assigned the same value. For example, if you

want the object name of SDSF assigned as the value of both the MyName and

ProductName fields of the object, you specify:

OBJINST ::= ProductName = (CHARVAR) ’SDSF’;

Do not repeat ProductName as a field in the ATTRLIST.

DELETE:

Purpose: Use the high-level load function DELETE statement to delete an object

from the RODM data cache.

Syntax:

�� DELETE

INVOKER ::= invoke_value
 ; OBJCLASS ::= class ; �

� OBJINST ::= MyName=(CHARVAR) 'object' ; END ; ��

Keyword and Parameter Descriptions:

INVOKER ::= invoke_value

The identifier value. The value is ignored by the RODM load function, but

can be used to number high-level load function statements in your load

function input files.

OBJCLASS ::= class

The name of the parent class of the object being deleted.

OBJINST ::= MyName = (CHARVAR) object

The name of the object being deleted.

CREATE INVOKER ::= 0000003;

 OBJCLASS ::= SystemSoftware;

 OBJINST ::= MyName = (CHARVAR) ’SDSF’;

 ATTRLIST

 ProductName ::= (CHARVAR) ’SDSF’,

 ProgramNumber ::= (CHARVAR) ’5697-B82’,

 LatestPTFNumber ::= (CHARVAR) ’UY12903’,

 CorrespondingAPARNumber ::= (CHARVAR) ’PL45419’,

 DateApplied ::= (CHARVAR) ’03/01/97’,

 UseInHost ::= (OBJECTLINKLIST)

 (’Host_Class’.’HostA’.’UseSystemSoftware’)

 (’Host_Class’.’HostC’.’UseSystemSoftware’);

END;

Figure 69. Create Object Example

278 Resource Object Data Manager and GMFHS Programmer’s Guide

Example: Figure 70 shows a DELETE statement that deletes an object from the data

model.

The object to be deleted, SDSF, is specified as a parameter of the OBJINST

keyword, and the parent class of the object, SystemSoftware, is specified as a

parameter of the OBJCLASS keyword.

SET:

Purpose: Use the SET high-level load function statement to set the values of fields

within an object in the RODM data cache.

Syntax:

�� SET

INVOKER ::= invoke_value
 ; MODE ::= mode_value ; �

� OBJCLASS ::= class ; OBJINST ::= MyName = (CHARVAR) 'object' ; �

�

�

 ,

MODLIST

field ::= typed_value

;

,

modifier

END

;

��

Keyword and Parameter Descriptions:

INVOKER ::= invoke_value

The identifier value. The value is ignored by the RODM load function, but

can be used to number high-level load function statements in your load

function input files.

MODE ::= mode_value

This value is ignored by the RODM load function, and is assumed to

always be non-confirmed.

OBJCLASS ::= class

The name of the parent class of the object for which field values are being

set.

OBJINST ::= MyName = (CHARVAR) object

The name of the object for which field values are being set.

field ::= typed_value

The field named field is set to the value typed_value. For a list of valid data

types and values, see “typed_value” on page 298.

modifier

Use this parameter to specify the type of modification. The possible values

of modifier are:

DELETE INVOKER ::= 0000005;

 OBJCLASS ::= SystemSoftware;

 OBJINST ::= MyName = (CHARVAR) ’SDSF’;

END;

Figure 70. Delete Object Example

Chapter 10. Using the RODM Load Function 279

Value Description

ADD VALUE

Use only for data types of OBJECTLINK or OBJECTLINKLIST to

create a new link.

REMOVE VALUE

Use only for data types of OBJECTLINK or OBJECTLINKLIST to

delete an existing link.

REPLACE

Use for data types other than OBJECTLINK or OBJECTLINKLIST

to change the value subfield of the specified field to a new value.

SET TO DEFAULT

Use for data types other than OBJECTLINK or OBJECTLINKLIST

to change the value subfield of the specified field to the default

value. The default value is the value of the field for the parent

class.

If the data type is OBJECTLINK or OBJECTLINKLIST, the default is ADD

VALUE. For all other data types, the default is REPLACE.

END The required keyword that identifies the end of the SET high-level load

function statement.

Example: Consider a SET high-level load function statement where you want to

change the values of the SDSF object, which is a child of the class named

SystemSoftware. In particular, you want to make the following changes to the

fields of SDSF:

v Change the ProductName field value to SDSF V2.

v Change the ProgramNumber field value to 5697-B82.

v Change the LatestPTFNnumber field value to the default value.

v Reset the CorrespondingAPARNumber field value to a blank string.

v Change the DateApplied field value to 03/01/97.

v Unlink the UseSystemSoftware field in the HostA object of Host_Class from the

UseInHost field.

The statement to set the values of the fields of the SDSF object is shown in

Figure 71.

Usage Notes: For definitions of OBJECTLINK and OBJECTLINKLIST fields, the

RODM load function creates a link if the modification is ADD VALUE and deletes

SET INVOKER ::= 0000004;

 MODE ::= non-confirmed;

 OBJCLASS ::= SystemSoftware;

 OBJINST ::= MyName = (CHARVAR) ’SDSF’;

 MODLIST

 ProductName ::= (CHARVAR) ’SDSF V2’, REPLACE,

 ProgramNumber ::= (CHARVAR) ’5697-B82’,

 LatestPTFNumber ::= (CHARVAR), SET TO DEFAULT,

 CorrespondingAPARNumber ::= (CHARVAR) ’ ’,

 DateApplied ::= (CHARVAR) ’03/01/97’,

 UseInHost ::= (OBJECTLINKLIST)

 (’Host_Class’.’HostA’.’UseSystemSoftware’),REMOVE VALUE;

END;

Figure 71. Set Value of Fields in an Object Example

280 Resource Object Data Manager and GMFHS Programmer’s Guide

a link if the modification is REMOVE VALUE. Additionally, enclose in parentheses

the value of any fields that specify a data type of either OBJECTLINK or

OBJECTLINKLIST.

Coding RODM Load Function Primitive Statements

This topic of the reference section describes how to code RODM load function

primitive statements. It provides the syntax and processing logic along with the

associated syntax rules. It also describes the use of the global character with

RODM load function primitives.

The syntax is shown in syntax diagrams.

Global Character

You can use an asterisk (*) as a global character to replace one or more values in

RODM primitive statements. Each global character is used to substitute for one

name, class, object, field, or subfield within a RODM primitive statement. When

the primitive statement is converted to a RODM function, each global character is

replaced with a corresponding value from the previous primitive on which the

name, class, object, field, or subfield was explicitly specified. However, the global

character can not be used to specify a method name.

When more than one global character is used, it substitutes values from previous

primitive statements using the same relative position. For example:

 OP ClassA HAS_PARENT UniversalClass;

 OP * HAS_FIELD (INTEGER) FieldA_Integer;

 OP ClassB HAS_PARENT *;

 OP * HAS_FIELD (CHARVAR) FieldB_CharVar;

The global character in the second primitive statement is substituted with ClassA

from the first primitive. The global character in the third primitive statement is

substituted with UniversalClass from the first primitive. The global character in the

fourth primitive statement is substituted with ClassB from the third primitive.

Finally, the two global characters in the fifth primitive statement are substituted

with ClassB and FieldB_CharVar, respectively, from the third and fourth primitives.

The global character is intended as a short-hand way of specifying RODM load

function primitive statements. The RODM processing logic is not changed by use

of the global character. The global character does not imply grouping of primitive

statements.

Syntax Rules for Load Function Primitives

Like RODM high-level load function statement syntax, one or more spaces can

separate parts of a RODM load function primitive.

Note: RODM load function primitive syntax is case sensitive.

Syntax rules applying to input columns, quoted strings, double-byte character

strings, and comments are the same for RODM load function primitive syntax as

those specified for RODM high-level load function syntax. See “Syntax Rules for

High-Level Load Function Statements” on page 273.

Syntax and Processing Logic for Load Function Primitives

This is a reference to the syntax and processing logic for the RODM load function

primitives. The RODM load function primitives are in alphabetical order, and each

RODM load function primitive has a description containing its name, meaning,

external syntax, and the implementation logic.

Chapter 10. Using the RODM Load Function 281

FORCE_HAS_NO_INSTANCE:

Description: FORCE_HAS_NO_INSTANCE ensures that there is no object existing

under the specified class with the specified name. If links to the object exist, they

are unlinked, and then the object itself is deleted.

This statement might fail to delete an object after failed retries of deleting all the

links in a class object or all the objects.

Syntax:

�� OP class FORCE_HAS_NO_INSTANCE object ; ��

object of class is deleted if it exists.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that object is a valid RODM object name.

LOAD Logic: Perform the following:

1. Delete object from class.

2. If the object cannot be deleted because of links:

a. Query the structure of the class.

b. Query all link fields.

c. For each field with links, delete the links.

d. Retry the delete object request.

VERIFY Logic: Check that object of class does not exist.

FORCE_NOT_A_CLASS:

Description: FORCE_NOT_A_CLASS ensures that there is no class existing with

the specified name. If objects of the class exist, they are deleted, meaning that all

links to the objects are dropped, that the objects themselves are deleted, and that

the class itself is deleted.

Syntax:

�� OP class FORCE_NOT_A_CLASS ; ��

class is deleted if it exists.

Syntax Logic for PARSE, LOAD, and VERIFY: Check that class is a valid RODM

class name.

LOAD Logic: Perform the following:

1. Delete class.

2. If the class cannot be deleted because of children, delete the children and retry

the delete request.

3. If the class cannot be deleted because of objects, delete the objects and retry the

delete request.

VERIFY Logic: Check that class does not exist.

282 Resource Object Data Manager and GMFHS Programmer’s Guide

HAS_FIELD:

Description: HAS_FIELD ensures that a class defines a specified public field.

Syntax:

�� OP class HAS_FIELD (type)field ; ��

class locally defines a field named field of type type.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that field is a valid RODM field name.

3. Check that type is a valid RODM load function data type.

LOAD Logic: Check that the class exists, and create field of type for class.

VERIFY Logic: Check that class exists, that it locally defines field, and that the type

of this field matches type.

HAS_INDEXED_FIELD:

Description: HAS_INDEXED_FIELD ensures that a class defines a specified public

indexed field.

Syntax:

�� OP class HAS_INDEXED_FIELD (CHARVAR)field ; ��

class locally defines a field named field of type CHARVAR.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that field is a valid RODM field name.

3. Check that CHARVAR is a valid RODM load function data type. Only

CHARVAR fields can be public indexed.

LOAD Logic: Check that the class exists, and create field of CHARVAR for class.

VERIFY Logic: Check that class exists, that it locally defines field, and that the type

of this field is CHARVAR.

HAS_INSTANCE:

Description: HAS_INSTANCE ensures that a specific object of the specified class

exists.

Syntax:

�� OP class HAS_INSTANCE object ; ��

class has an object named object.

Chapter 10. Using the RODM Load Function 283

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that object is a valid RODM object name.

LOAD Logic: Check that the class exists, and create object of class.

VERIFY Logic: Check that class exists and that it has an object object.

HAS_NO_FIELD:

Description: HAS_NO_FIELD deletes the specified field from the specified class.

Fields cannot be deleted from classes that have class or object children. Also,

inherited fields cannot be deleted.

Syntax:

�� OP class HAS_NO_FIELD field ; ��

field is deleted from the definition of class if it exists and the class has no object

children.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that field is a valid RODM field name.

LOAD Logic: Delete field from class.

VERIFY Logic: Check that field is not defined by class.

HAS_NO_INSTANCE:

Description: HAS_NO_INSTANCE ensures that a specific object of a specific class

does not exist. The only imperative used to implement this specification is a simple

delete.

If the object is linked to other objects, it cannot be deleted by this primitive alone;

in that case, see “FORCE_HAS_NO_INSTANCE” on page 282.

Syntax:

�� OP class HAS_NO_INSTANCE object ; ��

object of class is deleted if it exists and has no links to other objects.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that object is a valid RODM object name.

LOAD Logic: Delete object from class.

VERIFY Logic: Check that object does not exist in class.

284 Resource Object Data Manager and GMFHS Programmer’s Guide

HAS_NO_SUBFIELD:

Description: HAS_NO_SUBFIELD ensures that a specific subfield does not exist for

the specified field. Subfields cannot be deleted from classes that have objects. Also,

subfields on inherited fields cannot be deleted.

Syntax:

�� OP class.field HAS_NO_SUBFIELD subfield ; ��

subfield is deleted from field of class if it exists and the class has no object children.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that field is a valid RODM field name.

3. Check that subfield is a valid RODM subfield name.

LOAD Logic: Delete subfield from field of class.

VERIFY Logic: Check that subfield is not defined for field of class.

HAS_PARENT:

Description: HAS_PARENT ensures that a class exists under the specified parent.

Syntax:

Has_Parent

�� OP child_class HAS_PARENT parent_class ; ��

child_class must be a child of parent_class.

Syntax Logic for PARSE, LOAD, and VERIFY: Check that the class names follow the

rules for class names in RODM.

LOAD Logic: Create child_class as a child of parent_class.

VERIFY Logic: Check that both child_class and parent_class exist and that the parent

field of child_class points to parent_class.

HAS_PRV_FIELD:

Description: HAS_PRV_FIELD ensures that a class defines a specified private field.

Syntax:

�� OP class HAS_PRV_FIELD (type)field ; ��

class locally defines a field named field of type type.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

Chapter 10. Using the RODM Load Function 285

1. Check that class is a valid RODM class name.

2. Check that field is a valid RODM field name.

3. Check that type is a valid RODM load function data type.

LOAD Logic: Check that the class exists, and create field of type for class.

VERIFY Logic: Check that class exists, that it defines field as private, and that the

type of this field matches type.

HAS_SUBFIELD:

Description: HAS_SUBFIELD ensures that a field of a class has a specified subfield.

Syntax:

�� OP class.field HAS_SUBFIELD subfield ; ��

field of class has subfield.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that field is a valid RODM field name.

3. Check that subfield is a valid RODM subfield name.

LOAD Logic: Check that the class exists, that the field exists on the class, and create

subfield of type for the field on that class.

VERIFY Logic: Check that class exists, that it locally defines field, and that this field

has subfield defined.

HAS_VALUE:

Description: HAS_VALUE ensures that a field of a specific object or class has the

specified value.

Syntax:

�� OP class. .field HAS_VALUE typed_value

object
 ; ��

field of object of class has value typed_value.

field of class has value typed_value.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that object, if specified, is a valid RODM object name.

3. Check that field is a valid RODM field name.

4. Check that typed_value is a valid RODM typed value.

LOAD Logic: Check that the class, object, and field exist, set field of class.object to the

type and value specified by typed_value, or set field of class to the type and value

specified by typed_value.

286 Resource Object Data Manager and GMFHS Programmer’s Guide

VERIFY Logic: Check that field of class.object has the type and value specified by

typed_value or check that field of class has the type and value specified by

typed_value.

INHERITS:

Description: INHERITS ensures that a specific field of the specified object or class

is not locally defined.

Syntax:

�� OP class

.object
 INHERITS field ; ��

field of object of class is reverted to its inherited value.

field of class is reverted to its inherited value.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that object, if specified, is a valid RODM object name.

3. Check that field is a valid RODM field name.

LOAD Logic: Revert field. If a local value is present, it is deleted.

VERIFY Logic: Check that the value of field is inherited.

INVOKED_WITH:

Description: INVOKED_WITH runs a named object-specific method or an

object-independent method.

A maximum of 8 parameters can be specified with sd_parm.

Syntax:

Invoked_With

�� OP method_name

class.

.field

object

 INVOKED_WITH �

�
(SELFDEFINING)sd_parm

 ; ��

class.object.field named object-specific method is run with sd_parm parameters.

class..field named object-specific method is run with sd_parm parameters.

method_name object-independent method is run with sd_parm parameters.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

 For a named object-specific method:

Chapter 10. Using the RODM Load Function 287

1. Check that class is a valid RODM class name.

2. Check that object, if specified, is a valid RODM object name.

3. Check that field is a valid RODM field name.

4. Check that sd_parm is a valid SELFDEFINING value.
 For an object-independent method:

1. Check that method_name is a valid RODM method name.

2. Check that sd_parm is a valid SELFDEFINING value.

LOAD Logic:

For a named object-specific method, trigger the method specified by class.object.field

or by class..field with the parameters specified in sd_parm. The data type of the field

must be MethodSpec.

For an object-independent method, trigger the method_name with the parameters

specified in sd_parm. The method_name must be the name of an object of the

EKG_Method class.

VERIFY Logic: None.

IS_LINKED_TO:

Description: IS_LINKED_TO ensures that two objects are linked by the specified

fields. The fields must be of type OBJECTLINK or OBJECTLINKLIST.

Syntax:

�� OP class_1.object_1.field_1 IS_LINKED_TO class_2.object_2.field_2 ; ��

field_1 of class_1.object_1 is linked to field_2 of class_2.object_2.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class_1 is a valid RODM class name.

2. Check that class_2 is a valid RODM class name.

3. Check that object_1 is a valid RODM object name.

4. Check that object_2 is a valid RODM object name.

5. Check that field_1 is a valid RODM field name.

6. Check that field_2 is a valid RODM field name.

LOAD Logic: Link field_1 of class_1.object_1 to field_2 of class_2.object_2.

VERIFY Logic: Query field_1 of class_1.object_1 and check that field_2 of

class_2.object_2 is in the list of linked fields that is returned by the query.

IS_NOT_LINKED_TO:

Description: IS_NOT_LINKED_TO ensures that two objects are not linked by the

specified fields.

Syntax:

�� OP class_1.object_1.field_1 IS_NOT_LINKED_TO class_2.object_2.field_2 ; ��

288 Resource Object Data Manager and GMFHS Programmer’s Guide

field_1 of class_1.object_1 is not linked to field_2 of class_2.object_2.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class_1 is a valid RODM class name.

2. Check that class_2 is a valid RODM class name.

3. Check that object_1 is a valid RODM object name.

4. Check that object_2 is a valid RODM object name.

5. Check that field_1 is a valid RODM field name.

6. Check that field_2 is a valid RODM field name.

LOAD Logic: Unlink field_1 of class_1.object_1 to field_2 of class_2.object_2.

VERIFY Logic: Query field_1 of class_1.object_1 and check that field_2 of

class_2.object_2 is not in the list of linked fields that is returned by the query.

NOT_A_CLASS:

Description: NOT_A_CLASS ensures that there is no class existing with the

specified name. The only imperative used to implement this specification is a

simple delete; if a class has objects, it cannot be deleted with this primitive alone.

Instead, FORCE_NOT_A_CLASS must be used or the objects must first be deleted.

Syntax:

�� OP class NOT_A_CLASS ; ��

class is deleted if it exists and has no objects or children.

Syntax Logic for PARSE, LOAD, and VERIFY: Check that class is a valid RODM

class name.

LOAD Logic: Delete class.

VERIFY Logic: Check that class does not exist.

SUBFIELD_HAS_VALUE:

Description: SUBFIELD_HAS_VALUE ensures that a subfield has the specified

value.

Syntax:

�� OP class. .field.subfield

object
 SUBFIELD_HAS_VALUE typed_value ; ��

subfield of field of object of class has value typed_value.

subfield of field of class has value typed_value.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that object, if specified, is a valid RODM object name.

3. Check that field is a valid RODM field name.

Chapter 10. Using the RODM Load Function 289

4. Check that subfield is a valid RODM subfield name.

5. Check that typed_value is a valid RODM typed value.

LOAD Logic: Set subfield of field of class to the type and value of typed_value or set

subfield of field of class.object to the type and value of typed_value.

VERIFY Logic: Check that subfield of field of class has the type and value of

typed_value or check that subfield of field of class.object has the type and value of

typed_value.

SUBFIELD_INHERITS:

Description: SUBFIELD_INHERITS ensures that a specific subfield of the specified

object or class is not locally defined.

Syntax:

�� OP class.

object
 .field SUBFIELD_INHERITS subfield ; ��

subfield_name reverted to its inherited value. If a local value is present, it is deleted.

Syntax Logic for PARSE, LOAD, and VERIFY: Carry out the following syntax

checks:

1. Check that class is a valid RODM class name.

2. Check that object, if specified, is a valid RODM object name.

3. Check that field is a valid RODM field name.

4. Check that subfield is a valid RODM subfield name.

LOAD Logic: Revert subfield_name.

VERIFY Logic: Check that the value of subfield_name is inherited.

Common Syntactic Elements

The RODM load function primitive and RODM high-level load function statements

use common syntactic elements such as class, which is a class name. These simple

common elements are described here along with descriptions of common text and

numeric character strings.

These elements and character strings are described using syntax diagrams.

Syntax for Common Syntactic Elements

The following is a description for each common syntactic element for the RODM

load function.

chars:

Purpose: A character string, which can be one or more printable single-byte or

double-byte characters.

Format:

Chars

290 Resource Object Data Manager and GMFHS Programmer’s Guide

��

�

printable_character

dbcs_literal

��

Usage Notes: A double-byte character string must be preceded by a shift-out

character and ended with a shift-in character.

char_literal:

Purpose: A character string within single quotation marks.

Format:

Char_Literal

�� ' chars ' ��

Usage Notes: To indicate a single quotation mark (') within a char_literal, use two

immediately adjacent single quotation marks with no spaces or new lines between

the two single quotation marks. This is the traditional doubled quote rule.

You can continue char_literal primitives across lines of input by enclosing the pieces

on each line within single quotation marks.

class:

Purpose: A valid RODM class name.

Format:

class

�� class_name ��

Usage Notes: If the class name contains any non-alphanumeric character, enclose

the class name in single quotation marks.

class_list:

Purpose: A list of RODM class names, separated by commas.

Format:

class_list

��

�

 ,

class

��

classlink_list:

Purpose: A list of class links separated by commas. Each class link is a

concatenation of a class name, a period, and a field name.

Chapter 10. Using the RODM Load Function 291

Format:

classlink_list

��

�

 ,

class.field

��

dbcs_literal:

Purpose: A concatenation of a shift-out character, one or more valid double-byte

characters, and a shift-in character.

Format:

DBCS_Literal

��

�

shift-out_char

double-byte_char

shift-in_char

��

Parameter Descriptions:

shift-out_char

A value of X'0E'.

double-byte_char

Four hexadecimal characters (two bytes) representing one printable

character.

shift-in_char

A value of X'0F'.

Usage Notes: Double-byte text must begin with shift-out and end with shift-in. If

the text continues for multiple lines, the double-byte text on each line must be

within the shift-out and shift-in pair. The valid double-byte characters are the same

as those for the GraphicVar data type; see “GraphicVar” on page 229.

digits:

Purpose: The concatenation of any of the decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

Format:

292 Resource Object Data Manager and GMFHS Programmer’s Guide

Digits

��

�

0

1

2

3

4

5

6

7

8

9

��

field:

Purpose: A valid RODM field name.

Format:

field

�� field_name ��

Usage Notes: If the field name contains any non-alphanumeric character, enclose

the field name in single quotation marks.

float_constant:

Purpose: A floating-point constant is a concatenation of a numeric literal, an

optional decimal fraction, and an optional signed floating-point exponent digit.

Format:

Float_Constant

�� numeric_literal

digits

.digits

exp_digits

+

+

−

−

 ��

hex_chars:

Purpose: The concatenation of hexadecimal character pairs, where each pair

represents one byte.

Format:

Hex_Chars

Chapter 10. Using the RODM Load Function 293

��

�

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

A

A

B

B

C

C

D

D

E

E

F

F

a

a

b

b

c

c

d

d

e

e

f

f

��

hex_literal:

Purpose: One or more pairs of hexadecimal characters, within the hex delimiters.

Format:

Hex_Literal

�� X' hex_chars ' ��

il_parm:

Purpose: An INDEXLIST parameter is a list of typed values. Each typed value can

be either an ANONYMOUSVAR data type value or a CHARVAR data type value.

However, CHARVAR values are converted to ANONYMOUSVAR values by the

RODM load function.

Format:

Il_Parm

�� (typed_value) ��

method_spec:

Purpose: A method specification is a concatenation of a method name and a

SELFDEFINING parameter within parentheses.

Format:

294 Resource Object Data Manager and GMFHS Programmer’s Guide

method_spec

�� (method_name)

sd_parm
 ��

numeric_literal:

Purpose: A signed string of numeric digits.

Format:

Numeric

�� digits

+

−

 ��

object:

Purpose: A valid RODM object name.

Format:

object

�� object_name ��

Usage Notes: If the object name contains any non-alphanumeric character, enclose

the object name in single quotation marks.

objectid_list:

Purpose: A list of object IDs separated by commas. An object ID is a concatenation

of a class name, a period, and an object name.

Format:

objectid_list

��

�

 ,

class.object

��

objectlink_list:

Purpose: An objectlink_list is a list of object links separated by spaces. An object

link is a concatenation of a class name, a period, an object name, a period, and a

field name within parentheses.

Format:

Chapter 10. Using the RODM Load Function 295

objectlink_list

��

�

(class.object.field)

��

recipient_spec:

Purpose: A recipient specification is a concatenation of two character literals and a

literal, all of which must be exactly eight bytes in length.

Format:

recipient_spec

�� 'appl_id','subscribe_id',X'hex_chars' ��

Usage Notes: The first character literal is an application_id. The second character

literal is a subscribe_id. If either character literal is less than eight bytes long, the

literal will be left-justified and padded with blanks on the right by the RODM load

function to make them eight bytes long. There must be sixteen hex digits for the

hex data to be eight bytes long.

sd_parm:

Purpose: A SELFDEFINING parameter is a list of typed values, optionally

separated by blanks, within parentheses.

Format:

sd_parm

��

�

(

typed_value

)

��

subfield:

Purpose: A predefined subfield name.

Format:

subfield

�� CHANGE

NOTIFY

PREV_VALUE

QUERY

TIMESTAMP

VALUE

 ��

Usage Notes: The subfield name definitions are:

296 Resource Object Data Manager and GMFHS Programmer’s Guide

CHANGE

The method specification of the change method

NOTIFY

A subscription specification list representing notification subscriptions

PREV_VALUE

The previous value of the field

QUERY

The method specification of the query method

TIMESTAMP

The time stamp of the last change to the field

VALUE

The value of the field

subs_spec:

Purpose: A subs_spec is a notification subscription specification which consists of a

method specification followed by a recipient specification, separated by a comma.

Format:

subs_spec

�� method_spec , recipient_spec ��

subs_spec_list:

Purpose: A subs_spec_list is a list of subscript specifications.

Format:

sub_spec&list

��

�

 ,

method_spec,recipient_spec

��

type:

Purpose: A predefined data type keyword.

Format:

type

Chapter 10. Using the RODM Load Function 297

�� ANONYMOUSVAR

APPLICATIONID

BERVAR

CHARVAR

CHARVARADDR

CLASSID

CLASSIDLIST

CLASSLINKLIST

ECBADDRESS

FIELDID

FLOATING

GRAPHICVAR

INTEGER

INDEXLIST

METHODNAME

METHODPARAMETERLIST

METHODSPEC

OBJECTID

OBJECTIDLIST

OBJECTLINK

OBJECTLINKLIST

OBJECTNAME

RECIPIENTSPEC

SELFDEFINING

SHORTNAME

SMALLINT

SUBSCRIBEID

SUBSCRIPTSPEC

SUBSCRIPTSPECLIST

TIMESTAMP

TRANSID

 ��

Notes:

1. These data types are valid only within SELFDEFINING data:

 APPLICATIONID CHARVARADDR CLASSIDLIST

CLASSLINKLIST ECBADDRESS METHODNAME

METHODPARAMETERLIST OBJECTIDLIST OBJECTNAME

RECIPIENTSPEC SHORTNAME SUBSCRIBEID

SUBSCRIPTSPEC SUBSCRIPTSPECLIST TRANSID

2. For limitations in CLASSID and OBJECTID, see “Using CLASSID and

OBJECTID Data Types” on page 259.

typed_value:

Purpose: A typed_value is a concatenation of a left parenthesis, a type keyword, a

right parenthesis, and a value to match the data type of the type keyword.

Format:

typed_value

298 Resource Object Data Manager and GMFHS Programmer’s Guide

�� (ANONYMOUSVAR)X'hex_chars'

(APPLICATIONID)'chars'

(BERVAR)X'hex_chars'

(CHARVAR)'chars'

(CHARVARADDR)X'hex_chars'

(CLASSID)class

(CLASSIDLIST)class_list

(CLASSLINKLIST)classlink_list

(ECBADDRESS)X'hex_chars'

(FIELDID)class.field

(FLOATING)float_constant

(GRAPHICVAR)dbcs_literal

(INTEGER)numeric_literal

(INDEXLIST)il_parm

(METHODNAME)method_name

(METHODPARAMETERLIST)sd_parm

(METHODSPEC)method_spec

(OBJECTID)class.object

(OBJECTIDLIST)objectid_list

(OBJECTLINK)(class.object.field)

(OBJECTLINKLIST)objectlink_list

(OBJECTNAME)object

(RECIPIENTSPEC)recipient_spec

(SELFDEFINING)sd_parm

(SHORTNAME)'chars'

(SMALLINT)numeric_literal

(SUBSCRIBEID)'chars'

(SUBSCRIPTSPEC)subs_spec

(SUBSCRIPTSPECLIST)subs_spec_list

(1)

(TIMESTAMP)X'hex_chars'

(2)

(TRANSID)X'hex_chars'

 ��

Notes:

1 TIMESTAMP must be exactly 8 bytes.

2 TRANSID must be exactly 8 bytes.

Usage Notes: You can specify null values for some of the data types. See “Null

Values for RODM Load Function Data Types” on page 260.

Chapter 10. Using the RODM Load Function 299

300 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 11. Writing Applications that Use RODM

RODM provides a user application programming interface (user API). This user API

allows a properly authorized address space to access the data contained in the

RODM address space and data spaces. Through this user API, objects can be

created, organized into hierarchies, or deleted. The user API can also be used to

query the value of a field associated with an object or to alter the value in that

field. The user API can be called from NetView command processors and from

applications written in any programming language that meets the parameter

passing conventions of RODM. While RODM provides control block mappings in

PL/I and C, you can write applications in any programming language that uses

the interface described in “Register Conventions” on page 302.

RODM also provides a method API, which shares many functions with the user

API. The method API is described in Chapter 13, “Writing RODM Methods,” on

page 339.

The NetView program supplies a set of general-purpose methods. For a description

of these methods, see “NetView-Supplied Methods” on page 479.

Tasks Best Performed with User Applications

This section describes which tasks are best performed with user applications.

Use an application program to do the following:

v Supply status changes of resources to the RODM data cache.

The RODM data cache is viewed as a model of real-world resources; therefore,

ensure that resource objects in the data cache are updated as actual resources

change status.

v Subscribe for notification of data changes.

Before a user application program can receive notification of RODM data cache

changes, a notification subscription to the necessary fields in the relevant objects

or classes is required.

v Wait for and process data change notifications.

The user application is responsible for waiting for and processing the

notifications from the objects or classes to which it is subscribed.

v Query data for operator view, displays, and queries.

Application programs that communicate with users through a user interface and

require access to data in the RODM data cache and must query that data

through RODM.

v Add or delete resources.

Application programs requiring data cache hierarchy modification can do so by

calling RODM to manipulate objects and classes.

v Communicate with NetView applications.

NetView applications can query and change RODM data through the user API.

You can use either RODMView or the MultiSystem Manager Access facility to

query and change RODM data.

© Copyright IBM Corp. 1997, 2007 301

Using the User Application Program Interface

User API calls to RODM must pass the following four parameters to module

EKGUAPI:

v Access block

v Transaction information block

v Function block

v Response block

The function block can point to additional parameters, such as entity access

information blocks and field access information blocks, which identify the target of

the function.

Figure 72 shows typical user API invocations, first in C and then in PL/I.

 The call statement transfers control to the code segment identified as EKGUAPI.

The user can include EKGUAPI module during the link-edit of the application.

Register Conventions

The generated code must follow these conventions.

Register 1

Points to a four-entry parameter list that contains the addresses of the

access_block, transaction_info_block, function_block, and response_block,

respectively. These control blocks are shown in Figure 73 on page 305.

Register 13

Contains the address for the calling program’s 72-byte save area.

Register 14

Contains the return address for the calling program.

Register 15

Contains the entry address for the EKGUAPI module.

Usage Notes

Within this programming guide the term null pointer is used. The value of a null

pointer is defined as X'00000000'. Using PL/I, this value is provided by the built-in

function SYSNULL. Do not use the built-in NULL function; it generates the value

X'FF000000'.

If the call is made from a high-level language where the parameter list is built by

the compiler and a null response_block value cannot be passed, a pointer to a

#include <EKG3CEEP.H> /* EKGUAPI declaration for C /*

EKGUAPI(&access_block, /* address of access block /*

 &transaction_info_block, /* address of trans info block /*

 &function_block, /* address of function block /*

 &response_block); /* address of response block /*

%include syslib (EKG1IEEP); /* EKGUAPI declaration for PL/I /*

CALL EKGUAPI(access_block, /* access block /*

 transaction_info_block, /* transaction info block /*

 function_block, /* function block /*

 response_block); /* response block /*

Figure 72. Typical User API Invocation in C and PL/I

Using the User Application Program Interface

302 Resource Object Data Manager and GMFHS Programmer’s Guide

dummy response_block must be specified. The dummy response_block must be in

the correct format and specify a length of at least 8. See “Response Block” on page

314 for additional information about response blocks.

User API calls are synchronous. The EKG_ExecuteFunctionList function can specify

a list of other functions that are to be run. If the list of functions contains two

adjacent functions that affect the same object, the lock on that object is not released

during the time interval between the processing of the two functions.

RODM applications must be running in key 8 at the time EKGUAPI is called. All

parameter lists, control blocks, and other data areas that are passed to RODM must

reside in storage that is accessible in key 8.

Compiling and Link-Editing

The application can link-edit the EKGUAPI module during the link-edit step or

dynamically load the module during execution.

Compiling C Modules that Call EKGUAPI

If any RODM control blocks are referenced in the modules, include file

EKG3CINC.H in your source file. This file includes all of the RODM function and

response blocks, and the function prototype statements for the RODM entry points

EKGUAPI, EKGMAPI, and EKGWAIT.

If no RODM control blocks are referenced in the modules, but the modules call

EKGUAPI or EKGWAIT, include file EKG3CEEP.H in your source file.

Example:

#include "EKG3CINC.H"

 /* or */

#include "EKG3CEEP.H"

void thisproc (void arg)

{

 /* code */

}

Compiling PL/I Modules that Call EKGUAPI

If any RODM control blocks are referenced in the modules, include file EKG1IINC

in your source file. This file includes all of the RODM function and response

blocks, and the function prototype statements for the RODM entry points

EKGUAPI, EKGMAPI, and EKGWAIT.

If no RODM control blocks are referenced in the modules but the modules call

EKGUAPI or EKGWAIT, include file EKG1IEEP in your source file.

Specify the MACRO preprocessor compiler option if you include RODM macros in

your user application, for example, as follows:

*PROCESS MACRO;

 thisproc: proc;

%include ekglib(EKG1IINC);

 or

%include ekglib(EKG1IEEP);

Using the User Application Program Interface

Chapter 11. Writing Applications that Use RODM 303

/* code */

end thisproc;

Linking Modules that Call EKGUAPI Directly

The INCLUDE SYSLIB(EKGUAPI) link-edit control statement must be specified

before the ENTRY statement in your source file.

The AMODE=31 link-edit option must be specified.

The RMODE=ANY or RMODE=24 link-edit option must be specified.

The following ENTRY CEESTART statement must be specified:

<module code>

INCLUDE SYSLIB(EKGUAPI)

ENTRY CEESTART

NAME module_name(R)

Linking Modules that Load and then Call EKGUAPI

Because EKGUAPI is a load module, modules that first load and then call

EKGUAPI do not need special link-edit control statements. However, the

EKGUAPI load module must be accessible to the module that loads it (through

STEPLIB, JOBLIB, or z/OS linklist).

Using Control Blocks

All user API calls to RODM pass four parameters as shown in Figure 73 on page

305. The figure is an example of the relationships between the user API call and

the control blocks for a RODM query function request. The control block

relationships are similar for other RODM function requests from the user

application.

The parameters passed are pointers to the following control blocks:

Access Block

Contains the user information needed to process the user API request.

Transaction Information Block

Contains transaction information and status about the API request.

Function Block

Contains the details of the requested transaction against RODM data. The

content of this control block varies depending on the transaction requested.

For some requested transactions it includes pointers to two information

blocks:

 Entity Access Information Block

 Field Access Information Block

Response Block

Contains the output data from the transaction requested. The format and

specific content of the response block depends on the type of transaction

requested.

In Figure 73 on page 305, the PL/I-like syntax describes the four passed control

blocks and the two associated access information blocks. Equivalently organized

Using the User Application Program Interface

304 Resource Object Data Manager and GMFHS Programmer’s Guide

|

|
|
|
|
|
|

blocks can be represented in C. The actual order and offset position within the

control blocks are specified in the tables referenced within each of the following

control block descriptions.

Access Block

Description

The access block contains user information that RODM needs to process user API

requests.

Function Block Format

Table 31 on page 306 describes the format of the access block. The table headings

have the following meanings:

Offset Specifies the offset to the beginning of the parameter in decimal bytes.

Length

Specifies the length of the parameter in decimal bytes.

Type Specifies the RODM data type of the parameter. See “Abstract Data Type

Reference” on page 223 for more information.

Use Specifies whether the parameter is used for data input to a function or for

data output by a function.

Call EKGUAPI(access_block,
transaction_info_block,
query_function_specific_data,
response_block

);

Declare
1 Access_block,

2 RODM_name,
2 Sign_on_token,
2 User_appl_ID;

Declare
1 Response_block,

2 Response_block_length,
2 Response_block_used,
2 Requested_data,

3 Data_type,
3 Data;

Declare
1 Entity_access_info,

2 Reserved,
2 Naming_count,
2 Class_information,

3 Class_ID,
3 Class_name_length,
3 Class_name_ptr,

2 Object_information,
3 Object_ID,
3 Object_name_length,
3 Object_name_ptr;

Declare
1 Field_access_info,

2 Reserved,
2 Naming_count,
2 Field_information,

3 Field_ID,
3 Field_name_length,
3 Field_name_ptr;

Declare
1 Transaction_info_block,

2 API_version,
2 EPL_blk_len,
2 Transaction_ID,
2 Return Code,
2 Reason Code,
2 EPL_info,

3 Lock_level;

Declare
1 Query_function_specific_data,

2 Function_specific_data,
3 Function_ID,
3 Entity_access_info_ptr,
3 Field_access_information_block,

4 Field_access_info_ptr,
4 Subfield,

3 Reserved,
3 Method_parms;

Figure 73. API Query Function Control Block Example

Using the User Application Program Interface

Chapter 11. Writing Applications that Use RODM 305

Parameter Name

Specifies the name of the parameter.

 Table 31. RODM Access Block

Offset Length Type Use Parameter Name

000 8 character(8) In RODM_name

008 16 Anonymous(16) In/Out Sign_on_token

024 8 ApplicationID In User_appl_ID

Function Block Field Descriptions

RODM_name

The name of the RODM that is to receive this request to connect must be

placed by the caller in the RODM_name field. Because the access block is

usually reused on successive calls, the RODM_name field is set only once by a

user, just before the connection request is issued. This is the name that you

specify when you start RODM. To determine the RODM name, refer to

NetView online help.

Sign_on_token

The token that RODM uses to uniquely identify the user. The data structure

that RODM sets at completion of the connection is returned in the

sign_on_token parameter.

 The sign_on_token is set by RODM each time a user connects to RODM.

User_appl_ID

The identifier that the user application program specifies to identify itself. For

an APF (authorized program facility) authorized program, the User_appl_ID

alone identifies the user to RODM and determines the user’s capabilities. For

application programs that are not APF authorized, the User_appl_ID is

combined with the password from the connect function block to identify the

user to RODM and determine the user’s capabilities. This field is a maximum

of 8 bytes with shorter values left-justified in the field and padded on the right

with blanks. Valid characters for this string are the same as for object names.

Examples

Sample control blocks for PL/I and C are supplied with RODM. Include these

control blocks in your programs.

 Table 32. Sample Names for Access Block

Example Name

PL/I access block EKG1ACCB

C access block EKG3ACCB

Usage

RODM needs a fully initialized access block to successfully complete user API calls

that are issued after the Connect request. You must reference or define an access

control block with every call to the RODM User Interface (EKGUAPI).

Several applications can access the RODM data cache at the same time and trigger

methods appropriate to each application’s function. The sign_on_token field of the

access block is used to identify the user for each transaction.

Using the User Application Program Interface

306 Resource Object Data Manager and GMFHS Programmer’s Guide

RODM verifies the authorization level of the user application. Each RODM

function requires a particular authorization level.

The fields in the access block set by the caller are the RODM_name and

User_appl_ID fields. These fields are set once, by the application, just before the

user API is called. The EKG_Connect user API fills in a value for the

sign_on_token field. After the access block is established by a connect request, the

application does not modify the information in that block.

More details about connection to RODM are provided in “Connecting to RODM”

on page 327.

Transaction Information Block

Description

The transaction information block contains transaction-status information about

each API request. The transaction information block is required for every RODM

function request.

Function Block Format

Table 33 describes the format of the transaction information block. The table

headings have the following meanings:

Offset Specifies the offset to the beginning of the parameter, in decimal bytes.

Length

Specifies the length of the parameter, in decimal bytes.

Type Specifies the RODM data type of the parameter.

Use Specifies whether the parameter is used for data input to a function or for

data output by a function. A dash (—) indicates that the parameter is not

used by functions or is reserved.

Parameter Name

Specifies the name of the parameter.

 Table 33. RODM Transaction Information Block

Offset Length Type Use Parameter Name

000 4 Integer In API_version

004 4 Integer In EPL_blk_len

008 8 TransID Out Transaction_ID

016 4 Integer Out Return_code

020 4 Integer Out Reason_code

024 0 Structure — EPL_info

024 4 Integer In Lock_level

Function Block Field Descriptions

API_version

The API_version field specifies the version of the API that RODM is to use for

the API request. The valid values for this field are:

0 RODM is to use the most recent API version

1 RODM is to use version 1 API

Using the User Application Program Interface

Chapter 11. Writing Applications that Use RODM 307

EPL_blk_len

Not used, but retained for compatibility.

Transaction_ID

Every RODM transaction initiated by a user application is assigned a unique

transaction ID by RODM. Synchronous method transactions that are triggered

by a user application transaction have the same transaction ID as the user

application. The transaction_ID field controls the order of this transaction

relative to all other transactions. The transaction ID is also used in journaling

all transactions against RODM between checkpoints. These are described in

detail in the section of this document on Registering for Checkpoint

Notification. See “Coding Checkpoint Control” on page 382.

Return_code

Return code from RODM. See “RODM Return and Reason Codes” on page 451

for a list of return codes.

Reason_code

Reason code from RODM. See “RODM Return and Reason Codes” on page 451

for a list of reason codes.

EPL_info

Not used, but retained for compatibility.

Lock_level

Not used, but retained for compatibility.

Examples

Sample control blocks for PL/I and C are supplied with RODM. Include these

control blocks in your programs.

 Table 34. Sample Names for Transaction Information Block

Example Name

PL/I transaction information block EKG1TRAB

C transaction information block EKG3TRAB

Usage

The return code and reason code fields are used for RODM to communicate with

the user application about the status of the requested function.

Function Block

Description

The details of all transactions against RODM data are specified in function blocks.

A user builds a function block and passes it to RODM to request a desired

transaction.

Function Block Format

The format of each function block is listed in “Function Reference” on page 371.

Function Block Field Descriptions

A description of each parameter used in the function blocks is listed in “Function

Parameter Descriptions” on page 444.

Using the User Application Program Interface

308 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage

The first field in every function block contains a 4-byte integer that specifies which

function is being requested. The format of the remainder of the function block is

dependent upon the four-byte function ID.

One common format for a function block includes the specification of a class, an

object, and a field. Sometimes there are also fields in the function block used to

specify a subfield in RODM. Sometimes only a class and an object can be specified

in a function block. Sometimes, only a class can be specified.

Entity Access Information Block

Description

The entity access information block (EAIB) contains information used by the API to

access a class or object. The EAIB is separate from the function block so that it can

be reused on subsequent API calls. A pointer to the EAIB is stored in the function

block.

The access information is available in two different forms:

v Symbolic names provided by the application.

v IDs generated by RODM when symbolic names are used to create a class or

object. This form provides the fastest access to the information.

Function Block Format

Table 35 describes the format of the entity access information block. The table

headings have the following meanings:

Offset Specifies the offset to the beginning of the parameter, in decimal bytes.

Length

Specifies the length of the parameter, in decimal bytes.

Type Specifies the RODM data type of the parameter.

Use Specifies whether the parameter is used for data input to a function or for

data output by a function. A dash (—) indicates that the parameter is not

used by functions or is reserved.

Parameter Name

Specifies the name of the parameter.

 Table 35. RODM Entity Access Information Block

Offset Length Type Use Parameter Name

000 4 Anonymous(4) — Reserved

004 4 Integer In Naming_count

008 4 ClassID In/Out Class_ID

012 4 Integer In Class_name_length

016 4 Pointer In Class_name_ptr

020 8 ObjectID In/Out Object_ID

028 4 Integer In Object_name_length

032 4 Pointer In Object_name_ptr

Using the User Application Program Interface

Chapter 11. Writing Applications that Use RODM 309

Function Block Field Descriptions

Naming_count

The Naming_count field in the entity access information block specifies which

data in the block is valid. Valid values are:

Value Meaning

0,2 Specifies that the target of the function is either a class or an object and

that both the object access information and the class access information

are valid.

1 Specifies that the target of the function is a class and that only the class

access information is valid.

Interpretation of all this information is subject to the rules in “Usage.”

Class_ID

Class identifier.

Class_name_length

Class name length.

Class_name_ptr

This is the pointer to the class name. With a variable declared in PL/I as a

varying length string, for example, CLASS1 CHAR(64) VARYING, the class

name pointer is specified using the PL/I V2R3 Pointeradd built-in function. To

point directly at the character data rather than at the PL/I 2-byte length prefix,

code class_name_ptr = POINTERADD(ADDR(CLASS1) ,2)

Object_ID

Object identifier.

Object_name_length

Object name length.

Object_name_ptr

This is the pointer to the object name. With a variable declared in PL/I as a

varying length string, for example, OBJECT1 CHAR(255) VARYING, the object

name pointer is specified using the PL/I V2R3 Pointeradd built-in function. To

point directly at the character data rather than at the PL/I 2-byte length prefix,

code object_name_ptr = POINTERADD(ADDR(OBJECT1) ,2)

Examples

Sample control blocks for PL/I and C are supplied with RODM. Include these

control blocks in your programs.

 Table 36. Sample Names for Entity Access Information Block

Sample Name

PL/I entity access information block EKG1ENTB

C entity access information block EKG3ENTB

Usage

The function_ID in the function block specifies the function block used. The

function block specifies whether or not the entity access information block is used

for that function.

A null length value for a corresponding pointer indicates a null string, regardless

of the value of the pointer. Similarly, a null pointer value also indicates a null

Using the User Application Program Interface

310 Resource Object Data Manager and GMFHS Programmer’s Guide

string, regardless of the value of the corresponding length. A null string is

indicated by either a null length or a null pointer.

Pointers to names, if used, point to variable-length character strings. The length of

the character string is specified as a parameter in the entity access information

block, and the pointer in the entity access information block directly points to the

first byte of the character data.

Identifiers (RODM-generated internal IDs) exist in RODM because they are faster

to process than are character string names. Identifiers are always given preference

over character string names in resolving which class or object is to be addressed.

The following apply:

v If both the Class_ID and the Class_name_length are not null values in an entity

access information block, the Class_ID is used, and the Class_Name_Ptr is

ignored. RODM does not check to determine if a Class_ID is consistent with a

class name where both are supplied by the caller.

v If both the Object_ID and the Object_name_length are not null and the

Naming_count is not 1, the Object_ID is used, and the Object_Name_Ptr is

ignored. RODM does not check to determine if a supplied Object_ID is

consistent with a supplied object name.

v If the Naming_count is 1, only class information is used by RODM.

An object identifier is sufficient to locate an object; it includes the identification of

the class that contains the object. When an object identifier is given, RODM ignores

all other object and class information.

If no Object_ID is provided and an object is required in the specification of the

target of the intended transaction, an Object_Name must be provided. In that case,

either the Class_ID must specify the class of the object, or the Class_Name_Ptr

must point to the name of the class. An error results if the specified class has no

object with that name.

For transactions that address a field of a class, no object is involved. The same

format is used for object and class access information blocks. Set the Object_ID and

the Object_name_length fields to null values to alert RODM that the target of the

transaction is on a class instead of on an object. The target class is the one specified

with either a Class_ID or by the Class_Name_Ptr. Alternatively, the user can set the

Naming_count field to a value of 1 and limit the scope of information analyzed by

RODM.

Control blocks are designed to be used repeatedly. For improved performance,

reuse control blocks. During the execution of an application that uses RODM,

similar transactions might be repeatedly requested with changes in the targets of

those transactions. The following actions are taken by RODM to simplify repeated

use of an entity access information block.

v If the Class_ID field is null when RODM is called, and the Class_Name_Ptr field

is not null, and the requested transaction completes successfully (a return code

less than or equal to 4), RODM fills in the Class_ID field with the class-identifier

of the target class. RODM also fills in the Class_ID when an error prevents the

successful completion of the transaction if the target is accessed before the error

is detected.

v If the Object_ID field is null when RODM is called, and the Object_Name_Ptr is

not null, and the naming count is not equal to 1 (which specifies that only class

information is used), and the requested transaction completes successfully (a

return code less than or equal to 4), RODM fills in the Object_ID field with the

Using the User Application Program Interface

Chapter 11. Writing Applications that Use RODM 311

Object-identifier of the target Object. RODM also fills in the Object_ID when an

error prevents the successful completion of the transaction if the target is

accessed before the error is detected.

If names are used to specify the targets in a transaction request and the request is

then repeated, reusing the same entity access information block, the identifier fields

are already filled in from the first transaction. The second transaction, therefore,

runs more quickly.

This increase in performance of a second transaction occurs to a lesser degree in

each of several circumstances where the second transaction is similar to but not the

same as the first transaction. For example, a performance increase of a lesser

degree on a second transaction is obtained when:

v The second transaction specifies the same field as the first transaction, regardless

of the class and object fields.

v The first and second transactions have the same object as a target, but the first

transaction uses a character string name to specify the object.

v The second transaction specifies the same class as the first transaction (in the

class fields), but each transaction specifies a different object using a character

string name. When entity access information blocks are repeatedly used in this

way, the ObjectID must be set to null after each use of that block. Otherwise, on

reuse, the rule that identifiers are given preference over character string names

applies, and the second transaction is routed to the same target object, as that of

the first transaction.

When a function block is reused and the Class_name or Object_name field (or

pointer) is updated, the corresponding identifier fields (Class_ID, Object_ID) must

be reset to null. This is necessary because the character string name has

significance only if the identifier field is set to 0.

Field Access Information Block

Description

The field access information block (FAIB) contains information used by the API to

access a field. The FAIB is separate from the function block so that it can be reused

on subsequent API calls. A pointer to the FAIB is stored in the function block.

The access information is available in two different forms:

v Symbolic names provided by the application.

v IDs generated by RODM when symbolic names are used to create a field. This

form provides the fastest access to the information.

Function Block Format

Table 37 on page 313 describes the format of the field access information block. The

table headings have the following meanings:

Offset Specifies the offset to the beginning of the parameter, in decimal bytes.

Length

Specifies the length of the parameter, in decimal bytes.

Type Specifies the RODM data type of the parameter.

Use Specifies whether the parameter is used for data input to a function or for

data output by a function. A dash (—) indicates that the parameter is not

used by functions or is reserved.

Using the User Application Program Interface

312 Resource Object Data Manager and GMFHS Programmer’s Guide

Parameter Name

Specifies the name of the parameter.

 Table 37. RODM Field Access Information Block

Offset Length Type Use Parameter Name

000 4 Anonymous(4) — Reserved

004 4 Integer In Naming_count

008 4 FieldID In/Out Field_ID

012 4 Integer In Field_name_length

016 4 Pointer In Field_name_ptr

Function Block Field Descriptions

Naming_count

The naming_count field in the field_access_info block specifies if the field

access information is valid. The valid values are:

Value Meaning

0 The information is valid

1 Reserved

Always set Naming_count to 0 (zero).

Field_ID

Field identifier.

Field_name_length

Field name length.

Field_name_ptr

This is the pointer to the field name.

Examples

Sample control blocks for PL/I and C are supplied with RODM. Include these

control blocks in your programs.

 Table 38. Sample Names for Field Access Information Block

Example Name

PL/I field access information block EKG1FLDB

C field access information block EKG3FLDB

Usage

The function_ID in the function block specifies the function block used. The

function block specifies whether the field access information block is used for that

function.

A null length value for a corresponding pointer indicates a null string, regardless

of the value of the pointer. Similarly, a null pointer value also indicates a null

string, regardless of the value of the corresponding length. A null string is

indicated by either a null length or a null pointer.

Pointers to names, if used, point to variable-length character strings. The length of

the character string is specified as a parameter in the field access information block

along with the pointer that points directly to the first byte of the character data.

Using the User Application Program Interface

Chapter 11. Writing Applications that Use RODM 313

Identifiers (RODM-generated internal IDs) exist in RODM because they are faster

to process than are character string names. Identifiers are always given preference

over character string names in resolving which field is to be addressed. If both the

Field_ID and the Field_name_length are not null in a field access information

block, the Field_ID is used, and the Field_Name_Ptr is ignored. RODM does not

check that a supplied Field_ID is consistent with a supplied field name.

If a field is the target of the desired transaction, the specification of a field must be

provided by a Field_ID or Field field that is not null. The specified field is

associated with the entity (object or class) specified in the corresponding entity

access information block.

If names are used to specify the targets in a transaction request and the request is

then repeated, reusing the same entity access information block, the identifier fields

are already filled in from the first transaction. The second transaction, therefore,

runs more quickly.

Control blocks are designed to be used repeatedly. For improved performance,

reuse control blocks. During the execution of an application that uses RODM,

similar transactions might be repeatedly requested with changes in the targets of

those transactions. RODM takes the following action to simplify repeated use of a

field access information block:

v If the Field_ID field is null when RODM is called, and the Field_name_Ptr is not

null, and the target of the transaction requires a field, and the requested

transaction completes successfully, RODM fills in the Field_ID field with the

Field-identifier of the target field.

v RODM also fills in the Field_ID when an error prevents the successful

completion of the transaction if the target is accessed before the error is detected.

When a function block is reused and the Class_name or Object_name field (or

pointer) is updated, the corresponding identifier fields (Class_ID, Object_ID) must

be reset to null. This is necessary because the character string name has

significance only if the identifier field is set to 0.

Response Block

Description

The output from RODM query requests, query methods, named methods, and

object-independent methods is returned in response blocks. The format of the

response block and the data that the response block contains are dependent on the

kind of transaction that generated the response.

Function Block Format

The format of each response block is listed with its associated function. Table 39

contains a page reference to each response block format by function.

 Table 39. Functions with Response Blocks

Function with Response Block See Page

EKG_Locate 403

EKG_QueryEntityStructure 408

EKG_QueryField 410

EKG_QueryFieldID 411

EKG_QueryFieldName 413

Using the User Application Program Interface

314 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 39. Functions with Response Blocks (continued)

Function with Response Block See Page

EKG_QueryFieldStructure 414

EKG_QueryMultipleSubfields 418

EKG_QueryFunctionBlockContents 415

EKG_QueryNotifyQueue 420

EKG_QueryObjectName 422

EKG_QueryResponseBlockOverflow 423

EKG_QuerySubfield 425

EKG_TriggerNamedMethod 437

EKG_TriggerOIMethod 439

EKG_WhereAmI 443

Function Block Field Descriptions

A description of each parameter used in the response blocks is listed in “Function

Parameter Descriptions” on page 444.

Usage

All response blocks have the same basic format:

v A Response_block_length field set by the method or application indicates the

length in bytes of the response block that is supplied.

v A Response_block_used field set by RODM indicates the amount of storage used

in the response block or the amount needed if the block is too small.

v A block of storage whose format and contents depend on the transaction type

but that typically contains:

– A Data_type field providing the data type ID of the returned data

– The data returned by the function or by a method triggered by the function

If the response block provided by the caller is too small to hold a complete

response, one of the following happens:

v If the supplied response block has fewer than 8 bytes, the transaction is

immediately ended with an error return code.

v If the supplied response block has 8 or more bytes, the transaction is run by

RODM.

v The data type and lengths of the returned values and the volume of the output

that is generated determine the total number of bytes needed in a response

block.

v If there is insufficient room in the response block for the normal return of

information after RODM has completed the transaction, RODM sets the

Response_Block_Used field of the response block to show the total size of the

generated response. RODM stores that portion of the data in the response block

equal to the number of bytes specified in the Response_Block_Length field.

RODM can take one of two actions depending on the setting of the

EKG_RBOverflowAction field in the user object:

– If that field specifies discard, any overflow data is lost.

– If that field specifies to save overflow information, RODM saves the response

block overflow data for the user to retrieve on a later call.

Using the User Application Program Interface

Chapter 11. Writing Applications that Use RODM 315

See “EKG_QueryResponseBlockOverflow — Query for Response Block Overflow

” on page 423.

The overflow data is identified by the Transaction ID in the transaction

information block of the transaction that caused the overflow. The Transaction

ID must be specified in the Correlation_ID parameter of the

EKG_QueryResponseBlockOverflow function to retrieve the data that did not fit

into the original response block. The return and reason codes that are passed to

RODM in the function block are set to show the error (response block is too

small).

Note: With the exception of the EKG_QueryResponseBlockOverflow function

and the EKG_Disconnect function, additional transactions associated with

the same access block as this transaction are rejected by RODM until the

response block overflow data is retrieved by the user.

v If the transaction causing a response block overflow is run from a list of

transactions, remaining transactions in the list are run with all results going into

the overflow block for later retrieval.

v All overflow data is placed into an overflow buffer. It is the responsibility of the

application to concatenate the data in the response block and this overflow data.

Following the response_block_used field, the remainder of the block depends on

transaction type, data types, and lengths of lists of data.

When named and object-independent methods are triggered by transactions

against RODM, those methods can generate SelfDefining data strings (variable

length strings of type SelfDefining) that return to the task running the transaction

through the response block. When named and object-independent methods are

triggered, the variable portion of the response block is dedicated to delivering

these strings to the calling task.

If a named or object-independent method causes an overflow in the response

block, the method itself receives a return code and reason code for the overflow.

However, the method might not pass this return code and reason code back to the

program that triggered the method. Always compare the Response_block_length

parameter with the Response_block_used parameter returned in the response block

if a named or object-independent method is triggered. If the value of the

Response_block_used parameter is larger than the value of the

Response_block_length parameter, an overflow occurred.

If multiple transactions are running simultaneously on a single user application ID,

any or all of them can cause a response block overflow. After an overflow occurs,

no further user API functions are enabled from EKGUAPI (with the exception of

the EKG_Disconnect function) until the EKG_QueryResponseBlockOverflow

function is called.

All overflow response blocks must be retrieved by the

EKG_QueryResponseBlockOverflow function before any other user API request

(with the exception of the EKG_Disconnect function) is enabled from EKGUAPI.

Each call to the EKG_QueryResponseBlockOverflow function must specify a

correlation ID, which is the transaction ID of the transaction that caused the

response block overflow. The correlation ID allows the correct overflow response

block to be returned.

Additional details on various kinds of response blocks are provided with many of

the descriptions of individual RODM functions.

Using the User Application Program Interface

316 Resource Object Data Manager and GMFHS Programmer’s Guide

Error Conditions in Transactions

If an error condition occurs during the execution of a transaction, RODM issues a

return code and reason code in the transaction information block. Errors can also

be recorded in the RODM log, depending on the values of LOG_LEVEL and

MLOG_LEVEL that are set in the customization file. Unless a method abends, the

decision to continue execution is left to the method.

Methods can issue return codes to RODM using the EKG_SetReturnCode function.

See “EKG_SetReturnCode — Set Return and Reason Codes ” on page 431. The

error can be recorded in the RODM log, and the return and reason code in the call

to RODM are set to show that the transaction did not complete successfully.

The return code and reason code issued to methods and user applications are

determined by RODM as follows:

v The initial return code and reason code for all user API and method API

transactions are set to 0.

v The return code and reason code returned to the user application are determined

by a synchronous method if one is triggered during the processing of the user

API request. If a synchronous method does not set the return code, it is set by

RODM if RODM detects an error during the execution of the user API

transaction.

v A method can set the return code and reason code that are returned to the caller.

The current return and reason codes for a method are initially set to 0. The

method can change the return and reason codes using the EKG_SetReturnCode

function. The current return and reason codes are returned to the method that

triggered this method or to RODM, if RODM triggered this method.

If the method sets a new return code and reason code using the

EKG_SetReturnCode function, RODM determines the return code and reason

code that are returned to the caller as follows:

– If the new return code is greater than the current return code, the new return

code and reason code replace the current return and reason code for the

method.

– If the new return code is less than or equal to the current return code, the

current return and reason code for the method are not changed.
v If the return code and reason code set by a method are returned to the method

that called it, the calling method’s return code and reason code are determined

exactly as was the called method’s.

In addition to issuing return and reason codes, RODM can also write log records

that provide additional diagnostic information about errors. Transactions that pass

through the user API are each given a unique Transaction_ID, which RODM

returns to the caller in the access block. If errors occur in methods or elsewhere in

a transaction, the Transaction_ID is written in the RODM log record for the error.

Transactions that pass through the method API are each given the Transaction_ID

of the parent transaction that was submitted across the method API.

v If a method calls the EKG_SetReturnCode function and the return code and

reason code are changed, RODM writes a type-3 log record (for object-specific

methods) or a type-4 log record (for object-independent methods) only if the

following are true:

– If the method is a synchronous method, the return code must be greater than

the value of the EKG_LogLevel field in the application program’s EKG_User

object, and logging must be enabled. For information about the

EKG_LogLevel field, see “EKG_User Class” on page 201.

Error Conditions in Transactions

Chapter 11. Writing Applications that Use RODM 317

– If the method is asynchronous, the return code must be greater than the

LOG_LEVEL parameter in the RODM customization file. Refer to the IBM

Tivoli NetView for z/OS Administration Reference for more information about the

RODM customization file.
v The final return code and reason code returned from the level-1 method (that is,

the first asynchronous method that is triggered by a

EKG_MessageTriggeredAction function) determines the following:

– If the final return code is greater than or equal to the value in the

EKG_LogLevel field of the user object that represents the application program

that triggered the asynchronous method, a log record is written.
v For user application programs that call EKGUAPI:

– If the final return code is greater than or equal to the value in the

EKG_LogLevel field of the application program’s object, RODM writes a

type-2 log record to the log.

Following is an example of return and reason code propagation:

1. User application program UA1 calls EKGUAPI to query a field.

2. Query method QM1 is triggered because the queried field has a query method

subfield. The initial return code and reason code for QM1 are both 0.

3. QM1 triggers a named method, NM1, to perform some processing on the target

object. The initial return code and reason code for NM1 are both 0.

4. NM1 sets the return code and reason code, using the EKG_SetReturnCode

function, to 4 and 2000, respectively.

5. QM1 receives return code and reason code 4 and 2000 from the named method

but does not want to return these return and reason codes to the user

application program. Instead, it sets the return code and reason code to 0 and

3000, respectively, using the EKG_SetReturnCode function. Had QM1 not set

the return code and reason code with the EKG_SetReturnCode function, RODM

returns the return and reason codes of 0 to the user application program.

6. The user application program receives the return and reason codes of 0 and

3000.

Method writers must be aware of the implications of issuing return and reason

codes from methods. An application might interpret a return and reason code

returned by the method as being related to the success or failure of the function,

when it might only relate to the success or failure of the method. For example, a

notification subscription is assigned to a field that is successfully changed by the

EKG_ChangeField function, but the notification method fails and sets a return and

reason code. In this case, the application might interpret the return and reason

code as a failure of the EKG_ChangeField function and not a failure of the

notification method.

RODM Notification Process

The RODM notification process enables your user application to be notified when

a specified field in RODM changes value. You can use the notification process to

automate any process that needs to take place when the value of a field changes.

For example, you can automate the recovery of certain network resources when

they go down.

The RODM notification process can also be used to notify user applications of:

Error Conditions in Transactions

318 Resource Object Data Manager and GMFHS Programmer’s Guide

v Asynchronous errors and checkpoints. “Asynchronous Error Notification” on

page 325 describes notification for errors and checkpointing. User applications

must set up any required notifications as soon as possible after connecting to

RODM.

v Deleted objects. “Object Deletion Notification” on page 326 describes notification

for deleted objects. Instead of installing your own notification methods, your

applications use the EKG_AddObjDelSubs function (described on page 374) to

subscribe to notification of deleted objects.

This section describes the RODM notification process, using an example of an

automated recovery application. For this example, assume that you have resources

named NETRES1, NETRES2, NETRES3, and so on, represented by objects in the

RODM data cache. A field of the object named DisplayStatus represents the status

of the resource; the value of this field is maintained by another application.

Assume also that you have written a user application named RECOVER that can

recover one of these resources when it goes down. Set up RODM so that your

RECOVER application is notified each time a resource goes down.

The RODM notification process has four overall steps:

1. Setup

2. Wait

3. Notification

4. Clean up

Each overall step is described using the RECOVER example. Some steps can be

done in different ways; this example follows the simplest way and describes the

other ways as well.

The RODM notification process has five elements:

v Notification queue

v Notification method

v Notify subfield

v Event control block (ECB)

v User application

Setup

The first step in the RODM notification process is setup. Setup includes:

v Connecting the user application to RODM

v Creating the notify subfield

v Installing the notification method

v Creating the notification queue

v Subscribing to the field

This example assumes that RODM is running and the objects and application that

maintains them are defined. You can complete the setup steps for each field on

each object for which you want to be notified, or you can set up notification at the

class level. If you set up notification at the class level, the notification process is

defined for every object of that class.

1. The first step in working with RODM is connecting to RODM. The RECOVER

application connects to RODM using the EKG_Connect function. RODM creates

an object of the EKG_User class that represents the RECOVER application.

2. If the DisplayStatus field does not have a notify subfield, the RECOVER

application creates one using the EKG_CreateSubfield function. The subfield is

created on the same class as the DisplayStatus field.

RODM Notification Process

Chapter 11. Writing Applications that Use RODM 319

3. Methods must be installed before they can be used. You install a method by

placing it in the specified library for RODM and by creating an object of the

EKG_Method class that represents the method. “Installing and Freeing

Methods” on page 356 describes how to install a method.

In this example, one of the notification methods supplied with RODM is being

used. The EKGNTHD notification method is triggered when the value of the

field falls outside the specified thresholds. The thresholds are passed to

EKGNTHD in the Long_lived_parm that is specified on the

EKG_AddNotifySubscription function.

The EKGNTHD notification method is described in “RODM Notification

Methods” on page 480. If the NetView-supplied methods do not meet your

needs, you can write your own notification method.

4. Create a notification queue and its associated event control block (ECB). You

need only one notification queue for all objects that are to notify your user

application RECOVER. A notification queue is associated with a single user

application, but a user application can have many notification queues. The

notification queue is an object of the EKG_NotificationQueue class.

a. RECOVER creates an object of the EKG_NotificationQueue class using the

EKG_CreateObject function. Notification queue names must be unique

within a user application. For this example, specify the queue name

RECOVQ as the object name in the entity access block of this transaction.

RODM concatenates the User_appl_ID of the user application with the

queue name specified to create the MyName field of the

EKG_NotificationQueue object; in this example, MyName is set to

RECOVER.RECOVQ. RODM links the EKG_UsedBy field of the

EKG_NotificationQueue object to the EKG_Uses_Q field of the EKG_User

object that represents the user application.

b. Set the value of the ECB to 0 (zero).

c. Set the EKG_ECBAddress field to the address of the ECB you use for this

queue. RECOVER uses the EKG_ChangeField function to set the value of

this field. The ECB is created in the address space of the user application.

Many notification queues can use the same ECB.

d. Set the EKG_Status field of the notification queue object you created in Step

4a to 1 (active). RECOVER uses the EKG_ChangeField function to set the

value of this field.

You do not have to associate an ECB with a notification queue. Your

application can simply query the notification queue from time to time to see if

any notifications have been added. However, this is not as useful as the

asynchronous notification provided by the ECB.

5. The last step in setup is to subscribe to the field for each object. The RECOVER

application issues the EKG_AddNotifySubscription function. This function puts

the notification method name EKGNTHD, the method parameters, the

notification queue name RECOVQ, and the user application ID of RECOVER in

the notify subfield. Specify the parameters of this function call as follows:

Entity_access_info_ptr

A pointer to the entity access block that specifies the class and object

for which you are creating the notification subscription.

Field_access_info_ptr

A pointer to the field access block that specifies the DisplayStatus field.

User_appl_ID

Set this to the null value. RODM fills in the value that corresponds to

the RECOVER application that is issuing this function call.

RODM Notification Process

320 Resource Object Data Manager and GMFHS Programmer’s Guide

Notification_queue

Specify the name of the notification queue you created in Step 4 on

page 320. For this example, enter the name as RECOVQ, not as

RECOVER.RECOVQ. The User_appl_ID part of the name is supplied

by RODM.

User_word

You can leave this optional field blank.

Notify_method

Specify the object ID of the object of the EKG_Method class that

represents the notification method EKGNTHD. If this is an installed

method, this is the value that was returned in the Object_ID field of the

entity access block when you created the object for EKGNTHD in Step

3 on page 320. If this is a pre-installed method, the object ID is

obtained by querying the MyName field of the method.

Long_lived_parm

Specify the parameters that are to be passed to EKGNTHD when it is

triggered. This is where you specify the thresholds that cause this

method to be triggered. These parameters are described in “RODM

Notification Methods” on page 480.

Repeat Step 5 on page 320 once for each field you subscribe to. The setup for the

notification process is complete when the EKG_AddNotifySubscription function

has run successfully for each object.

Although this example describes notifying one user application when a field

changes, any number of applications can be notified. The notify subfield can

contain a list of notification subscriptions. Repeat the entire notification process for

each user application that is to be notified.

Instead of creating a notification subscription for each object, you can create a

notification subscription for a class. RODM triggers a notification method defined

for a field of a class when that field is changed on any object of the class. The

notification method needs to use the Where Am I (2007) function to identify the

particular object that caused the method to be triggered.

Wait

After you have set up the notification process, your application suspends

processing until RODM notifies it of a change. Calling EKGWAIT enables your

application to wait until a specified ECB or any ECB in a list of ECBs is posted by

RODM.

EKGWAIT is an interface module that provides the WAIT facilities. Your

application calls EKGWAIT with a parameter list containing ECB information.

For this example, RECOVER issues a call to EKGWAIT specifying an ECB. When

the ECB is posted, EKGWAIT returns control to RECOVER. RECOVER then

processes the notification.

Calling EKGWAIT

RODM supplies sample code that shows how to call EKGWAIT. The PL/I sample

is EKG5WAIT and the C sample is EKG6WAIT.

Only user applications can use EKGWAIT. The format of the call to EKGWAIT is

as follows:

RODM Notification Process

Chapter 11. Writing Applications that Use RODM 321

EKGWAIT(Num_ECBs, ECB_Array, Return_code, Reason_code)

The following is an explanation of each parameter in the list of parameters

specified in a call to the EKGWAIT interface module. This parameter list is also

used by EKGWAIT to pass information back to the user application when

EKGWAIT returns control.

Parameter Name

Description

Num_ECBs (In)

A 2-byte Smallint which specifies the number of ECBs in the event

list.

ECB_Array (In)

An array of Pointers where each pointer contains the address of an

ECB.

Return_code (Out)

A 4-byte Integer containing the return code.

Reason_code (Out)

A 4-byte Integer containing the reason code. If Return_code is 0,

then this field will contain the index into ECB_Array for which the

ECB was posted.

PL/I Coding Example

Figure 74 is an example for calling EKGWAIT from a PL/I user application:

 %Include SYSLIB(EKG1IEEP); /* EKGWAIT declaration */

 %Dcl n fixed;

 %n=3; /* Arbitrary max number of ECBs in list*/

Figure 74. PL/I Coding Example (Part 1 of 4)

 Dcl

 ECB_Array(n) Pointer, /* Array of ECB pointers */

 Return_code fixed bin(31), /* Return code from EKGWAIT */

 Reason_code fixed bin(31), /* Reason code from EKGWAIT */

 Num_ECBs fixed bin(15), /* Number of ECBs */

 POSTED_ECB fixed bin(31) based, /* ECB which was posted */

Figure 74. PL/I Coding Example (Part 2 of 4)

 ECB1 fixed bin(31), /* First ECB */

 ECB2 fixed bin(31), /* Second ECB */

 ECBn fixed bin(31); /* Nth ECB */

 ECB_Array(1)=addr(ECB1); /* Address of ECB1 */

 ECB_Array(2)=addr(ECB2); /* Address of ECB1 */

 ECB_Array(n)=addr(ECBn); /* Address of ECBn */

 Num_ECBs=n; /* Number of ECBs in list */

Figure 74. PL/I Coding Example (Part 3 of 4)

RODM Notification Process

322 Resource Object Data Manager and GMFHS Programmer’s Guide

C Coding Example

Figure 75 is an example for calling EKGWAIT from a C user application:

EKGWAIT Usage Notes

The purpose of the ECB_Array is to contain the ECB addresses being set to the

EKG_ECBAddress fields in the EKG_NotificationQueue objects. However, always

include in the ECB_Array the Stop_ECB identified to RODM at connect time. This

can prevent a user from waiting indefinitely, if RODM is stopped.

 CALL EKGWAIT(Num_ECBs,ECB_Array,Return_code,Reason_code); /* Wait

 on list of ECBs */

 If Return_code = 0 then /* No errors in WAIT */

 Do;

 /**/

 /* ECB_Array(Reason_code) is a pointer to the posted ECB. */

 /**/

 ECB_Array(Reason_code)->POSTED_ECB=0;

 End;

Figure 74. PL/I Coding Example (Part 4 of 4)

 #include "EKG3CEEP.H" /* EKGWAIT declaration */

 #define n 3 /* Arbitrary max number of ECBs in list*/

 int* ECB_Array[n]; /* Array of ECB pointers */

 int Return_code; /* Return code from EKGWAIT */

 int Reason_code; /* Reason code from EKGWAIT */

 int Num_ECBs; /* Number of ECBs */

Figure 75. C Coding Example (Part 1 of 3)

 int ECB1; /* First ECB */

 int ECB2; /* Second ECB */

 int ECBn; /* Nth ECB */

 ECB_Array[0]=&ECB1; /* Address of ECB1 */

 ECB_Array[1]=&ECB2; /* Address of ECB2 */

 ECB_Array[n-1]=&ECBn; /* Address of ECBn */

 Num_ECBs=n; /* Number of ECBs in list */

Figure 75. C Coding Example (Part 2 of 3)

 EKGWAIT(&Num_ECBs,ECB_Array,&Return_code,&Reason_code); /* Wait

 on list of ECBs */

 if (Return_code == 0) { /* No errors in WAIT */

 /**/

 /* ECB_Array[Reason_code-1] is a pointer to the posted ECB. */

 /**/

 *ECB_Array[Reason_code-1]=0;

 }

Figure 75. C Coding Example (Part 3 of 3)

RODM Notification Process

Chapter 11. Writing Applications that Use RODM 323

On a successful return, where Return_code equals 0, the Reason_code is set to an

integer value indicating the index (1 to N) within the ECB_Array of the ECB that

was posted. Clear the ECB being posted immediately after a successful return from

this function call.

An ECB address of 0 passed to this function call causes an immediate return with

a warning return code. But, an ECB address that is not valid can cause an abend or

an indefinite wait.

Notification

When the field to which your application has subscribed changes value, its

notification method is triggered. In this example, if the DisplayStatus field of object

NETRES3 changes, RODM triggers notification method EKGNTHD. EKGNTHD

then compares the new value of DisplayStatus to the thresholds you specified in

the Long_lived_parm parameter of the EKG_AddNotifySubscription function.

If the new value exceeds the specified thresholds, EKGNTHD places a notification

block on notification queue RECOVQ and RODM posts the ECB for the RECOVER

application. Notification methods use the EKG_SendNotification function to place

the notification block on the queue. When the ECB is posted, EKGWAIT returns

control to RECOVER.

RODM posts the ECB for a notification queue when all of the following conditions

are met:

v The notification queue exists.

v A notification block is added to a previously empty queue.

v The ECB pointer for the queue points to a valid ECB.

After RODM posts an ECB for a particular notification queue, RODM does not

post the ECB for that queue again until the queue has been completely drained

and a new block added or until the EKG_ECBAddress field in the notification

queue object is changed.

If you reconnect to RODM and notification subscriptions and notification queue

objects for your user application still exist, the ECB cannot be posted. You must

reset the EKG_ECBAddress field in each notification queue object to a current ECB

address to enable RODM to post the ECBs.

The remaining processing is done by your application.

1. The user application clears the ECB by setting it equal to 0. This enables RODM

to post additional notifications.

2. The application gets the notification blocks from the notification queue using

the EKG_QueryNotifyQueue function. The notification block contains a

Notification_block_type field that indicates the type of event that caused the

notification.

One block is removed for each function call. The response block for this

function indicates the number of notification blocks on the queue in the

Notification_queue_count parameter. The application processes each block on

the notification queue. The EKG_QueryNotifyQueue function must be issued

from the address space that the user application connected from.

In our example, RECOVER calls the EKG_QueryNotifyQueue function once,

specifying the notification queue name RECOVQ.

3. The application uses the notification block information returned in the response

block to initiate its processing. In our example, RECOVER uses the Object_ID

RODM Notification Process

324 Resource Object Data Manager and GMFHS Programmer’s Guide

parameter to identify the resource that changed its DisplayStatus. RECOVER

can use the EKG_QueryField function to get the new DisplayStatus value from

the RODM data cache. RECOVER then issues the appropriate commands to

reactivate the failing resource NETRES3.

4. When it finishes processing the notification queue, the user application calls

EKGWAIT to wait until the next notification takes place.

Clean Up

Notification processing uses system resources including memory and processor

cycles. When a notification is no longer needed for an object, delete the

notification.

There are two ways to delete a notification:

v Delete the notification queue.

v Delete the notification subscription.

If you want to delete all notification subscriptions that use a notification queue,

delete the object of the EKG_NotificationQueue class that represents the

notification queue. Use the EKG_DeleteObject function. RODM deletes the

notification queue and all notification subscriptions that specify that queue. RODM

also deletes any notification blocks that are still on the notification queue.

If you have more than one notification subscription that uses a notification queue,

and you do not want to delete all of the subscriptions, use the

EKG_DeleteNotifySubscription function for each subscription you want to delete.

In this example, you want to shut down NETRES2 for maintenance. To prevent

RECOVER from trying to restart NETRES2, issue the

EKG_DeleteNotifySubscription function and specify NETRES2 with the

Entity_access_info_ptr parameter. The other notification subscriptions are not

affected.

RODM deletes the links between the EKG_User object and the

EKG_NotificationQueue object when you delete a notification queue. When a user

application disconnects from RODM or ends without disconnecting, RODM can

delete the notification queues and subscriptions associated with the user

application. The EKG_StopMode field in the EKG_User object that represents the

object specifies what action RODM takes. See “EKG_User Class” on page 201 for

information about the EKG_StopMode field.

Asynchronous Error Notification

Your user applications can be notified about asynchronous errors and checkpoints

by subscribing to fields in RODM system-defined objects. Subscribe to the

EKG_LastAsyncError field in the EKG_System object to be notified about

asynchronous errors that occur during the execution of asynchronous API requests,

asynchronous methods, or RODM internal processing. Subscribe to the

EKG_LastAsyncError field in the EKG_User object for a user application to receive

notifications only about errors in transactions initiated by that user application.

The NetView-supplied method EKGNOTF can be used for these notification

subscriptions. See “RODM Notification Methods” on page 480 for a description of

this method. The log record is assigned to the EKG_LastAsyncError field. This log

record information is placed in the user_data field of notification queue blocks

RODM Notification Process

Chapter 11. Writing Applications that Use RODM 325

created because of a subscription to the EKG_LastAsyncError field. User

application programs can obtain this information by calling the

EKG_QueryNotifyQueue function.

When an error occurs, the specified notification method is triggered. All user

applications that subscribed to the EKG_LastAsyncError field are notified.

The EKG_LastAsyncError field is changed and any notification methods are

triggered when an error message is written to the log as the result of a method

running asynchronously to a user application. RODM writes error log entries when

a method sets its return code to a value greater than or equal to either the user’s

EKG_LogLevel or the Log_level customization parameter specified for an

asynchronous method.

Object Deletion Notification

If your application needs to be notified when certain objects are deleted, the

application can subscribe to those objects with an object-deletion subscription. If the

object is deleted, RODM places a notification block on a notification queue and

posts the ECB for the application.

For the format of the notification block, refer to the description of the

EKG_QueryNotifyQueue response block on page 419.

The four steps of the RODM notification process (setup, wait, notification, and

cleanup) apply to object-deletion notification, with some differences.

Setup for Object-Deletion Notification

For object-deletion notification, setup differs from the normal RODM notification

process described on page 319.

1. Connect to RODM. Do not create a notify subfield, install a notification

method, or subscribe to the field.

2. Create a notification queue and its ECB, as described in Step 4 on page 320.

3. The last step in setup is to subscribe to the object. Your application issues the

EKG_AddObjDelSubs function to create an object-deletion subscription for the

object. This function specifies an object, a user application, and a notification

queue. If the object is deleted, RODM places a notification block on the

specified notification queue and posts the ECB for the user application. Specify

the parameters of this function call as follows:

Entity_access_info_ptr

A pointer to the entity access block that specifies the class and object

for which you are creating the object-deletion subscription

User_appl_ID

Set this to the null value. RODM fills in the value that corresponds to

the user application that is issuing this function call.

Notification_queue

Specify the name of the notification queue you created in Step 4 on

page 320. The User_appl_ID part of the name is supplied by RODM.

User_word

You can leave this optional field blank.

RODM Notification Process

326 Resource Object Data Manager and GMFHS Programmer’s Guide

Long_lived_parm

When the object is deleted, RODM puts the value of this optional

parameter in the user_area parameter of the response block

Repeat Step 3 on page 326 once for each object you subscribe to. The setup for the

deletion-notification process is complete when the EKG_AddObjDelSubs function

has run successfully for each object.

Wait for Object-Deletion Notification

This step is the same as “Wait” on page 321.

Notification for Object-Deletion Notification

When the object to which your application has subscribed is deleted, RODM places

a notification block on the application’s notification queue and posts the ECB for

the application.

The rest of this step is the same as described in “Notification” on page 324.

Cleanup for Object-Deletion Notification

To delete an object-deletion subscription, use the EKG_DelObjDelSubs function

described in “EKG_DelObjDelSubs — Delete Object Deletion Subscription” on page

396.

Connecting to RODM

Before you can run any user API functions, you must connect to RODM using the

EKG_Connect API function. When you connect to RODM, specify an access block

containing your user application ID and the name of the RODM to which you

want to connect. RODM sets the Sign_on_token field in your access block after a

successful connect. This value represents your connection to RODM and must not

be changed. If RODM detects that the value in the Sign_on_token field in your

access block is not valid when you request an API function other then

EKG_Connect, RODM rejects your API function request and returns the

appropriate reason code.

RODM permits only one connection for each application user ID. Attempts to

connect with a user application ID that is already connected fail, and the

appropriate reason code is returned.

Applications that are cancelled by the operator or are otherwise abended while

they are connected to RODM, are disconnected.

If you chose to disconnect from RODM without purging the subscription

notification queue, upon subsequent connection, all ECB addresses associated with

the notification subscriptions must be reset to point to the new address space ID.

Your application cannot connect to RODM if your application is running in

cross-memory mode. RODM checks for this condition and returns an error reason

code.

After successfully connecting to RODM, RODM creates a user object in the

EKG_User class representing your user application. This user object contains your

application environment and is preserved until your application disconnects. While

Object Deletion

Chapter 11. Writing Applications that Use RODM 327

you can have multiple concurrent API requests executing in RODM for the same

user application ID, each request uses and possibly modifies the information in the

user object.

For more information about connecting to RODM, see “EKG_Connect — Connect

to RODM” on page 383.

Disconnecting from RODM

When an application completes all of its tasks and has no further API function

requests to perform, it disconnects using the RODM EKG_Disconnect API function.

After disconnecting, the sign-on-token is no longer valid. RODM returns an error

reason code if your application subsequently attempts to run another API function

request, unless the API function request is an EKG_Connect function request.

When your application disconnects, RODM performs clean-up of notification

queues, depending on the value of EKG_StopMode in your user object. RODM

might purge all of your user application ID-owned notification queues, queue

elements, and subscriptions, purge only notification queue elements and retain all

notification queues and subscriptions, or purge nothing and retain all notification

queues, queue elements, and subscriptions. If RODM purges all notification

queues, queue elements, and subscriptions, RODM also purges your user object.

Note: Applications that end while they are connected to RODM, are disconnected.

For more information about disconnecting from RODM, see “EKG_Disconnect —

Disconnect from RODM” on page 397.

Connecting to RODM

328 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 12. Topology Object Correlation

This chapter describes the object correlation function. It includes the following

information:

v Enabling the correlation function

v Correlation concepts

v Including your objects in correlation

v Correlating SNA topology manager and MultiSystem Manager objects

v Customizing the correlation function

Using correlated aggregate objects, a NetView management console (NetView

management console) operator can:

v Navigate between correlated resources

v View consolidated data about the correlated resources

v Monitor aggregate status of the correlated resources

For more information about using correlated objects, refer to the IBM Tivoli

NetView for z/OS MultiSystem Manager User’s Guide.

Enabling the Correlation Function

Object correlation is enabled by loading input file FLCSDM8 into RODM. To load

FLCSDM8, remove the asterisk (*) from the following line in job CNMSJH12:

//* DD DSN=NETVIEW.V5R3M0.CNMSAMP(FLCSDM8),DISP=SHR <-CORRELATE SAMPL

Correlation occurs when an application sets a valid value in a field of a RODM

object that is enabled for correlation. Objects are enabled for correlation by loading

file FLCSDM8. MultiSystem Manager and SNA topology manager automatically

sets the value of these fields, which causes correlation to occur and the views are

displayed on a NetView management console.

Enabling MultiSystem Manager Object Correlation

To optimize navigation and storage for resources managed by the TMR agent,

issue the GETTOPO commands in the order listed:

1. GETTOPO TMERES

2. Any other GETTOPO commands

Enabling SNA Topology Manager Object Correlation

To enable correlation for resources managed by SNA topology manager, edit

initialization file FLBSYSD and change the value of the following statement to YES:

 WRITE_CORRELATABLE_FIELDS=NO

SNA correlation occurs on PU resources. PU resources are excluded from

TOPOSNA commands that do not include the LOCAL parameter. Use the LOCAL

parameter on any TOPOSNA command issued to resources you want included in

correlation.

The resources on which SNA topology manager provides a correlator value are PU

2.1 OS/2 workstations. If SNA topology manager does not monitor any OS/2

workstations, none of your SNA resources can be correlated. If you know the LAN

© Copyright IBM Corp. 1997, 2007 329

|

|
|
|
|

MAC address of your SNA resources, you can include them in correlation. Refer to

“Extending Correlation of Objects Created by MultiSystem Manager and SNA

Topology Manager” on page 335.

Enabling GMFHS Object Correlation

To enable correlation for GMFHS resources, set a value on one or more of the

following fields on the GMFHS_Managed_Real_Objects_Class:

v aIndMACAddress

v Correlater

v iPAddress

RODM load input file FLCSDM8 creates these fields on the

GMFHS_Managed_Real_Objects_Class when it is loaded.

Correlation Concepts

The correlation function is triggered when the value of a field on which method

FLCMCON is installed changes. Correlation automatically associates resources

managed by different agents. The correlation function runs dynamically and is

implemented using RODM methods. Correlated objects have a common correlater

value, and a correlated aggregate object is used to represent these objects. When

correlation is by IP address or LAN MAC address, the correlated aggregate object

is represented in RODM using aggregateSystem class objects. When correlation is

by a value in the Correlater field, the correlated aggregate object is represented in

RODM using GMFHS_Aggregate_Object_Class objects.

A correlated object is an object of any correlation-enabled class that has a value in

one of the following fields:

v aIndMACAddress

v iPAddress

v Correlater

This value is the correlater value.

The term cross-correlation is used to describe the relationship between two or more

real objects that have an identical correlater value. For example, assume the

following:

v The correlation function is enabled.

v You have a workstation that contains an internet host and a NetWare server.

v The resources are represented by objects in RODM, and on each object the

iPAddress field has the value 9.37.65.43.

Because these two objects have identical values for the same field, the objects are

cross-correlated.

Correlation Methods

The following RODM methods implement the correlation function.

Method FLCMCONI

Method FLCMCONI is an initialization method that loads method FLCMCON on

classes that support correlation. Method FLCMCONI is used instead of RODM

load input file DUIFSTRC because method FLCMCONI passes parameters to

method FLCMCON.

Method FLCMCON

Method FLCMCON is a notification method that is loaded on certain fields of

classes for which correlation is enabled. To determine which classes are enabled for

330 Resource Object Data Manager and GMFHS Programmer’s Guide

correlation and the fields on which method FLCMCON is loaded, browse RODM

load file FLCSDM8. FLCMCON runs FLCMCOR.

Method FLCMCOR

Method FLCMCOR is an object-independent method that creates and updates

correlated aggregate objects.

 The load and customization of these methods is accomplished using RODM load

file FLCSDM8. For more information, refer to “Enabling the Correlation Function”

on page 329 and “Customizing the Correlation Function” on page 336.

Objects Enabled for Correlation

Loading sample FLCSDM8 automatically enables correlation for resources that are

managed by MultiSystem Manager, SNA topology manager, and customer

applications that use the GMFHS data model. To determine which classes are

automatically enabled, browse RODM load file FLCSDM8. All classes on which

method FLCMCON is loaded are automatically enabled.

For example, the following code enables correlation by IP address on objects of the

internetRouter class, which are created by the MultiSystem Manager IP feature:

OP FLCMCONI INVOKED_WITH (SELFDEFINING)

(

 (OBJECTID) EKG_Method.FLCMCON

 (CLASSID) ’1.3.18.0.0.3330’-- internetRouter

 (FIELDID) ’1.3.18.0.0.3330’.’iPAddress’

 (CLASSID) ’1.3.18.0.0.6464’

 (CLASSID) ’GMFHS_Managed_Real_Objects_Class’

);

Types of Correlation

There are two types of correlation:

v Network address correlation

v Free-form correlation

Network Address Correlation

Network address correlation is performed using LAN media access control (MAC)

or internet protocol (IP) addresses.

To include objects in correlation based on a network address, set a value on one of

the following fields.

v aIndMACAddress (1.3.18.0.0.5263)

v iPAddress

Correlation uses 12-character MAC addresses (for example, 10004BF00943). A

14-character MAC address is supported, but the last 2 characters (the link service

access point) are removed.

A valid IP address consists of numbers and at least two periods (.) to delimit the

numbers.

Free-Form Correlation

Free-form correlation is performed using a free-form string value. Correlation on a

free-form string creates a correlated object with a display name that matches the

string value.

To include objects in free-form correlation, set the string as the value of the

Correlater field. Example valid values include:

Chapter 12. Topology Object Correlation 331

v Accounting

v PresidentsOffice

v Building201

v London

You can also enter a multipart string value in the Correlater field. Entering a

multipart string enables you to link the correlated object to a hierarchy of

correlated aggregate objects as shown in Figure 76:
 .

To enable correlation to create the objects in Figure 76, set the following values:

v Bridge1 Correlator = ’RmA206 Bldg300 Barcelona Europe’

v Switch5 Correlator = ’RmD312 Bldg400 Barcelona’

v PBX3 Correlator = ’OpCenter Europe World’

This enables you to create or locate a hierarchy of views, based upon

organizational or geographic structure, with one command. As with single value

free-form correlation, for each string value in a multipart string, a correlated

aggregate object will be located or created. If parent relationships do not already

exist between the different correlated aggregate objects identified in the multipart

string, they will be created.

Commas or blank spaces can be used to delimit a multi-part string. For example, if

you enter a string value of Jane Doe, correlation will locate or create two objects –

Jane and Doe.

All of the characters supported by the RODM CharVar data type are supported.

This enables you to use an underscore character (_) between string values that you

want to be treated as one correlated aggregate object (for example,

Margaret_Thatcher).

Figure 76. Correlate Objects on Multiple Free-Form Values

332 Resource Object Data Manager and GMFHS Programmer’s Guide

Free-form correlation creates correlated aggregate objects of class

GMFHS_Aggregate_Objects_Class. This enables correlation to locate and link to

aggregate objects created by BLDVIEWS scripts. BLDVIEWS typically includes

objects in views if those objects have a consistent naming scheme (for example,

CPNRTR2 and CPNHST14), it builds views from the top down. Multiple free-form

correlation does not require objects to have a similarity in object naming; it builds

views from the bottom up. Using BLDVIEWS and topology correlation together,

you can build custom views that match your enterprise.

Correlated Aggregate Object Classes and Names

Correlated aggregate objects are named using the correlater field value of the first

object for which a correlation was found. Valid values include the following:

v LAN MAC address (for example, 40000A17D006)

v TCP/IP address (for example, 9.37.65.43)

v Free-form correlater (for example, Accounting)

Correlated aggregate objects identified through network address correlation are

created on class aggregateSystem. These objects have a multi-part OSI

distinguished name that includes a MAC address or TCP/IP address as the last

element. For example, 1.3.18.0.0.3519=MultiSys,1.3.18.0.0.6467=40000A17D006.

Correlated aggregate objects identified through free-form correlation are created on

class GMFHS_Aggregate_Objects_Class. These objects are named by a free-form

correlater value, with no other prefix or suffix (for example, Accounting).

For more information about the object names, refer to the aggregateSystem class

description in the IBM Tivoli NetView for z/OS Data Model Reference.

Object names are defined by the value of the object MyName field. The name used

to label these objects on the NetView management console can be either the

MyName field value or a user-defined value. See “Correlated Aggregate Object

Display Labels” for more information about display labels.

Correlated Object Relationships

Resources with identical Correlater field values are represented by one correlated

aggregate object; this includes resources that are managed by different topology

agents.

Relationships are created between correlated resources and correlated aggregate

objects using links. Links enable more detail, configuration parent, and

configuration child navigation between objects and status aggregation.

Correlated Aggregate Object Display Labels

Correlated aggregate objects are displayed using the following symbol:

Correlated aggregate object labels are determined by the first value for which a

correlation was found:

Figure 77. Aggregate Resource Symbol

Chapter 12. Topology Object Correlation 333

Table 40. Correlated Aggregate Object Labels

First Correlation Value Resource Label

MAC address LAN workstation aggregate

IP address IP system aggregate

Correlator field value Open system aggregate

Correlated Aggregate Object Field Values

The correlation function is triggered when the value of a field on which method

FLCMCON is installed changes. Method FLCMCON triggers method FLCMCOR.

Method FLCMCOR queries the values of the following fields of real objects:

v aIndMACAddress

v segmentNumber

v aUniversallyAdministeredAddress

v adapters

v iPAddress

v netAddress

v sysLocation

v adjacentLinkStationAddress2

v linkName

v ipHostName

v Correlater

The value of these fields is compared to the values of the corresponding fields of

the correlated aggregate object. When a value exists on a real object but not on the

correlated aggregate object, the value is copied from the real object to both the

corresponding field and the DisplayResourceOtherData field of the correlated

aggregate object.

Notes:

1. When a value is assigned to a field on the correlated aggregate object,

subsequent correlations cannot change the value of the field.

2. If you write an application that uses the value of these fields, query the

individual fields rather than parsing the DisplayResourceOtherData field. Refer

to the IBM Tivoli NetView for z/OS Data Model Reference for more information

about these fields.

Use the NetView management console to display data contained in the

DisplayResourcOtherData field. This information is displayed in the NetView

management console Data1 field.

The value in the DisplayResourceOtherData field is not always provided by the

correlation function. The TMR agent also creates aggregateSystem class objects and

sets a value in the DisplayResourceOtherData field. Information provided by the

correlation function is identified by a lowercase a in the word address.

 When you set a correlater value in RODMVIEW or the RODMVIEW function of

Visual BLDVIEWS, the resultant correlation is only displayed until the next time

that RODM is recycled. That can be days or months, depending upon how you run

your enterprise. When you set correlater values in a CLIST or BLDVIEWS script,

you can rerun that CLIST or BLDVIEWS script, and restore your customized

correlations, after RODM is recycled. If your customization includes free-form

correlation, there is an easier way to set correlater values. Visual BLDVIEWS (VBV)

provides pop-up menus that enable you to select one or more correlated objects,

set a value in the Correlater field of those objects and save and run those settings

334 Resource Object Data Manager and GMFHS Programmer’s Guide

|
|
|
|

to the host as a BLDVIEWS script. With this method, after RODM is recycled, you

can rerun the BLDVIEWS script from the mainframe or the VBV workstation to

restore your custom correlations. For more specifics on using Visual BLDVIEWS or

BLDVIEWS with topology correlation, refer to the IBM Tivoli NetView for

z/OS MultiSystem Manager User’s Guide.

Using Correlation for Objects You Create

Objects discovered by MultiSystem Manager agents and SNA topology manager

logicalLink class (PU) objects are automatically correlated. You can extend

correlation to include MultiSystem Manager open data model, GMFHS, and

additional SNA topology manager objects. For more information about SNA

topology manager, see “Correlating SNA Topology Manager Objects” on page 336.

To include objects that you have created in correlation, perform the following

tasks:

v Choose a class to use. You can choose any of the classes enabled for correlation

in file FLCSDM8. Enabling objects of the open data model requires less setup,

and sample file FLCSOX01 is provided as an example. If your application

already creates GMFHS managed resource objects, it is easier to continue using

the GMFHS objects.

v Set a value on one or more of the following data fields for each object you want

to include in correlation:

– aIndMACAddress (for example, 1.3.18.0.0.5263)

– iPAddress

– Correlater

The aIndMACAddress and iPAddress fields support correlation based on

network addresses and the Correlater field supports free-form correlation.

You can set field values on the objects using RODMVIEW, CLIST, or BLDVIEWS

script. Sample file FLCSOX01 provides an example of a REXX CLIST. This CLIST

demonstrates that if your application already creates RODM objects, you can

include those objects in correlation by adding just one additional line of code.

Extending Correlation of Objects Created by MultiSystem Manager and

SNA Topology Manager

MultiSystem Manager objects and SNA topology manager logicalLink class (PU)

objects are automatically correlated. If you have correlatable information about

objects that is not discovered by MultiSystem Manager or SNA topology manager

agents, you can extend correlation to these objects. To extend the correlation of

these objects, perform the following tasks:

v Determine the name of the object

v Set a value on the aIndMACAddress, iPAddress, or Correlater field of the object

v Perform any data model-specific tasks necessary to extend the objects. See

“Correlating MultiSystem Manager Objects” on page 336 and “Correlating SNA

Topology Manager Objects” on page 336 for more information.

Remember that SNA topology manager and MultiSystem Manager dynamically

create, delete, and update objects. If you add field values and then subsequently

reacquire topology (for example, by issuing a TOPOSNA or GETTOPO command)

or cold start RODM, the values you added can be lost. Because of this, use a

CLIST or BLDVIEWS script to reset correlatable field values each time topology is

reacquired.

Chapter 12. Topology Object Correlation 335

How to Determine Object Names

Object names are defined by the value of the object’s MyName field in RODM.

Remember that the name of an object that is displayed in a view is usually a

simplified version of the object’s name in RODM. The name that is displayed in a

view usually is not suitable for the object name in RODM. Use RODMVIEW or

Visual BLDVIEWS to determine the MyName field values of existing objects.

For a description and syntax of MyName fields, refer to the IBM Tivoli NetView for

z/OS Data Model Reference.

Correlating MultiSystem Manager Objects

If method FLCMCON is loaded directly on the field of an object you want to

correlate, set a value on the field. To determine which fields have method

FLCMCON loaded, browse RODM load file FLCSDM8. This is all that is required

for most MultiSystem Manager objects.

If you want to extend additional network address correlation to objects created by

MultiSystem Manager that have method FLCMCON loaded on the memberOf

field, create a link on the memberOf field.

For example, if you want to add MAC address correlation to a Monitor class object

that is already correlated on a IP address, create a link on the memberOf field of

that object. The link can be to any other object, and the process of creating the link

is the same as creating other links in RODM.

Note: Free-form correlation using the Correlater field never requires creation of a

link in RODM.

Correlating SNA Topology Manager Objects

SNA topology manager logicalLink class objects are automatically included in

correlation because the value of the adjacentLinkStationAddress field can contain

the MAC address of the PU. The correlation function determines if this field

contains a MAC address. If it does, it treats this field like the aIndMACAddress

field.

Because SNA Topology Manager does not discover TCP/IP addresses, SNA PUs

are not correlated to resources on which an IP address is discovered unless the

MultiSystem Manager IP agent also discovers both an IP address and a MAC

address on that resource. One example of a resource that has a MAC address and

an IP address is an OS/2 workstation that has a SNA PU and a LAN adapter with

IP support. SNA topology manager discovers MAC addresses only on OS/2

workstations.

To enable IP address correlation for SNA resources, manually set the address on

the iPAddress field on an object enabled in file FLCSDM8. Correlation can then

automatically correlate the SNA object to other resources with IP addresses.

Customizing the Correlation Function

All customization of the correlation function is accomplished using RODM load

file FLCSDM8. After customization, RODM load file FLCSDM8 must be loaded

into RODM. If RODM load file FLCSDM8 was previously loaded, cold start

RODM. If FLCSDM8 was not previously loaded and you have already loaded the

other SNA topology manager and MultiSystem Manager load files, load FLCSDM8

336 Resource Object Data Manager and GMFHS Programmer’s Guide

|
|
|
|
|
|
|

without cold starting RODM. You must use sample file EKGLLOAD to load file

FLCSDM8. Ensure that you specify the data set and file (FLCSDM8) in the EKGIN3

step.

There are two ways to customize the correlation function:

v Change the display name priority

v Disable correlation for specific classes

Changing the Display Name Priority

You can change the type of display name for a correlated aggregate object, when

that object is correlated by network address. When the object is correlated by

free-form correlater, the display name is taken from the Correlater field. In that

case, the type of display name cannot by changed.

The fields shown in Figure 78 are used to determine the correlated aggregate object

display name. To determine which correlated aggregate object field will be used to

label an object, the correlate function uses a prioritized list of those fields in file

FLCSDM8. The correlate function queries each field of the aggregate object in the

order listed until a non-null value is found; this value is used to label the object.

Table 41 lists the default priority used and the agents the priorities are used for.

 Table 41. Correlated Aggregate Object Default Display Name Priority

Priority Name Type Discovered By

1 Computer name TMR

2 IP host name Internet and TMR

3 TCP/IP address Internet and TMR

5 SNA node name SNATM

6 LAN MAC address LNM, SNATM, and Internet

You can determine which label will be displayed by customizing the order in

which the fields are listed.

For example, using the default priority shown in Figure 78, a workstation that

contains an IP agent is not named using the computer name because the Internet

does not define a computer name for managed resources. In this case, the

workstation object is labeled using its internet protocol host name.

Now, assume that you have customized file FLCSDM8 to put TCP/IP address

(priority 3) before IP host name (priority 2) as shown in Figure 79 on page 338. In

this case, the TCP/IP address is used to label the workstation object because the IP

agent provides both an IP host name and an IP address, and the IP address name

(

 (FIELDID) ’1.3.18.0.0.6464’.

 ’1.3.18.0.0.3315.2.7.202’ -- computerName

 (FIELDID) ’1.3.18.0.0.6464’.

 ’ipHostName’ -- ipHostName

 (FIELDID) ’1.3.18.0.0.6464’.

 ’iPAddress’ -- iPAddress

 (FIELDID) ’1.3.18.0.0.6464’.

 ’1.3.18.0.0.2032’ -- snaNodeName

 (FIELDID) ’1.3.18.0.0.6464’.

 ’1.3.18.0.0.5263’ -- aIndMACAddress

Figure 78. Default Display Name Priority

Chapter 12. Topology Object Correlation 337

|

|

|

is listed first.

Disabling Correlation for Specific Resources

Correlation is enabled for objects of the classes on which method FLCMCON is

explicitly loaded in file FLCSDM8. If you do not want topology correlation to run

for a class of managed resource objects, comment out the method load statement

that loads file FLCMCON on the class.

The method load statements are grouped in file FLCSDM8 by topology agent. To

determine which method load statement to comment out:

1. Determine the object display label for a correlated object.

2. Determine the RODM class that the label represents. Use RODMVIEW to

determine the class, or refer to the class listings in the IBM Tivoli NetView for

z/OS Data Model Reference and match the label with the DisplayResourceType

values listed.

Note: Using file FLCSDM8 as shipped, method FLCMCON is loaded on all of the

classes which MultiSystem Manager and SNA topology manager can

automatically correlate upon. It also enables correlation for additional classes

you might want to extend correlation to. Because the memory and CPU

usage for loading a method on an unused class is insignificant, it is not

necessary to comment out the method load statements for unused classes.

(

 (FIELDID) ’1.3.18.0.0.6464’.

 ’1.3.18.0.0.3315.2.7.202’ --computerName

 (FIELDID) ’1.3.18.0.0.6464’.

 ’iPAddress’ -- iPAddress

 (FIELDID) ’1.3.18.0.0.6464’.

 ’ipHostName’ -- ipHostName

 (FIELDID) ’1.3.18.0.0.6464’.

 ’1.3.18.0.0.2032’ -- snaNodeName

 (FIELDID) ’1.3.18.0.0.6464’.

 ’1.3.18.0.0.5263’ -- aIndMACAddress

);

Figure 79. Customized Display Name Priority

338 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 13. Writing RODM Methods

This chapter describes RODM methods. Methods enable you to maintain data in

RODM and to automate functions related to the resources represented by objects in

RODM. Methods are small executable programs that reside in the RODM address

space. They can be run by user applications, by changes to fields in RODM, by

other methods, and at RODM initialization. Methods are classified by the way they

are run.

The NetView program supplies several general-purpose methods that might meet

some or all of your needs. Before you spend time writing your own methods,

review the NetView-supplied methods as described in “NetView-Supplied

Methods” on page 479 for applicability.

You must install each method, including NetView-supplied methods, before you

can use it. Each method is represented in RODM by an object of the EKG_Method

class. These objects are created as part of installing the method. Methods can be

dynamically installed, deleted, and refreshed.

Tasks Best Performed with Methods

This section describes which tasks are best performed with methods.

Use a method to do the following:

v Perform multiple actions on more than one object or class in the RODM data

cache.

You can write an object-independent method to process numerous API functions

against a set of one or more objects or classes. See “Object-Independent

Methods” on page 340 for more information about object-independent methods.

v Load structures and objects at RODM initialization.

The RODM program supports a special form of the object-independent method

called the initialization method. The initialization method can be specified at

RODM start up to provide initialization functions. It can load a class hierarchy

structure and then create objects of the classes. This function enables the RODM

data cache to be established and ready for work following a RODM start up.

The RODM load function can be used as the initialization method. See

“Initialization Method” on page 341 for more information about this method.

v Filter data being changed in the RODM data cache.

You can write a change method to provide filtering between an application

change API function request and the field being changed in the RODM data

cache. The change method can alter or reject the change API function request

according to policy, security, or validation requirements. See “Change Methods”

on page 342 for more information about this method.

v Filter data being queried in the RODM data cache.

You can write a query method to provide filtering between an application query

API function request and the field being queried in the RODM data cache. The

query method can alter the data returned from the query API function request

according to policy, security, or validation requirements. See “Query Methods”

on page 344 for more information about this method.

v Notify applications when data in the RODM data cache changes value.

© Copyright IBM Corp. 1997, 2007 339

You can write a notify method to notify applications that are subscribed to an

object or class when field values belonging to the object or class are changed.

See “Notify Methods” on page 346 for more information about this method.

v Perform multiple actions on more than one field within an object or class.

You can write a named method to process numerous API functions against a

single object or class. See “Named Methods” on page 349 for more information

about this method.

Types of Methods

A method is logic in the form of an executable program that is loaded into a

RODM address space and is run under certain circumstances. Methods are

classified according to the circumstances under which they are run. Several kinds

of methods are architected into the RODM product to supply specific kinds of

functions. All methods are optional, and the function provided by methods can be

used or not, depending on how classes, objects, and methods are defined,

organized, and applied in RODM. In broad terms, there are two kinds of methods:

object-independent methods, and object-specific methods.

v Object-independent methods are like callable subroutines that run inside RODM.

They can act on many different objects in RODM. Object-independent methods

are triggered using the EKG_TriggerOIMethod function, which can be issued by

user applications, by other object-independent methods, and asynchronously by

object-specific methods.

v Object-specific methods are run only in the context of a particular object. For

example, they are run by transactions that refer to a specific object. When an

object-specific method is running, it has access only to the data in the fields and

subfields of that object. Object-specific methods in RODM can be triggered as

side effects of a transaction (the query, change, and notify methods previously

described or by explicit reference (named methods that are run upon explicit

request).

Methods can refer to data and manipulate data in RODM objects. Through the

routines in the method API, methods can query and change the fields and

subfields of the RODM objects to which the methods have access. Methods must

use the method API to access data in the RODM data cache.

The different methods and their uses are described on the following pages. A

pseudocode description of the method interface is included with each explanation.

These descriptions describe only the parameters, not the exact interface. The

parameters are assumed to be passed to the method by address. The pseudocode

examples (in PL/I style) are not intended to imply PL/I parameter passing

conventions, such as using descriptors for structures. The method interface is

intended to be consistent with the user API style of interface where parameters are

pointers directly to the passed data.

Object-Independent Methods

Object-independent methods are like callable subroutines that run inside RODM.

They are not associated with any particular RODM object or class. They can act on

many different objects in RODM. Object-independent methods are triggered using

the EKG_TriggerOIMethod function, which can be issued by user applications, by

other object-independent methods, and asynchronously by object-specific methods.

Object-independent methods have these characteristics:

v They can be run from the user API or the method API.

Writing Methods

340 Resource Object Data Manager and GMFHS Programmer’s Guide

v They can be run by a method for asynchronous execution.

v They can access fields in multiple objects.

v They can issue multiple method API requests to RODM without the target

objects being affected by other transactions.

Object-independent method parameters are short-lived parameters. These

parameters are defined using the SelfDefining data type and contain

application-defined values. These parameters are established dynamically from the

EKG_TriggerOIMethod function.

While the standard query and change transactions that a user can submit against

RODM are restricted to interactions with one object, an object-independent method

can interact in sequence with, or at the same time with, each of several different

objects. An object-independent method has access to all the objects in RODM

through the method API.

RODM manages the interaction of transactions to ensure that all actions are

completed against target entities before allowing access to the entities by other

transactions.

Object-independent methods have no long-lived parameters associated with them.

One SelfDefining data string, of variable length (up to a maximum of 32767 bytes),

is the only parameter passed to an object-independent method when the method is

run. RODM does not restrict the contents of that string. You must coordinate the

parameter passed when the method is run with the parsing and meaning that the

message attaches to the string of bytes that is passed.

Figure 80 shows how an object-independent method is defined in PL/I. Figure 81

shows how an object-independent method is defined in C.

Initialization Method

The initialization method is a special kind of object-independent method. It is run

by RODM at initialization time. When RODM is started with the initialization

method, RODM installs, runs, and then frees the method automatically. The main

purpose of the initialization method is to set up the initial hierarchy of the RODM

data cache. Some functions can be used only by the initialization method. The

RODM load function can be used as the RODM initialization method.

 ObjIndpMeth: Procedure (ChStrParm);

 Declare

 ChStrParm SelfDefiningDataPtr; /* Pointer to Short-lived, byte string */

 /* code */

 End;

Figure 80. Object-Independent Method Procedure Interface for PL/I

 VOID ObjIndpMeth(SelfDefiningDataPtr **in_ChStrParm);

 /* code */

Figure 81. Object-Independent Method Procedure Interface for C

Types of Methods

Chapter 13. Writing RODM Methods 341

Object-Specific Methods

Object-specific methods are as follows:

v Run implicitly as the side effect of a transaction

– Query method (when querying data)

– Change method (when changing data)

– Notify method (after changing data)
v Run explicitly by request through RODM User or Method API

– Named method (by specifying field name)

Change Methods

A change method is triggered by RODM when a transaction issues the

EKG_ChangeField or EKG_ChangeMultipleFields function request to change the

value of a field and that field has a change method defined. A change method is

not triggered, however, when a transaction issues the EKG_ChangeSubfield

function request to change the value in the value subfield of the field. A change

method:

v Determines the final value of field to be changed, with the exception of fields of

type ObjectLink and ObjectLinkList. Change methods defined on these fields do

not change the value of the field. Instead, they determine whether a link or

unlink action can proceed.

v Is inherited unless locally overridden.

v Runs in context of a class or object being changed.

The change method parameters are as follows:

field_id

FieldID of the field being changed.

long_lived_parms

A SelfDefining string containing application-defined parameters. These

parameters are provided to the change method when it is installed.

short_lived_parms

A SelfDefining string containing application-defined parameters. These

parameters are provided to the method dynamically during the API

function request that triggers the change method.

data_type

RODM data type of the field being changed.

CharDataLen

The integer length of the new_data if data_type is CharVar or GraphicVar.

This length does not include the null terminator for these data types.

New_data

New data for the field from the API call.

A change method can be associated with a field of an object as a subfield of that

field. A change method is run every time a transaction is run (a user API or

method API transaction) that changes the contents of the field. A change

transaction whose target is a simple field triggers whatever change method has

been assigned to the change subfield of the target field. Change methods can be

triggered by these transactions through either the user API or method API.

A change method is also triggered when a transaction issues the EKG_LinkTrigger

function request or the EKG_UnlinkTrigger function request to link two fields in

two objects and those fields have change methods defined. These change methods

Types of Methods

342 Resource Object Data Manager and GMFHS Programmer’s Guide

cannot change the value of the fields. The change methods must set a return code

to indicate whether the link or unlink can proceed. If the change methods do not

exist, or if they do not explicitly set the return code, RODM assumes the return

code is zero and the link or unlink proceeds. Change methods on fields other than

ObjectLink and ObjectLinkList are run only when the field on which they are

defined is directly changed. A change method is not run when the same field on

the parent class is changed and the changed value is inherited. A change method is

not run by changes in a child object or class. A change method is not run by

changes to subfields. The triggering of change methods can be avoided by the use

of transactions that manipulate the value subfield of a field.

If a field has a change method defined on it, that change method is responsible for

making any changes to the value of that field; RODM will not change the value of

that field. The change method must use the EKG_ChangeSubfield function to

update the value subfield of the field. If the change method uses the

EKG_ChangeField or EKG_ChangeMultipleFields functions to update the value

subfield, the change method recursively runs itself. RODM detects and blocks the

recursive method execution but does not change the value subfield.

If a change method needs to interact with a resource outside of RODM, it sends

any request to the resource asynchronously and set the appropriate flags to

indicate that the request has been sent. The change method does not wait for a

reply from the real resource before it continues processing.

A change method is associated with a specific field of a specific object. Only a

change to that specific field of that object triggers the change method to be run.

Change methods for a field of an object can automatically exist on the object by

inheritance at the time the object is created. A change method on a field of an

object is not triggered by the creation or deletion of that object.

A change subfield has data type MethodSpec. The MethodSpec data type identifies

the method that is run. It optionally contains long-lived parameters that are passed

to the method when it is run. The long-lived parameters can be used to adapt a

general purpose method to a particular situation.

The long-lived parameters can be a list of field identifiers. They are defined when

the method is assigned to the change subfield. The list of field identifiers is static.

However, the values in the fields are dynamic; they can be changed at any time.

A method can read the contents of fields through the method API. So with a list of

field identifiers specifying which fields contain its parameters, a change method

can find its own execution-time parameters and take the intended actions. Most

methods are written as general-purpose methods by IBM, and several parameters

might be required to adapt the general-purpose method to the specific function to

be performed to manage a change to a field. This design has the advantage of

making parameters to methods visible through the user API for debugging

purposes.

Another parameter (besides the long-lived parameters) is passed to a change

method when the method is run. The function blocks in the user API and method

API for changing fields all include a short-lived parameter, which is SelfDefining

data with a maximum length of 254 bytes. When a function block is filled in, a

requestor can use these 254 bytes for any data that needs to be passed at

invocation time to any methods triggered by the transaction.

Types of Methods

Chapter 13. Writing RODM Methods 343

To change the value subfield of the field, the change method obtains the data

supplied through the API. That information is passed as the fourth and fifth

parameters.

Figure 82 shows example change method parameters for PL/I. Figure 83 shows

example change method parameters for C.

Note: For data types of CharVar and GraphicVar, the input data strings are null

terminated: CharVar strings by X'00', GraphicVar strings by X'0000'.

The return code and reason code for the entire transaction can be controlled from a

change method through calls in the method API available to the method.

Through the method API, a change method has access to:

v Data in fields and subfields of the object upon which it is acting

v A copy of the function block that triggered this method

v Organization of the object including data types of fields

Some of the things a change method can do are the following:

v Stop a transaction upon an error condition and set the return and reason codes

using the EKG_SetReturnCode function.

v Change fields and subfields of the target object using the EKG_ChangeSubfield

function.

v Add a notification using the EKG_AddNotifySubscription function.

v Take actions on other objects using the EKG_MessageTriggeredAction function.

v Write to the RODM log using the EKG_OutputToLog function.

Query Methods

A query method is run by RODM when a transaction queries the value of a field;

but not run when the value subfield is explicitly queried. The query method:

v Can determine final returned data value of the field being queried

 ChngMeth: Procedure (Field_ID, LLParms, SLParms, DataType, CharDataLen, DataPtr)

 Dcl Field_ID FieldID; /* target field of transaction */

 Dcl LLParms SelfDefiningDataPtr; /* Pointer to Long-lived field parameters */

 Dcl SLParms SelfDefiningDataPtr; /* Pointer to Short-lived Parameter */

 Dcl DataType Smallint; /* Data type of field */

 Dcl CharDataLen Integer; /* Valid for data type CharVar and GraphicVar */

 Dcl DataPtr pointer; /* Pointer to new data from API call */

 /* code */

 End;

Figure 82. Change Method Procedure Interface for PL/I

 VOID ChngMeth(FieldID *in_FieldID,

 SelfDefiningDataPtr **in_LLParms,

 SelfDefiningDataPtr **in_SLParms,

 Smallint *in_DataType,

 Integer *in_CharDataLen,

 Pointer **in_DataPtr);

 /* code */

Figure 83. Change Method Procedure Interface for C

Types of Methods

344 Resource Object Data Manager and GMFHS Programmer’s Guide

v Is inherited unless locally overridden

v Runs in context of a class or object being queried

The query method parameters are:

field_id

FieldID of the field being queried.

long_lived_parms

A SelfDefining string containing application-defined parameters. These

parameters are provided to the query method when it is installed.

short_lived_parms

A SelfDefining string containing application-defined parameters. These

parameters are provided to the method dynamically during the actual API

function request that triggers the query method.

Query methods can be associated with fields of objects. If a query method is

defined for a field, the method is run each time the field is queried using the

EKG_QueryField function through the user API or method API. If a query method

is defined, it is responsible for returning a value for the field to the function that

queried the field. The query method can return the current value of the field, or

the method can return some other value. For example, a query method can issue a

command to some real resource to get the current status of that real resource.

The query can use the EKG_ResponseBlock function to write its response to the

caller-provided response block. If the query method does not use the

EKG_ResponseBlock function, RODM returns the data in the queried field to the

query function. A query method can generate the actual value that is returned. It

can check timestamps to verify that the value of a field is current. If you do not

want to trigger a query method, use the EKG_QuerySubfield function to query the

value subfield of the field rather than querying the field itself.

If a query method submits a command to a real resource to obtain information, it

returns immediately to the caller with a reason code indicating that a request for

new data has been submitted. No method enters a WAIT state.

A query method is associated with a specific field of a specific object. Only a query

of that field of that object triggers the query method to be run.

A query subfield has data type MethodSpec. A query subfield can preserve the

name of a query method to be run and a list of field identifiers specifying

(long-lived) field parameters to be used by the query method in customizing its

behavior to the particular object, field, and environment where the query method

is executing. The query method can read the contents of the field parameters using

routines available through the method API.

A short-lived parameter is also extracted from the function block submitted by the

requesting application and passed to a query method at the time of invocation.

Figure 84 on page 346 shows an example of query method parameters for PL/I.

Figure 85 on page 346 shows an example of query method parameters for C.

Types of Methods

Chapter 13. Writing RODM Methods 345

Notify Methods

Notification methods are run by RODM after certain functions are made. To

determine which functions run notification methods, see the description for the

function in Chapter 14, “Application Programming Reference,” on page 367.

A notification method:

v Generates notifications to subscribed users

v Is inherited only from class to object

v Runs in context of a class or object being changed

v Can propagate knowledge of field changes to:

– Other objects

– Subscribed users

The notification method parameters are as follows:

field_id

FieldID of the field that was changed.

long_lived_parms

SelfDefining string containing application-defined parameters. These

parameters are provided to the notification method when it is installed.

short_lived_parms

SelfDefining string containing application-defined parameters. These

parameters are provided to the method dynamically during the actual API

function request that triggers the notification method.

change_status

Specifies whether or not the changed field value is equal to the old field

value.

user_appl_id

UserID of the user that is to receive the notification.

notif_queue_id

Name of the notification queue that is to receive the notification.

user_word

User-supplied information.

 QueryMeth: Procedure (Field_ID, LLParms, SLParms);

 Dcl Field_ID FieldID; /* target field of transaction */

 Dcl LLParms SelfDefiningDataPtr; /* Pointer to Long-lived field parameters */

 Dcl SLParms SelfDefiningDataPtr; /* Pointer to Short-lived Parameter */

 /* code */

 End;

Figure 84. Query Method Procedure Interface for PL/I

 VOID QueryMeth(FieldID *in_FieldID,

 SelfDefiningDataPtr **in_LLParms,

 SelfDefiningDataPtr **in_SLParms);

 /* code */

Figure 85. Query Method Procedure Interface for C

Types of Methods

346 Resource Object Data Manager and GMFHS Programmer’s Guide

A list of notification methods is associated with each field of a class or object that

has a notify subfield present. The list is called the subscription list for the field.

Every time a field is changed, the associated subscription list of notification

methods is processed, and each method in the list is run. The intent of these

methods is to propagate knowledge of changes both to other objects and to

applications outside RODM that need to be informed about changes. Notification

methods can include logic to selectively notify, such as to notify only when a

threshold is surpassed.

When a change transaction is specified against a field, all notification methods

defined on that field are triggered. These notification methods are triggered

regardless of whether or not a change method is defined on the field and whether

or not the value of the field actually changes. Each notification method is passed a

Change_status parameter by RODM, which informs the method whether or not the

value of the field was changed by the change transaction.

To avoid triggering notification methods, use functions that do not trigger

methods. These functions do not trigger notification methods:

v EKG_LinkNoTrigger

v EKG_UnlinkNoTrigger

v EKG_ChangeSubfield

v EKG_SwapSubfield

The subscription list on the child is not processed, and the notification methods are

not run. Notification methods are active only when values in fields are locally

present. This practice is similar to the practice of avoiding triggering change

methods where the value in the associated field is inherited, and a change is made

to the parent field.

Some notification methods can delete themselves after their first execution. For

example, an application submits a RODM transaction that causes a command to be

submitted to the target system where the command is attempting to vary a device

offline. Completion of the request takes time.

The transaction cannot wait for the response, and the application needs to be

informed when the command is complete. The code, which might be a change

method implementing the original transaction, places a notification method in the

subscription (notification) queue for the field. When the device is varied offline, the

notification method pulls itself out of the subscription queue and notifies the

original application that the requested vary command has been successfully run.

When a method calls the EKG_AddNotifySubscription function, that method must

acquire the required information, identified by the data type SubscriptSpec, to

actually perform the function. This information is obtained through

long-lived-parameters and short-lived-parameters.

Notification methods are placed in the subscription list of a field upon an explicit

request made by an application using the EKG_AddNotifySubscription function in

the user API and method API. Notification methods can be deleted from a

subscription list using the EKG_DeleteNotifySubscription function.

The subscription list for a field is always processed in the order that the

notification methods were placed in the subscription queue. The methods are

processed, one at a time, starting with the first method placed in queue.

Types of Methods

Chapter 13. Writing RODM Methods 347

There is another issue of how inheritance interacts with notification methods.

Notification subscriptions are not inherited from a parent class to a child class.

However, they are effectively inherited from a class to an object, where the class is

the primary parent of the object. Notification subscriptions can be associated with

any class or object. When it is associated with a class and that class field changes,

the notification list on that class field is run. When a change is made to an object

field, the notification subscriptions assigned to the field in that object are run. Any

notification subscriptions assigned to the same field in the primary parent are also

run, enabling you to use a single notification subscription at the class level for all

objects in the class. Methods assigned to an object parent class can use the

“WhereAmI” method API to determine the circumstances under which their

execution has been triggered.

The NetView program supplies four sample notification methods in source format.

Study these methods to learn more about writing your own notification method.

The sample methods are the following members of the CNMSAMP data set:

v EKGNEQL

v EKGNLST

v EKGNOTF

v EKGNTHD

These methods are described in “RODM Notification Methods” on page 480.

Figure 86 shows an example of notification parameters for PL/I. Figure 87 shows

an example of notification parameters for C.

 NotifMeth: Procedure (FieldID, LLParms, SLParms, Change_status,

 User_Appl_ID, Notif_queue_ID, User_word);

 Declare

 FieldID Field-identifier, /* Field-identifier of named field *

 LLParms SelfDefiningDataPtr, /* Pointer to Long-lived field parameters */

 SLParms SelfDefiningDataPtr, /* Pointer to Short-lived Parameter */

 Change_status Smallint, /* 0 specifies new data was equal to data*/

 /* 1 specifies new data was not equalold data*/

 User_Appl_ID ApplicationID, /* unique User identifier */

 Notif_queue_ID SubscribeID, /* Notification queue reference */

 User_word Anonymous(8); /* remote user spec */

 /* code */

 End;

Figure 86. Notification Method Procedure Interface for PL/I

 VOID NotiMeth(FieldID *in_FieldID,

 SelfDefiningDataPtr **in_LLParms,

 SelfDefiningDataPtr **in_SLParms,

 Smallint *in_Change_status,

 ApplicationID **in_User_Appl_ID,

 SubscribeID **in_Notif_queue_ID,

 Anonymous **in_User_word);

 /* code */

Figure 87. Notification Method Procedure Interface for C

Types of Methods

348 Resource Object Data Manager and GMFHS Programmer’s Guide

Named Methods

A named method is indicated by a field defined as MethodSpec, containing:

v Method object ID

v Long-lived method parameters

A named method:

v Allows for multiple coordinated actions against an object

v Named method field can also have query, change, notify, prev_val, and

timestamp subfields

The named method parameters are:

field_id

FieldID of the field being run.

long_lived_parms

SelfDefining string containing application-defined parameters. These

parameters are provided to the named method when it is installed.

short_lived_parms

SelfDefining string containing application-defined parameters. These

parameters are provided to the method dynamically during the actual API

function request that triggers the named method.

The method is considered named because it can be referenced (queried, changed

and triggered) using the field name. The field name represents a field in an object

with the data type of MethodSpec. A field of this type contains a method name

and a list of long-lived field parameters that are available to the method when the

method is run. Explicit actions available in the user API and method API are used

to trigger named methods.

Named methods enable you to change more than one field of a class or object.

RODM locks all of the fields of the target object when a named method is run. No

other method or user application can access those fields until the named method

completes. This enables you to coordinate the updates to several fields on a target

class or object.

Because many named methods can all be associated with all objects of a class,

named methods are typically inherited from the class. Many standard transactions

against objects can be implemented by either NetView-supplied or user-written

methods.

A field of data type MethodSpec, a named method field, can have its own query,

change, notify, and other standard subfields. The data in the value subfield of such

a field includes the method name and a list of field parameters. The specified field

parameters can be the targets of actions taken by the named method, or they can

contain arguments to the execution of the named method. As with query and

change methods, the long-lived list of field parameters is determined when the

named method field is assigned a value. The contents of any fields referenced

through the long-lived parameters can be set at any time.

Besides the field parameters, another parameter can be passed at execution time to

a named method by the application that triggers the method. This is called a

short-lived parameter. Unlike long-lived field parameters, it is not preserved in any

way after the named method has run. All short-lived parameters on named

methods must be of data type SelfDefining of maximum length 254. Such

Types of Methods

Chapter 13. Writing RODM Methods 349

short-lived parameters are a variable length string of bytes that can be structured

in any way that the requesting application and the named method are written to

recognize.

The NetView program supplies a sample named method in source format. Study

this method to learn more about writing your own named method. The sample

method is the member EKGMIMV of the CNMSAMP data set. This method is

described in “RODM Named Methods” on page 484.

Figure 88 shows an example of named method parameters for PL/I. Figure 89

shows an example of named method parameters for C.

 A named method has access to the same data, and has the same abilities as query

and change methods. However, the explicit invocation of named methods is at the

discretion of applications using RODM, and named methods are free form in the

function that they provide if the function can be implemented with the available

data and services.

Inheritance in Object-Specific Methods

Query, change, notify, and named methods are all object-specific methods. Of these

methods, only named methods are values in fields of RODM objects. Query,

change, and notify methods are all stored in subfields of objects. On an object, the

named method fields and subfields on fields are inherited from the subfields of the

public classes of that object.

In the same way, the values in named method fields and the values in query and

change subfields can be inherited through primary inheritance, using the standard

principles for supporting inheritance in RODM. Notify methods are inherited from

the primary parent to its object children. They are not inherited throughout the

class inheritance tree. However, the object fields can additionally have local values

that do not override the class-level notification subscriptions. (So standard

inheritance of values does not apply to notification subfields.)

Named methods, query methods, change methods and notification methods can

also all exist on classes. Change methods on classes (as on objects) can be used to

validate changes before they are made, or they can be used to validate a user’s

authority to make those changes. Query methods can validate a requestor’s

authority to see the requested data, or they can validate data before it is returned.

 NamedMeth: Procedure (Field_ID, LLParms, SLParms);

 Dcl Field_ID FieldID; /* Field-identifier of named field */

 Dcl LLParms SelfDefiningDataPtr; /* Pointer to Long-lived field parameters */

 Dcl SLParms SelfDefiningDataPtr; /* Pointer to Short-lived Parameter */

 /* code */

 End;

Figure 88. Named Method Procedure Interface for PL/I

 VOID NamedMeth(FieldID *in_FieldID,

 SelfDefiningDataPtr **in_LLParms,

 SelfDefiningDataPtr **in_SLParms);

 /* code */

Figure 89. Named Method Procedure Interface for C

Types of Methods

350 Resource Object Data Manager and GMFHS Programmer’s Guide

Likewise, named methods on classes can be used in ways similar to the ways such

methods are used on objects. Complex changes to a class can be run by a named

method, or general-purpose functions, applicable to many individual classes, can

be implemented with named methods. Finally, notification methods are also

valuable on classes.

Change and notification methods on children that are inheriting values from

parents are not triggered when the inherited values are changed on parents.

Therefore, notification methods are required on parents (which can be classes) so

that user applications can be notified when parameters and values change on

parents.

The main purpose of the primary hierarchy of classes is to make it easy to specify

the organization of and default values in RODM objects. The most common values

that are inherited at the object level from the primary hierarchy include:

v Methods and parameters to control the management of RODM data to reflect

real-world objects

v Policy parameters that indicate standard limits and thresholds

v Long-lived characteristics, such as capacity, of RODM objects where those

characteristics are needed to manage real-world objects

These methods and values appear in fields on classes so they can be stated once

and then inherited by many objects through the primary hierarchy.

When a value that is a method is inherited by a child, if that method is triggered

and run for a child, execution takes place in the context of the child. While the

method resided on the parent, only its name and its long-lived parameters are

picked up through the inheritance process. When such a method runs and asks for

the contents of a field, it gets the contents of that field on the child entity.

A query, change, or named method installed on a class can fill two roles. The

method can be the default change method inherited by children and applied in the

context of those children (including children that are objects instead of classes), and

it can be triggered in the standard way (query, change of field, direct invocation) in

the context of the parent.

Be aware that object-specific method you write can sometimes run on an object

and at other times can run on a class. The same kinds of capabilities are available

for both objects and classes, using the same method API calls. Many object-specific

methods look at the WhatIAm field on the current entity to discover the context in

which the method is executing, and different actions might be appropriate in

different contexts.

Query, change, named, and notification methods on fields of classes are triggered

as part of transactions against those classes just as those kinds of methods are

triggered on objects. Also, query, change, and named methods exist on fields of

classes to support inheritance of those methods by objects, but inheritance of

values in notification subfields is not supported in RODM.

If a notification list exists through inheritance, it begins as a null value. A null

value in the notification list field is functionally equivalent to no list at all. Entries

can be added to a notification list by using the EKG_AddNotifySubscription

function.

In summary, named methods and query, change, and notify subfields all function

in the standard way both on private and on public fields of classes. There is no

Types of Methods

Chapter 13. Writing RODM Methods 351

inheritance involving private fields, but query, change, and notification methods

are run when the corresponding field is queried or changed. When a field is on a

class (as with fields on objects), a change transaction for the field triggers change

and notification methods, but a change transaction for the value subfield of a field

does not trigger change and notification methods. This function is the same as that

supported for objects.

Null Method

RODM provides a special method named NullMeth. You can use the NullMeth

object ID in place of any object specific method. NullMeth returns control to its

caller without doing any processing. The value NullMeth can be inherited in a

field or subfield from a parent class. If the value of a field of type MethodSpec is

queried for a null method, the ObjectID for NullMeth is returned in the response

block.

Using the NullMeth method name, a query or change subfield that is inherited can

be set to do nothing. The effect is the same as if the local subfield does not exist.

This is useful where the standard function for a field or subfield is to take some

action, but there are a few exceptions where that function is locally overridden to

do nothing.

Similarly, an empty notification list acts like no list exists. If the corresponding field

changes, no notification methods are triggered, and no one is notified of the event.

Deciding Which Method Type to Use

Before you use a method, you must decide which type of method you need to use.

What type of method you use depends on the task you want the method to

perform.

When to Use an Object-Independent Method

You use an object-independent method if you want to efficiently manipulate more

than one entity in the RODM data cache. An object-independent method can

change or query any field in any class or object in the RODM data cache.

When to Use an Object-Specific Method

Object-specific methods are methods that have entities specifically associated with

them. You use an object-specific method if you want to manipulate only one entity

in the RODM data cache. The specific entity that is manipulated is determined at

run time and can be different each time that the method is triggered. To run an

action against another object or class, an object-specific method can use the

EKG_MessageTriggeredAction function. An object-specific method can also trigger

the notification method to inform a user application about an event.

There are four types of object-specific methods:

v Query method

v Change method

v Notify method

v Named method

Each of these methods is designed to perform a specific task and can perform that

task only on the entity to which it is associated; it cannot access fields in any other

entity. Additionally, object-specific methods can call only the API functions that are

Types of Methods

352 Resource Object Data Manager and GMFHS Programmer’s Guide

designed to be callable from these methods. See “Other Services Available to

Object-Specific Methods” on page 364 for a list of API functions that are available

to object-specific methods.

Query Method

This object-specific method is triggered when a field that has a non-null query

subfield is queried in response to an EKG_QueryField API function. The query

method ensures that the data returned to the caller of the EKG_QueryField API

function is correct and current.

Use this method to refresh data in an entity field that might be outdated or to

enforce policy procedures, validation, or security on the data in the field.

Change Method

This object-specific method is triggered when a field that has a non-null change

subfield is changed in response to an EKG_ChangeField function, an

EKG_ChangeMultipleFields, an EKG_LinkTrigger function, or an

EKG_UnlinkTrigger function. The change method ensures that the functions

change, link, or unlink the fields correctly by enforcing data security, data validity,

and even policy requirements.

Use this method to enforce policy procedures, validation, or security on the data in

an entity field.

Notify Method

This object-specific method is triggered when the value in a field that has a

non-null notify subfield is changed. The notify method notifies the applications

that are subscribed to the field that the value of the field has changed.

Use this method to notify an application program of a change in the field value of

an entity field when that information is essential to the operation of the

application.

Named Method

This object-specific method is triggered explicitly by a call to the

EKG_TriggerNamedMethod API function. A named method has the capability of

performing multiple API functions on all fields within a particular entity. RODM

implicitly locks the entity while the method is running. No other method or

application can query or change any of the fields of the target entity until the

Named method returns control to RODM.

This method is used to perform multiple API functions on a single entity where it

is critical that no other method or application can query or change the entity’s

fields.

Using the Method API

To write methods for RODM, access to RODM data and services is required. The

method API provides a set of entry points to RODM that can be called by

methods.

A variety of services are available to methods. Some services are available only to

object-independent methods, and some are available only to object-specific

methods.

Method API calls to RODM pass the following parameters:

Deciding Method Type

Chapter 13. Writing RODM Methods 353

v Transaction information block

v Function block

v Response block

The function block can point to additional parameters, such as an entity access

information block and a field access information block, which identify the target of

the function. The response block is required only for some functions.

The transaction_info_block, function_block, and response_block have the same

format as the blocks used by the user API. Table 42 lists where you can find more

information about these blocks.

 Table 42. Additional Information About Blocks

If You Want More Information on See Page

Transaction_info_block 307

Response_block 314

Function_block 308

The CALL statement from the PL/I or C language program transfers control to the

code segment EKGMAPI. The method must be link-edited with the EKGMAPI

module during the link-edit step. Figure 90 shows an example PL/I CALL

statement.

Register Conventions

The method code must follow this register convention:

Register 1

Points to the first of three consecutive memory locations (a parameter list)

that contains addresses of the transaction_info_block, function_block, and

response_block.

Register 12

Is reserved for RODM run-time environment. This register must be

preserved by the method. For code written in PL/I and C, this register

requirement is consistent with the generated code.

Register 13

Contains the address for the 72-byte save area of the calling program.

Register 14

Contains the return address for the calling program.

Register 15

Contains the entry address for the EKGMAPI module.

Declare EKGMAPI Entry(structure, structure, structure);

Call EKGMAPI(transaction_info_block,

 function_block,

 response_block /* Null pointer => omitted */

);

Figure 90. Method API Interface Declaration and Invocation Example

Using the Method API

354 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage Notes

The details of all RODM functions are specified in function blocks. The method

builds a function block and passes it to RODM to request a desired transaction.

The method API functions are described in Chapter 14, “Application Programming

Reference,” on page 367.

The entity_access_information data, pointed to by the function block, is interpreted

the same way for method API calls from object-independent methods as it is from

user API calls. However, class and object information is ignored if the call is made

from an object-specific method.

The object-specific change, query, notification, and named methods can only access

fields within the object or class from which the method API call is performed.

 API Query Function Control Block Example

Method Parameters

Many transactions have optional parameters that are either being passed to or

installed with methods. There are two kinds of method parameters:

v Long-lived parameters

v Short-lived parameters

Long-Lived Parameters

The long-lived parameters are statically defined parameters. Long-lived parameters

are:

v Valid only for object-specific methods

v A variable length, SelfDefining string of data

v Restricted to 254 bytes

Call EKGUAPI(
transaction_info_block,
query_function_specific_data,
response_block
);

Declare
1 Response_block,

2 Response_block_length,
2 Response_block_used,
2 Requested_data,

3 Data_type,
3 Data;

Declare
1 Entity_access_info,

2 Reserved,
2 Naming_count,
2 Class_information,

3 Class_ID,
3 Class_name_length,
3 Class_name_ptr,

2 Object_information,
3 Object_ID,
3 Object_name_length,
3 Object_name_ptr;

Declare
1 Field_access_info,

2 Reserved,
2 Naming_count,
2 Field_information,

3 Field_ID,
3 Field_name_length,
3 Field_name_ptr;

Declare
1 Transaction_info_block,

2 API_version,
2 Reserved,
2 Transaction_ID,
2 Return Code,
2 Reason Code;

Declare
1 Query_function_specific_data,

2 Function_specific_data,
3 Function_ID,
3 Entity_access_info_ptr,
3 Field_access_information_block,

4 Field_access_info_ptr,
4 Subfield,

3 Reserved,
3 Method_parms;

Figure 91. Method API Query Field Control Block Sample

Using the Method API

Chapter 13. Writing RODM Methods 355

v Internal meaning is user-defined and user-interpreted

Long-lived parameters are saved in RODM with a method at the time the method

is assigned to a subfield, such as when a notification method is installed by the

EKG_AddNotifySubscription function or when a named, query, or change method

is assigned to a field or subfield.

These long-lived parameters are not immediately used, but are saved until the

corresponding method is run (by the appropriate triggering mechanism), and they

are made available to that method when the method runs. In this way, general

purpose methods can be written and the parameters that provide the desired

function specified when the method is assigned to a field or subfield.

Long-lived parameters have the form of a variable length, SelfDefining data string

where the length is a maximum of 254 bytes. The content of the 254 bytes of data

is not specified by RODM; it is determined by specification of that particular

method’s interface. The contents of the actual SelfDefining data string cannot be

changed after it is specified during method assignment to a field. However, if that

long-lived parameter contains a reference to a field within an object, the value of

that field can be changed at any time.

Short-Lived Parameters

Short-lived parameters are dynamically defined parameters. Short-lived parameters

have the following characteristics:

v Internal meaning is user-defined and user-interpreted for both object-specific

and object-independent methods when the method is run using an API request.

v They are a variable length, SelfDefining string of data.

v They are restricted to 254 bytes for object-specific methods.

v They are restricted to 32767 bytes for object-independent methods.

Short-lived parameters are not prestored. They are supplied through the specific

transaction request API and are made immediately available to methods being

triggered by the transaction. These parameters always have the form of a variable

length SelfDefining data string.

Short-lived parameters passed to object-independent methods through the User

API can be up to 32767 bytes, but short-lived parameters passed to object-specific

methods are restricted to 254 bytes. The meaning of these strings is not defined or

limited by RODM. RODM sees only a string of bytes. The requesting user

application and the methods being triggered must be written to agree on the

contents of this string of bytes.

Installing and Freeing Methods

Before an object-specific method can be assigned to a field or subfield of an object,

and before an object-independent method can be run, the method must be installed

in RODM. To install a method, create an object of the EKG_Method class.

To install a named method, follow these steps:

1. Determine where you want to install the method.

For named methods, you must use a field of type MethodSpec on either a class

or an object.

2. Create an object of the EKG_Method class.

Creating this object returns to you the object ID of the newly created object.

Using the Method API

356 Resource Object Data Manager and GMFHS Programmer’s Guide

3. Use the EKG_ChangeField, the EKG_ChangeSubfield, or

EKG_ChangeMultipleFields functions to set the value of the MethodSpec field

to the object ID and any long-lived parameters required by your method.

You can also install methods using the RODM load function. When you create an

object in the EKG_Method class, RODM loads the method into its address space.

Attempting to assign a method name to a field or subfield before the method has

been installed results in an error return code from the change transaction.

If an installed method needs to be changed, the EKG_Refresh field in the

EKG_Method class enables you to load a new copy of the method into RODM.

Trigger the named method specified in the EKG_Refresh field of the method object

you want to reload to load the new copy of the method from the library.

When a method is no longer needed, a user can free the storage taken up by the

method and can purge the method’s name and address from internal RODM tables

by executing a delete object transaction against the method object. A method can

only be freed if it is not assigned as a value to any field or subfield in RODM.

After method has been freed, it cannot be assigned to a field or subfield, and it

cannot be run as an object-independent method until it is re-installed.

While other methods need to be installed before use, the null method, NullMeth, is

always installed and cannot be freed. An attempt to install or free NullMeth results

in an error return code from RODM. Therefore, the method name NullMeth is

reserved in RODM, and cannot be used for a user-written method. Other

NetView-supplied methods must be installed before use just like user-written

methods.

Synchronous and Asynchronous Execution of Functions

If a method triggers a function or another method, the triggered function or

method runs synchronously with the triggering method. The triggering method

stops running and does not resume processing until the triggered function or

method finishes and returns. The method API provides the

EKG_MessageTriggeredAction function, which provides a method with the

capability to trigger a function or another method to run asynchronously with it.

The triggering method continues to run while the triggered function or method

starts, processes, and finishes.

Although the EKG_MessageTriggeredAction function is intended to allow an

object-specific method to access entities in the RODM data cache other than the

one it is associated with, it can also be called by an object-independent method.

Also, the EKG_MessageTriggeredAction function enables the following functions to

run asynchronously with the triggering method:

v Change or swap the contents of a field or subfield

v Link or unlink two objects

v Revert inheritance of a field

v Create and delete objects

Method Anchor Service

RODM provides a callable method anchor service that will return a pointer to an

8-byte work area. This area is cleared to zeros prior to invoking the method, and

the contents of the area is preserved when the method causes other methods to be

triggered.

Using the Method API

Chapter 13. Writing RODM Methods 357

It is intended that this area be used for communication between the component

modules of large, complex methods. Note that it cannot be used to communicate

between methods, because it is cleared by RODM each time a method is run.

Run the EKGMANC service routine using the following code for PL/I:

 DCL WORK_AREA CHAR(8) BASED(WORK_AREA_PTR);

 DCL WORK_AREA_PTR POINTER;

 CALL EKGMANC(WORK_AREA_PTR);

For C use the following code:

 char *work_area_ptr;

 EKGMANC(&work_area_ptr);

There is no return or reason code from the EKGMANC call. The address of the

work area is always returned.

Coding Your RODM Method

The following sections describe some of the details of writing your own methods.

These sections include information about compiler options, link-editing, and

restrictions. Be sure to review both the general restrictions and the restrictions for

the programming language you are using.

Installation Written Methods

Installation written methods can be written in PL/I or in C. These methods can use

the national language support of the PL/I language. DBCS character strings can be

manipulated as graphic constants.

Installation supplied methods can reference RODM data stored in either SBCS or

DBCS formats.

After your method has been coded, you can run the method using test data and

debugging aids to find any syntax or logic errors. Refer to the IBM Tivoli NetView

for z/OS Programming: PL/I and C for additional information. Install your method

by link-editing it to the appropriate user library pointed to by the STEPLIB DD

statement in your start up JCL for RODM.

NetView-Supplied Methods

The NetView program includes a basic set of RODM methods. You can write your

own methods in either PL/I or C. You can supplement or replace

NetView-supplied methods with your methods. All NetView-supplied methods

reside in the CNMLINK target library for the NetView program product.

Currently, the methods supplied with RODM consist of the following:

EKGNOTF

Notify for any change

EKGNLST

Notify if changed value is equal to one value in a list of values

EKGNEQL

Notify if changed value is equal to a specific value

Method Anchor Service

358 Resource Object Data Manager and GMFHS Programmer’s Guide

EKGNTHD

Notify if changed value is within a specified threshold

EKGCTIM

Change method to trigger an Object-independent method to complete an

action asynchronously

EKGMIMV

Named method to increment a value

EKGSPPI

Object-independent method used by the RODM automation platform

All notification methods return, in the notification block, the current value,

previous value, and timestamp (if these subfields are defined) from the field

causing the notification message.

The NetView-supplied methods for RODM are described below on a functional

basis. All parameters passed to methods are specified as SelfDefining data strings.

Programming Language Specific Preprocessor Statements

When compiling your program or linking your source code, add the following

preprocessor statements.

Compiling IBM C Methods

If you are compiling your methods using the IBM C language, follow these

guidelines:

v Code the following pragma statement:

#pragma linkage(csect,PLI)

where csect is the name of the external entry-point csect.

v If any RODM control blocks are referenced in the modules, include file

EKG3CINC.H in your source file. This file includes all of the RODM function

and response blocks, and the function prototype statements for the RODM entry

points EKGMANC, EKGUAPI, EKGMAPI, and EKGWAIT.

v If no RODM control blocks are referenced in the modules but the modules do

call EKGMANC, EKGUAPI, EKGMAPI, or EKGWAIT, include file EKG3CEEP.H

in your source file.

v Do not specify the RENT option when compiling.

The following is an example of IBM C source for coding a method:

#pragma linkage(thisproc,PLI)

#include "EKG3CINC.H"

 /* or */

#include "EKG3CEEP.H"

void thismethod(void arg)

{

 /* code */

}

Compiling IBM PL/I Methods

If you are compiling your methods using the IBM PL/I language, follow these

guidelines:

Coding a RODM Method

Chapter 13. Writing RODM Methods 359

v If any RODM control blocks are referenced in the modules, include file

EKG1IINC in your source file. This file includes all of the RODM function and

response blocks, and the function prototype statements for the RODM entry

points EKGMANC, EKGUAPI, EKGMAPI, and EKGWAIT.

v If no RODM control blocks are referenced in the modules but the modules do

call EKGMANC or EKGMAPI, include file EKG1IEEP in your source file.

v Specify the REENTRANT option when compiling.

v Specify the MACRO preprocessor compiler option if you include RODM macros

in your method.

The following is an example of IBM PL/I source for coding a method:

*PROCESS MACRO;

 thismethod: proc;

%include ekglib(EKG1IINC);

 or

%include ekglib(EKG1IEEP);

/* code */

end thismethod;

Linking Methods that Call EKGMAPI Directly

Specify the following link-edit control statements when linking a method that calls

EKGMAPI directly:

<method object code>

INCLUDE SYSLIB(EKGMAPI)

ENTRY method_name

NAME method_name(R)

Specify these link-edit options:

v AMODE=31

v RMODE=ANY or RMODE=24

v RENT

Restrictions on Methods

All RODM methods must run in PSW key 8, which is the default. Do not change

the PSW key in any method.

PL/I Language Restrictions

Installation defined methods written in PL/I require a PL/I compiler that is

supported by RODM. These PL/I programs are expected to clean up after

execution is complete for a particular invocation; all dynamically allocated storage

is freed. In addition, PL/I programs that run in the RODM address space must

observe certain the following restrictions:

v Use of PLITEST

The PLITEST facility is not available to programs running in the RODM address

space.

v Use of FETCH and RELEASE

PL/I procedures cannot be fetched or released by other PL/I procedures. The

user API supports adding and deleting methods. These services can be used in

place of FETCH and RELEASE.

v Use of DATE built-in function

Coding a RODM Method

360 Resource Object Data Manager and GMFHS Programmer’s Guide

The PL/I DATE built-in function cannot be called by a program running in the

RODM address space.

v Use of TIME built-in function

The PL/I TIME built-in function cannot be called by a program running in the

RODM address space.

v Use of file I/O

PL/I file I/O cannot be used by programs running in the RODM address space.

No RODM method attempts to access SYSPRINT. However, the RODM output

to log function can be used for file I/O.

v Interlanguage communication

Interlanguage calls to COBOL and FORTRAN routines cannot be used. Only

interlanguage calls to C and assembler are permitted.

v Delays

The execution of a method cannot be suspended. Methods complete as soon as

possible.

v Wait

The execution of a method cannot be suspended.

v Use of PL/I DISPLAY statement

The PL/I DISPLAY statement writes its output to the RODM type-1 log record.

Because of performance and logging impacts, the PL/I DISPLAY statement is not

usually used. Instead, use the EKG_OutputToLog API function.

v Use of PL/I multitasking

The PL/I multitasking facilities cannot used. Task management is handled by

RODM facilities and not the PL/I facilities. The task, event, and priority options

of the CALL statement cannot be used, and do not use the COMPLETION,

STATUS, and PRIORITY built-in functions.

v Use of MAIN option

User methods cannot be coded with the PL/I MAIN option of the PROCEDURE

statement.

v Linkage field

All methods must be reentrant. In addition to writing reentrant code, the

REENTRANT option of the PROCEDURE statement must be used.

v Cannot use controlled storage variables, or anything using pseudo-register

vectors, such as file I/O and fetch/release

v Programs must not request CHECKPOINT, SORT, or PLIDUMP

v PL/I options for CHECK and FLOW must not be used

v Use of On-Units and Signal

– PL/I programs cannot perform attention handling; that On-unit will not get

control

– PL/I programs must not signal ERROR or FINISH

– PL/I programs must not contain On-error or On-finish statements

C Language Restrictions

Methods must be compiled using the NORENT option. Methods must not be

prelinked using the C prelink facility.

The following C functions cannot be used in RODM methods:

v Atexit()

v Exit()

v Main()

Coding a RODM Method

Chapter 13. Writing RODM Methods 361

v All file and stream input/output statements and library functions

Do not specify the static storage class specifier for any data in a method.

The RODM output to log function can be used for file input/output.

Restrictions in General

An object-specific method can query and manipulate only the object or class with

which the method is associated.

The following are restrictions on methods:

v Named methods

Named methods can be run to run synchronously with the caller directly from

the user API, by an object-independent method through the method API, or by a

named method through the method API. Also, named methods can be triggered

to run asynchronous to the caller through the message interface provided in the

method API.

Named methods cannot be triggered for asynchronous execution through the

user API.

v Object-independent methods

Object-independent methods can be run to run synchronously with the caller

from the user API or the method API. Also, they can be triggered from any

method, through the message interface provided in the method API, to run

asynchronous to that method.

Object-independent methods cannot be triggered for asynchronous execution

through the user API.

v Change methods

Change methods cannot be used on system-defined fields. See “System-Defined

Fields” on page 211 for a complete list of these fields.

Change methods used on LINK fields, that is the fields of data type ObjectLink

or ObjectLinkList, are triggered by EKG_LinkTrigger and EKG_UnlinkTrigger

functions. These change methods have the following restrictions:

– They cannot change fields.

– They cannot perform a link or unlink function.

– They must set a return code if the return code is non-zero.

- A zero return code allows the link or unlink to continue.

- A non-zero return code prohibits the link or unlink.

- If the change methods exist, the return codes from the change methods

defined to both objects must be zero in order for the link or unlink to

continue.
v Notification methods

A particular combination of a User_appl_ID, notification method, SubscribeID,

and long-lived parameters uniquely specify a notification method and can be

assigned only one time to a particular notification subfield.

v All methods

– All methods must be written as reentrant.

– Methods cannot query a notification queue or suspend their own execution.

– When RODM is operating on a z/OS system, methods must adhere to

operating system constraints placed on applications running in cross-memory

mode; for example, the methods must not use any service that requires the

execution of an IBM z/Architecture® SVC instruction.

Coding a RODM Method

362 Resource Object Data Manager and GMFHS Programmer’s Guide

– If a method uses recovery routines such as ESTAE, ESTAX, SPIE, or STAE,

the recovery routines must be set up to percolate so that RODM regains

control after any abend.

– Use of the method API to synchronously run another method must not cause

recursive execution of any previously run method.

– The response block overflow buffer is not available to methods. If the

response block supplied by a method is too small for the data returned by the

function, the data that does not fit in the supplied response block is

discarded.

RODM Method Services

Some RODM functions can be used by all types of methods; others can be used

only by certain types of methods. The following sections lists the types of methods

and the RODM functions that each can use.

Services Available to both Object-Specific and

Object-Independent Methods

When you design your program, you can implement the following functions,

available for use in both object-independent and object-specific methods.

v Querying RODM Data

– EKG_QueryField (See “EKG_QueryField — Query a Field” on page 409)

– EKG_QueryMultipleSubfields (See “EKG_QueryMultipleSubfields — Query

Multiple Value Subfields ” on page 417)

– EKG_QuerySubfield (See “EKG_QuerySubfield — Query a Subfield ” on page

425)

– EKG_QueryEntityStructure (See “EKG_QueryEntityStructure — Query

Structure of an Entity” on page 408)

– EKG_QueryFieldStructure (See “EKG_QueryFieldStructure — Query Structure

of a Field ” on page 414)

– EKG_QueryFieldID (See “EKG_QueryFieldID — Query Field Identifier ” on

page 411)

– EKG_QueryFieldName (See “EKG_QueryFieldName — Query a Field Name”

on page 412)
v Actions against RODM Data

– EKG_ChangeField (See “EKG_ChangeField — Change a Field” on page 376)

– EKG_ChangeMultipleFields (See “EKG_ChangeMultipleFields — Change

Multiple Fields” on page 377)

– EKG_ChangeSubfield (See “EKG_ChangeSubfield — Change a Subfield” on

page 378)

– EKG_RevertToInherited (See “EKG_RevertToInherited — Revert to Inherited

Value ” on page 428)

– EKG_AddNotifySubscription (See “EKG_AddNotifySubscription — Add

Notification Subscription” on page 373)

– EKG_DeleteNotifySubscription (See “EKG_DeleteNotifySubscription — Delete

Notification Subscription” on page 392)

– EKG_TriggerNamedMethod (See “EKG_TriggerNamedMethod — Trigger a

Named Method ” on page 437)
v Additional Method Support

– EKG_SendNotification

– EKG_MessageTriggeredAction

– EKG_SetReturnCode

– EKG_OutputToLog

Coding a RODM Method

Chapter 13. Writing RODM Methods 363

– EKG_ResponseBlock (can be used in named and query object-specific

methods and object-independent methods)

– EKG_QueryFunctionBlockContents

This list of query and action functions is a subset of the transactions available to

RODM users through the user API.

Both the user API and method API use the same function blocks to specify the

function requested for queries and actions with the queries generating responses

that are returned in response blocks. Also, a named method can generate data that

is returned in a response block.

See Chapter 11, “Writing Applications that Use RODM,” on page 301 for the

formats for all these function blocks and response blocks. As in the user API, the

user of the method API is responsible for allocating and freeing the storage in

which function and response blocks reside. The method API function blocks for the

additional method support functions are described in this section.

Other Services Available to Object-Independent Methods

The following additional services are available to object-independent methods

through the method API and the user API.

v EKG_LinkNoTrigger, EKG_LinkTrigger (See “EKG_LinkNoTrigger,

EKG_LinkTrigger — Link Two Objects” on page 401)

v EKG_UnlinkNoTrigger, EKG_UnlinkTrigger (See “EKG_UnlinkNoTrigger,

EKG_UnlinkTrigger — Unlink Two Objects ” on page 440)

v EKG_CreateObject (See “EKG_CreateObject — Create an Object” on page 387)

v EKG_DeleteObject (See “EKG_DeleteObject — Delete an Object” on page 393)

v EKG_TriggerOIMethod (See “EKG_TriggerOIMethod — Trigger an

Object-Independent Method ” on page 439)

Other Services Available to Object-Specific Methods

The following additional services are available only to object-specific methods:

v EKG_WhereAmI

v EKG_QueryObjectName

Services Available to the Initialization Method

The initialization method is the only method that can use the following functions.

The method can run these functions at RODM initialization time to create the

RODM data structure and load the data into the RODM data cache.

v Administrative functions

– EKG_CreateClass (See “EKG_CreateClass — Create a Class” on page 384)

– EKG_CreateField (See “EKG_CreateField — Create a Field” on page 385)

– EKG_CreateSubfield (See “EKG_CreateSubfield — Create a Subfield” on page

388)
v Control functions

– EKG_Checkpoint (See “EKG_Checkpoint — Checkpoint RODM to DASD” on

page 380)

The access to the above mentioned functions is similar to the access available

through the user API. These functions are run by calls to RODM using the method

API. Use of these functions requires the standard function block definitions.

RODM Method Services

364 Resource Object Data Manager and GMFHS Programmer’s Guide

The method API functions and interfaces available to the initialization method also

include all those enabled in object-independent methods, with the following

exceptions. Do not use these exceptions within the initialization method.

v EKG_SendNotification

– This function fails because no Notification_queues can be registered at the

time the initialization method is running.
v EKG_ResponseBlock

– No response block is passed to the initialization method, so the data is lost.
v EKG_QueryFunctionBlockContents

– No function block is used to initiate the initialization method execution, so no

data is available.
v EKG_CreateObject to create an EKG_NotificationQueue object

– Notification queues are named by concatenating a User_appl_ID to the queue

name. This function always fails for the initialization method because no

User_appl_ID is available during initialization.

If the initialization method uses the message interface to start an asynchronous

task, RODM initialization continues without waiting for the completion of that

asynchronous task.

RODM Method Library

To access the method API services, RODM provides a library that contains entry

points for method API services. This library is called the RODM Method Library

and is given the default name CNMLINK.

This library is especially intended for use with C and PL/I programs. To access a

service such as EKGMAPI, declare EKGMAPI as an external entry in your

program. To resolve the external name, use the CNMLINK library.

Member EKGMIMV of data set CNMSAMP in the sample library contains an

example showing how EKGMAPI can be called from a named method to

increment the value of a specified field by the value of a field.

RODM Method Services

Chapter 13. Writing RODM Methods 365

366 Resource Object Data Manager and GMFHS Programmer’s Guide

Chapter 14. Application Programming Reference

The details of all transactions against RODM data are specified in function blocks.

A user builds a function block and passes it to RODM to request a desired

transaction. All function blocks contain a Function_ID which specifies the function

being requested from RODM.

Summarizing RODM Functions

This chapter describes each of the RODM functions. The major categories of

functions follow:

v Access functions

v Control functions

v Administrative functions

v Action functions

v Query functions

v RODM user API services

v RODM method API services

See Chapter 11, “Writing Applications that Use RODM,” on page 301 for an

explanation of how function blocks are used in application programs. See

Chapter 13, “Writing RODM Methods,” on page 339 for an explanation of how

function blocks are used in methods.

Access Functions

Access functions enable a user application program to connect to and disconnect

from RODM.

EKG_Connect: Connect to RODM

The connect function is called to connect the user to RODM.

EKG_Disconnect: Disconnect from RODM

The disconnect function is called to end the connection between the user

and RODM.

Control Functions

Control functions allow a user application program that has the appropriate access

level to checkpoint RODM data to DASD or to stop RODM, with or without

checkpointing data.

EKG_Checkpoint: Checkpoint RODM

Checkpoint RODM data to DASD.

EKG_Stop: Stop RODM

Stop the RODM subsystem.

Administrative Functions

Use the RODM administrative functions, with the appropriate function blocks

passed as parameters, to delete or create classes, fields, and subfields. Because

response blocks are not needed in administrative calls, set the response block

pointer to null.

© Copyright IBM Corp. 1997, 2007 367

When a RODM class is initially created, it contains the system-defined fields and

the public fields of its primary parent. The values of these fields are inherited from

their primary parent. Classes are differentiated from their parent by the existence

of additional fields or by setting different values in the fields that do exist. Most

frequently, a child class needs to have more fields than exist on the parent. These

additional fields must be explicitly added to the class. RODM has no set limit of

the number of fields a class can contain.

You can add a field to a class. You can add a subfield only to a field that is already

in place. You cannot add a field directly to an object.

EKG_CreateClass: Create a Class

Create a new class in the RODM data cache.

EKG_CreateField: Create a Field

Add a new field to a class.

EKG_CreateSubfield: Create a Subfield

Add a new subfield to a field in a class.

EKG_DeleteClass: Delete a Class

Remove a class from the RODM data cache.

EKG_DeleteField: Delete a Field

Delete a field from a class.

EKG_DeleteSubfield: Delete a Subfield

Delete a subfield from a field in a class.

Action Functions

Action functions change values, create and delete objects and links between

objects, add and delete notification subscriptions, and trigger named and

object-independent methods. Action functions can be submitted in list form using

the EKG_ExecuteFunctionList function to enable multiple actions with a single

interface call.

EKG_AddNotifySubscription: Add a Notification Subscription

Subscribe to a field.

EKG_AddObjDelSubs: Add an Object Deletion Subscription

Subscribe to an object for notification of deletion.

EKG_ChangeField: Change a Field

Change the value of a field.

EKG_ChangeMultipleFields: Change Multiple Fields

Change the value of multiple fields of an object.

EKG_ChangeSubfield: Change a Subfield

Change the value of a subfield.

EKG_CreateObject: Create an Object

Create an object in the RODM data cache.

EKG_DeleteNotifySubscription: Delete a Notification Subscription

Delete a subscription to a field.

EKG_DeleteObject: Delete an Object

Delete an object in the RODM data cache.

EKG_DelObjDelSubs: Delete an Object Deletion Subscription

Delete a subscription to an object.

Summarizing RODM Functions

368 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_LinkNoTrigger: Link Two Objects

Link two objects; do not run notify methods.

EKG_LinkTrigger: Link Two Objects

Link two objects; run notify methods.

EKG_RevertToInherited: Revert to Inherited Value

Remove the local copy of the data value from a field and replace it with

the inherited value.

EKG_SwapField: Swap a Field

Compare and swap field data with new data.

EKG_SwapSubfield: Swap a Subfield

Compare and swap subfield data with new data.

EKG_TriggerNamedMethod: Trigger a Named Method

Run a named method.

EKG_TriggerOIMethod: Trigger an Object-Independent Method

Run an object independent method.

EKG_UnlinkNoTrigger: Unlink Two Objects

Unlink two objects; do not run notify methods.

EKG_UnlinkTrigger: Unlink Two Objects

Unlink two objects; run notify methods.

Query Functions

Query functions enable a user application program to query the values contained

in fields, subfields, notification queues, and access blocks. Query functions can be

submitted in list form using the EKG_ExecuteFunctionList function to enable

multiple actions with a single interface call.

The contents of the field or information to be queried is returned in the response

block.

If a field of an object or class is being queried and there is a query method

associated with the field, that query method is run before the contents of the field

is retrieved. That method has the opportunity to change the contents of the field

before the data in the field is read and returned to the caller. A query method can

explicitly set the returned value of the query operation by using the

EKG_ResponseBlock function. If a query method uses the EKG_ResponseBlock

function, RODM does not place any data into the response block.

EKG_Locate: Locate Objects Using Public Indexed Field

Provide a list of all objects in RODM that match a specified search criteria.

EKG_QueryEntityStructure: Query Structure of an Entity

Provide a list of all fields within a class or object, specifying each field’s

name, data type, and inheritance state.

EKG_QueryField: Query Field

Obtain the value of a field.

EKG_QueryFieldID: Query Field Identifier

Convert a field name to its field identifier.

EKG_QueryFieldName: Query Field Name

Convert a field identifier to its field name.

Summarizing RODM Functions

Chapter 14. Application Programming Reference 369

EKG_QueryFieldStructure: Query Structure of a Field

Provide organization of a field (that is, data type, local copy indicator, and

subfield map).

EKG_QueryMultipleSubfields: Query Multiple Value Subfields

Obtain the value of multiple subfields for an object.

EKG_QueryNotifyQueue: Query Notification Queue

Obtain next queue element, if available.

EKG_QueryResponseBlockOverflow : Query Response Block Overflow

Obtains any overflow response block data.

EKG_QuerySubfield: Query Subfield

Obtain the value of a subfield.

RODM User API Services

EKG_ExecuteFunctionList: Execute a List of Functions

Enable user application programs to pass a list of RODM functions in a

single function call.

RODM Method API Services

EKG_LockObjectList: Lock List of Objects

This API was used to enable object-independent methods to explicitly lock

objects. It is no longer necessary, but is maintained for compatibility.

EKG_MessageTriggeredAction: Trigger an Action by a Message

Provide object-specific methods with the ability to trigger an asynchronous

API function for another object or class.

EKG_QueryFunctionBlockContents: Query Function Block Contents

Provide methods with the contents of the function block of the function

request that triggered the method.

EKG_QueryObjectName: Query Object Name

Allow an object-specific method to convert an ObjectID to the

corresponding object name.

EKG_OutputToLog: Output to Log

Provide the ability to output information to the RODM log.

EKG_ResponseBlock: Output to Response Block

Appends method-defined information to the caller’s response block, except

for Query methods, which overwrite the response block.

EKG_SendNotification: Send a Notification

Provide the facility for notification methods to send notification

information blocks to notification queues when a field is changed.

EKG_SetReturnCode: Set Return and Reason Codes

Enable a method to set the return code and reason code for the method

caller.

EKG_UnlockAll: Unlock all Held Entities

This method was used to free all locks held. It is no longer necessary, but

is maintained for compatibility.

EKG_WhereAmI: Where Am I

Enable an object-specific method to determine the class, object, and field

for which it was triggered.

Summarizing RODM Functions

370 Resource Object Data Manager and GMFHS Programmer’s Guide

Function Reference

This section describes each of the functions available from the RODM user

application programming interface and the RODM method application

programming interface. The format of this section is described in “Function

Reference Format.” The functions are listed in alphabetical order by function name.

Function Reference Format

This section describes the format of the RODM function descriptions contained in

this chapter. The functions are listed in alphabetical order by function name.

Following each function name is a function description. Each function description

contains the following reference sections:

v Purpose

v Function block format

v Examples

v Summary

v Usage

These reference sections are described in the following sections.

Purpose

The purpose section of each function description explains what the function does.

Function block format

The function block format describes the function block that you need to pass to the

function. If the function returns a response block, the response block is also

described in this section.

The function block format table contains five columns:

Offset The offset in decimal bytes to the beginning of the parameter.

Length

The length in decimal bytes of the parameter. If the length of a parameter

is variable, the length column contains a dash (—) character.

Type The RODM abstract data type of the parameter. A few parameters do not

use the defined RODM abstract data types. The PL/I or data types are

listed for parameters which do not use RODM abstract data types.

Use The use is either In for data input to the function, or Out for data output

by the function. For reserved fields and fields not used by a particular

function, the use column contains a dash (—).

Parameter Name

The name of the parameter. Each parameter is described in “Function

Parameter Descriptions” on page 444. This is the actual name used in the

example function block or response block supplied with RODM.

Examples

The examples section lists the names of the code examples provided by RODM for

each function. Provided in both PL/I and C, these examples are on the samples

tape that was shipped with the NetView product. Include the example function

block and response block in your user application or method for each function you

plan to use. Use the parameter names that are provided to access the function. This

will limit the impact to your program of any service that might be applied to

RODM.

Function Reference

Chapter 14. Application Programming Reference 371

The example function blocks and example response blocks for PL/I contain the

preprocessor macro substitution variable EKG_Boundary. This variable is converted

to UNALIGNED BASED(*), which is required for PL/I programs.

The usage coding examples are pieces of actual code that illustrate how to set up

and call each function. Use the usage coding examples to learn about calling the

function. Note, however, that these examples might not be suitable for inclusion in

your programs.

The names in the examples table are the member names of each example. The

default data set name for function block samples and response block samples is

NETVIEW.V5R3M0.SCNMMAC1. The default data set name for usage coding

examples is NETVIEW.V5R3M0.CNMSAMP. For example, the complete name of

the function block example in PL/I for the EKG_Connect function is

NETVIEW.V5R3M0.SCNMMAC1(EKG11101). The complete name of the PL/I usage

coding example for this function is NETVIEW.V5R3M0.CNMSAMP(EKG51101).

Summary

The summary table lists the following topics for each function:

Function ID

The function identifier used by RODM to determine which function has

been requested.

Type The type of function, such as access or query.

User API

Specifies whether this function can be used by user applications.

Object-specific method

Specifies whether this function can be used by object-specific methods.

Object-independent method

Specifies whether this function can be used by object-independent

methods.

Initialization method

Specifies whether this function can be used by initialization methods.

Methods triggered

Specifies whether this function triggers query, change, or notification

methods and which methods are triggered.

Triggered by EKG_MessageTriggeredAction

Specifies whether this function can be run asynchronously by the

EKG_MessageTriggeredAction function.

Authorization

Specifies the minimum authorization level that a user application must be

assigned in order to use this function.

 User applications must be authorized to use specific RODM functions.

Each function specifies the required authorization level. Applications can

use all functions with a required authorization level equal to or less than

the authorization level of the application. Each application’s authorization

level is specified when the application User_appl_ID is created in the

security system profile. Refer to the IBM Tivoli NetView for z/OS Security

Reference for information about defining authorization levels.

Usage Notes

This topic provides additional function information and limitations.

Function Reference

372 Resource Object Data Manager and GMFHS Programmer’s Guide

The parameters used by each function are described in “Function Parameter

Descriptions” on page 444. This section describes in general what each parameter

does. Function-specific differences in parameters, such as maximum data length,

are listed in the usage section for the specific function.

The return codes and associated reason codes issued by RODM functions are listed

in “RODM Return and Reason Codes” on page 451. This section also includes cross

reference tables that list all of the reason codes that each function uses and all of

the functions that use a particular reason code. You can use this information to

design the error handling routines for your user applications and methods.

The final section in this chapter describes the NetView-supplied methods. These

include notification and change methods you can use with RODM.

“NetView-Supplied Methods” on page 479 describes each method and the

parameters you pass to it.

EKG_AddNotifySubscription — Add Notification Subscription

Purpose

This function adds a notification method to a field on an object or a class. RODM

places the notification method in a subscription list associated with the field. If the

specified notification queue does not exist, RODM creates the notification queue

using the specified User_appl_ID.

Function Block Format

 Table 43. Function Block for the EKG_AddNotifySubscription Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 8 ApplicationID In User_appl_ID

020 8 SubscribeID In Notification_queue

028 8 Anonymous(8) In User_word

036 8 ObjectID In Notify_method

044 4 SelfDefiningDataPtr In Long_lived_parm

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 44. Example Names for the EKG_AddNotifySubscription Function

Example Name

PL/I function block EKG11412

PL/I response block None

PL/I usage coding EKG51412

C function block EKG31412

C response block None

C usage coding EKG61412

Function Reference

Chapter 14. Application Programming Reference 373

Summary

 Table 45. Summary of the EKG_AddNotifySubscription Function

Function ID 1412

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered Notification method of MyObjectChildren

field of the EKG_NotificationQueue class

triggered if the notification queue object is

created

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 3

Usage

See “RODM Notification Process” on page 318 for more information about

notification subscriptions.

A notification subscription, consisting of a User_appl_ID, Notification_queue,

method ObjectID, and Long_lived_parm is added to a field one time. If a second

request specifying the same information is sent, the request is rejected.

The class, object, and field access information from the function block specify

where the subscription is to be installed. If the value subfield of the designated

field is changed by the EKG_ChangeField or EKG_ChangeMultipleFields functions,

the requested notification method is run.

When a notification method is run, it is provided the value of the

Long_lived_parm field from the function block. The method cannot modify the

Long_lived_parm.

Users can assign notification subscriptions to both an object and its parent class

where both are run when a change is made to the object field. When these

notifications are added, RODM does not validate that duplicate subscriptions have

not been added between the class and object. Duplicate subscriptions are rejected

only at the individual class or object level.

EKG_AddObjDelSubs — Add Object Deletion Subscription

Purpose

This function adds a deletion-subscription to an object; RODM sends you a

notification block if the object is deleted.

Function Block Format

 Table 46. Function Block for the EKG_AddObjDelSubs Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

EKG_AddNotifySubscription

374 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 46. Function Block for the EKG_AddObjDelSubs Function (continued)

Offset Length Type Use Parameter Name

004 4 Pointer In Entity_access_info_ptr

008 8 ApplicationID In User_appl_ID

016 8 SubscribeID In Notification_queue

024 8 Anonymous(8) In User_word

032 4 SelfDefiningDataPtr In Long_lived_parm

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 47. Example Names for the EKG_AddObjDelSubs Function

Example Name

PL/I function block EKG11417

PL/I response block None

PL/I usage coding EKG51417

C function block EKG31417

C response block None

C usage coding EKG61417

Summary

 Table 48. Summary of the EKG_AddObjDelSubs Function

Function ID 1417

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method No

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 3

Usage

A deletion-notification subscription, consisting of a User_appl_ID,

Notification_queue, and Long_lived_parm, is added to an object one time. If a

second request specifying the same information is sent, the request is rejected.

The object access information from the function block specifies where the

subscription is to be installed. If the designated object is deleted by the

EKG_DeleteObject function, a notification block is sent to the user application. The

content of the notification block is the output from the EKG_QueryNotifyQueue

function. For more information, see “EKG_QueryNotifyQueue — Query

Notification Queue” on page 419.

EKG_AddObjDelSubs

Chapter 14. Application Programming Reference 375

EKG_ChangeField — Change a Field

Purpose

This function changes the value of a field of either an object or a class. This

function triggers any change or notification methods that are defined on the field.

Function Block Format

 Table 49. Function Block for the EKG_ChangeField Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 Smallint In Subfield

014 2 Smallint In Data_type

016 4 Integer In New_char_data_length

020 4 Pointer In New_data_ptr

024 4 SelfDefiningDataPtr In Method_parms

Note that the Subfield parameter at offset 012 is not currently used.

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 50. Example Names for the EKG_ChangeField Function

Example Name

PL/I function block EKG11401

PL/I response block None

PL/I usage coding EKG51401

C function block EKG31401

C response block None

C usage coding EKG61401

Summary

 Table 51. Summary of the EKG_ChangeField Function

Function ID 1401

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered Change and notification methods triggered

Triggered by the

EKG_MessageTriggeredAction function

Yes

EKG_ChangeField

376 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 51. Summary of the EKG_ChangeField Function (continued)

Authorization 3

Usage

The new value pointed to by New_data_ptr must be of the same data type as the

target field being changed. The new value must be formatted correctly for that

data type. The Data_type field must specify the same data type as the target field.

You cannot use this function to change fields that have a data type of ObjectID,

ObjectIDList, ObjectLink, ObjectLinkList, ClassID, ClassIDList, or ClassLinkList.

These fields are set either by RODM, or by the LINK and UNLINK transactions.

You cannot use this function to change the RODM system-defined fields that have

read-only access, such as MyName and MyID.

Multiple field values can be changed using the EKG_ChangeMultipleFields

function.

EKG_ChangeMultipleFields — Change Multiple Fields

Purpose

This function enables you to change the value of multiple fields of an object. This

function triggers change and notification methods that are defined on the field.

Function Block Format

 Table 52. Function Block for the EKG_ChangeMultipleFields Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Integer In Number_of_fields

: First element, array of structure

012 4 Pointer In Field_access_info_ptr

016 2 Anonymous(2) — Reserved

018 2 Smallint In Data_type

020 4 Integer In New_char_data_length

024 4 Pointer In New_data_ptr

028 4 SelfDefiningDataPtr In Method_parms

032 4 Integer In Return_code

036 4 Integer In Reason_code

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 53. Example Names for the EKG_ChangeMultipleFields Function

Example Name

PL/I function block EKG11419

EKG_ChangeField

Chapter 14. Application Programming Reference 377

Table 53. Example Names for the EKG_ChangeMultipleFields Function (continued)

Example Name

PL/I response block None

PL/I usage coding EKG51419

C function block EKG31419

C response block None

C usage coding EKG61419

Summary

 Table 54. Summary of the EKG_ChangeMultipleFields Function

Function ID 1419

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered Change and notification methods triggered

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 3

Usage

The new value pointed to by New_data_ptr must be of the same data type as the

target field being changed. The new value must be formatted correctly for that

data type. The Data_type field must specify the same data type as the target field.

You cannot use this function to change fields that have a data type of ObjectID,

ObjectIDList, ObjectLink, ObjectLinkList, ClassID, ClassIDList, or ClassLinkList.

These fields are set either by RODM or by the LINK and UNLINK transactions.

You cannot use this function to change the RODM system-defined fields that have

read-only access, such as MyName and MyID.

EKG_ChangeSubfield — Change a Subfield

Purpose

This function enables you to change the value of a subfield without triggering

change and notification methods.

Function Block Format

 Table 55. Function Block for the EKG_ChangeSubfield Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 Smallint In Subfield

EKG_ChangeMultipleFields

378 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 55. Function Block for the EKG_ChangeSubfield Function (continued)

Offset Length Type Use Parameter Name

014 2 Smallint In Data_type

016 4 Integer In New_char_data_length

020 4 Pointer In New_data_ptr

024 4 — — Not used

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 56. Example Names for the EKG_ChangeSubfield Function

Example Name

PL/I function block EKG11403

PL/I response block None

PL/I usage coding EKG51403

C function block EKG31403

C response block None

C usage coding EKG61403

Summary

 Table 57. Summary of the EKG_ChangeSubfield Function

Function ID 1403

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 3

Usage

If the value subfield is to be changed, the data type of the new data must be

identical with that of the field. For other subfields, the data type of the subfield is

determined by the subfield type, and RODM checks that the data_type field in the

function block is compatible with the specified subfield.

The change of a value subfield does not cause the prev_val and timestamp

subfields to be updated, nor does it run a change or notification method.

EKG_ChangeSubfield

Chapter 14. Application Programming Reference 379

EKG_Checkpoint — Checkpoint RODM to DASD

Purpose

This function causes RODM to write a copy of its in-storage data to a checkpoint

data set. Use this checkpoint data set to recover RODM data after a system failure.

Function Block Format

 Table 58. Function Block for the EKG_Checkpoint Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 59. Example Names for the EKG_Checkpoint Function

Example Name

PL/I function block EKG11201

PL/I response block None

PL/I usage coding EKG51201

C function block EKG31201

C response block None

C usage coding EKG61201

Summary

 Table 60. Summary of the EKG_Checkpoint Function

Function ID 1201

Type Control

User API Yes

Object-specific method No

Object-independent method No

Initialization method Yes

Methods triggered Notification

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 4

Usage

The EKG_Checkpoint function writes RODM data to predefined and preallocated

VSAM linear data sets, which are called RODM checkpoint data sets.

The checkpoint function is controlled using the CHECKPOINT_FUNCTION

statement in member EKGCUST. Use this statement to either disable the

EKG_Checkpoint

380 Resource Object Data Manager and GMFHS Programmer’s Guide

checkpoint function or control how the checkpoint function reacts when a

checkpoint failure occurs. Refer to the IBM Tivoli NetView for z/OS Administration

Reference for more information.

The data that the EKG_Checkpoint function writes to the checkpoint data sets

includes the following:

v The RODM master window—a RODM data area that resides in the RODM

address space and contains RODM system information. The RODM master

window data is written to the master window checkpoint file.

v RODM translation window—a RODM data area that resides in the RODM

address space and contains the address information that enables correct data

mapping and addressing in the RODM data cache. RODM translation window

data is written to the translation window checkpoint file.

v RODM data windows—RODM data areas that reside in data spaces and contain

the actual data in the data cache. RODM data-window data is written to data

window checkpoint files.

The checkpoint process includes the following steps:

1. Begin checkpoint—RODM sends a message to the console, notifying the

operator that RODM is quiescing.

2. Quiescing—during the checkpoint quiesce period, RODM allows method API

requests, but rejects new user API requests. At the end of the quiesce period, if

no user API, method API, or asynchronous transactions are still running,

RODM proceeds to the next step in the checkpoint process, first stage

checkpoint. Otherwise, RODM issues a Write-To-Operator with Reply (WTOR)

message requesting directions from the operator. The operator must then select

one of three options:

Option Meaning

1 Perform the quiesce again. Choose this option if a checkpoint is really

desired, but give RODM another quiesce period to successfully quiesce.

2 Unconditionally, start first stage checkpoint. Choose this option if a

checkpoint is immediately necessary or after having tried option one.

3 Stop the checkpoint request. Choose this option if option one has been

attempted or if critical RODM tasks must not be stopped.
3. First stage checkpoint—after the quiescence time period ends and all

transactions have finished processing or the operator has requested an

unconditional checkpoint, RODM writes the master window and the translation

windows to their respective checkpoint files.

4. Second stage checkpoint—after the first stage checkpoint ends, RODM sends a

message to the console notifying the operator that transactions can now

resume. RODM then begins writing the data windows, one at a time, to the

data window checkpoint files. User applications can make transaction requests

during this checkpoint stage. However, a transaction will fail if the specific data

window that it needs access to is being written to a data window checkpoint

file or has not yet been written to a data window checkpoint file.

5. End of checkpoint—after all data windows have been written to data window

checkpoint files, RODM sends a message to the console notifying the operator

that the checkpoint process has completed, and two EKG_System object fields

are updated, depending on whether or not the checkpoint process was

successful.

EKG_Checkpoint

Chapter 14. Application Programming Reference 381

The EKG_LastCheckpointID field of the EKG_System object is updated by

RODM to reflect the transaction ID of the of the last checkpoint transaction if

the checkpoint process is successful. Otherwise, the EKG_LastCheckpointID

field remains unchanged.

The EKG_LastCheckpointResult field of the EKG_System object is updated with

the current transaction ID for a checkpoint process issued from a MODIFY

command, or the transaction ID of the user API requesting the checkpoint

process. The EKG_LastCheckpointResult field also reflects the result of the

checkpoint process by use of return and reason codes. Application programs

that are subscribed to this field receive notification that the checkpoint process

has completed.

With the exception of the checkpoint process, all transactions issued across the

RODM user API are synchronous in that the user does not regain execution control

until the transaction has completed. With the checkpoint process, the application

regains control when the checkpoint request has been recorded. The checkpoint

operation is actually processed asynchronously with other processing in the

application. This same asynchronous processing for the checkpoint process also

applies to an operator-requested checkpoint process, through the MODIFY

command.

Coding Checkpoint Control: RODM updates the EKG_LastCheckpointResult field

in the EKG_System class each time RODM completes a checkpoint operation. The

EKG_LastCheckpointResult field contains the transaction ID of the transaction

requesting the checkpoint operation and the return and reason codes indicating the

result of the checkpoint operation. Applications can subscribe to this field to be

notified of the completion of each checkpoint operation.

Subscribe to the EKG_LastCheckpointResult field to be notified of the result of the

checkpoint. The user can then query the field and determine the result of the

checkpoint operation. If the checkpoint operation is not successful, the user can

then determine why the checkpoint process failed.

A user application can keep a record or journal of its transactions with RODM. If

RODM fails between checkpoint operations, the application can then determine

which transactions have been checkpointed by RODM and which transactions have

to be resent. All transactions in that journal numerically the same or lower than the

EKG_LastCheckPointID field are reflected in the checkpoint data sets of the

successfully completed checkpoint operations and can be erased from the journal.

All transactions numerically higher than the EKG_LastCheckPointID field have to

be reset to restore RODM to its status before the failure.

From the beginning of a checkpoint operation until stage 1 is completed, RODM

rejects any additional transaction requests and provides a return code and reason

code identifying that condition if keyword TRANSPARENT_CHECKPOINT=NO is

specified in the customization file.

User applications can subscribe to the EKG_LastCheckpointID field, the

EKG_LastCheckpointResult field, or to both fields, using the

EKG_AddNotifySubscription function. See “EKG_AddNotifySubscription — Add

Notification Subscription” on page 373. You can use the NetView-supplied

notification method EKGNOTF for this subscription. See “RODM Notification

Methods” on page 480 for a description of EKGNOTF.

EKG_Checkpoint

382 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_Connect — Connect to RODM

Purpose

The connect function enables an application program to use RODM. This is the

first function the application can issue to RODM.

Function Block Format

 Table 61. Function Block for the EKG_Connect Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 8 Char(8) In User_password

012 4 Pointer In Stop_ECB

016 8 TransID Out Last_checkpoint_ID

024 4 Anonymous(4) — Reserved

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 62. Example Names for the EKG_Connect Function

Example Name

PL/I function block EKG11101

PL/I response block None

PL/I usage coding EKG51101

C function block EKG31101

C response block None

C usage coding EKG61101

Summary

 Table 63. Summary of the EKG_Connect Function

Function ID 1101

Type Access

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered Notification

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 1

Usage

The User_appl_ID is used to determine the users access authority and to associate

registered ECBs with the appropriate user.

EKG_Connect

Chapter 14. Application Programming Reference 383

If the system on which RODM is installed is protected by a system authorization

facility, the user can connect to RODM using a blank user ID. RODM obtains the

user ID from the system authorization facility and uses it to determine the user’s

access authority in RODM. If the system is not protected by a system authorization

facility, the user cannot connect to RODM using a blank user ID.

When a user application issues an EKG_Connect function request, RODM creates a

user object from the EKG_User system-defined class.

An access block, as described in “Access Block” on page 305, must be passed. The

user’s sign_on_token parameter in the access block is set by RODM. This

parameter must not be changed by the user application for subsequent calls to

RODM.

A user can disconnect from RODM without purging the subscription notification

queue. Before notification queues owned by this user application ID can again be

posted, all ECB addresses associated with all notification queues for this user and

with subscription notifications must be reset for the new address space.

All tasks in the address space from which the EKG_Connect function was issued

can access RODM either by connecting to RODM with unique, RODM authorized

user IDs, or by using the sign_on_token. The sign_on_token is not valid when the

connecting TCB ends or the EKG_Disconnect function is performed.

EKG_CreateClass — Create a Class

Purpose

This function creates a new class as the child of a specified parent class in the

RODM data cache. RODM adds the new class ID entry to the MyClassChildren

linked-list field of the parent of the new class.

Function Block Format

 Table 64. Function Block for the EKG_CreateClass Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Class_access_info_ptr

008 4 Pointer In Parent_access_info_ptr

012 4 SelfDefiningDataPtr In Method_parms

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 65. Example Names for the EKG_CreateClass Function

Example Name

PL/I function block EKG11302

PL/I response block None

PL/I usage coding EKG51302

C function block EKG31302

EKG_Connect

384 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 65. Example Names for the EKG_CreateClass Function (continued)

Example Name

C response block None

C usage coding EKG61302

Summary

 Table 66. Summary of the EKG_CreateClass Function

Function ID 1302

Type Administrative

User API Yes

Object-specific method No

Object-independent method No

Initialization method Yes

Methods triggered Notification methods on MyClassChildren

and WhatIAm fields of parent class triggered

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 5

Usage

Specify the class name and RODM returns the associated ID.

Classes are created only with system-defined fields and those fields that are

inherited through the primary hierarchy. All additional fields must be added

explicitly by calls to RODM.

Creating a class changes the value of the WhatIAm field of the parent of the class

if the parent did not have any class children.

EKG_CreateField — Create a Field

Purpose

This function creates a new field on a class in the RODM data cache.

Function Block Format

 Table 67. Function Block for the EKG_CreateField Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Class_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 Smallint In Field_type_flag

014 2 Smallint In Data_type

016 4 Bit(32) In Subfield_map

EKG_CreateClass

Chapter 14. Application Programming Reference 385

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 68. Example Names for the EKG_CreateField Function

Example Name

PL/I function block EKG11304

PL/I response block None

PL/I usage coding EKG51304

C function block EKG31304

C response block None

C usage coding EKG61304

Summary

 Table 69. Summary of the EKG_CreateField Function

Function ID 1304

Type Administrative

User API Yes

Object-specific method No

Object-independent method No

Initialization method Yes

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 5

Usage

The initial value for a field is the null value of the field’s data type.

When a field is created, RODM applies the following rules:

v If the field being added to a class is public and has the same name and fields

(that is, data type and subfield definitions) as a public field already defined in a

subclass, the field is defined in the specified class and the subclass defined field

is treated as a local value for that field (this affects what value is inherited below

the subclass). If the data type of the field in the subclass is different from the

new data type, the new definition is rejected.

v If the new field being added is a private field, no check is made for subclass

definitions.

v If a new field definition is for a public field and there is an existing private

definition in a subclass of the specified class, the new field definition is rejected.

If the field already exists and has exactly the same data type and subfield

definitions as was requested, a warning return code is generated and a reason code

describing that condition is returned. The original field is left as previously

defined.

EKG_CreateField

386 Resource Object Data Manager and GMFHS Programmer’s Guide

If a subfield that is not valid is specified, RODM does not create that subfield.

However, RODM does create the field and all valid requested subfields. RODM

issues the warning return code 4 with reason code 100.

EKG_CreateObject — Create an Object

Purpose

This function creates a new object in the RODM data cache. RODM adds the new

object ID entry to the MyObjectChildren linked-list field of the parent of the new

object.

Function Block Format

 Table 70. Function Block for the EKG_CreateObject Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 SelfDefiningDataPtr In Method_parms

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 71. Example Names for the EKG_CreateObject Function

Example Name

PL/I function block EKG11409

PL/I response block None

PL/I usage coding EKG51409

C function block EKG31409

C response block None

C usage coding EKG61409

Summary

 Table 72. Summary of the EKG_CreateObject Function

Function ID 1409

Type Action

User API Yes

Object-specific method No

Object-independent method Yes

Initialization method Yes ¹

Methods triggered Notification methods on MyClassChildren

and WhatIAm fields of parent class triggered

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 5 (create method object)

 3 (create other object)

EKG_CreateField

Chapter 14. Application Programming Reference 387

Table 72. Summary of the EKG_CreateObject Function (continued)

: ¹ Initialization methods cannot create objects of the EKG_NotificationQueue class.`

Usage

The Entity_access_info_ptr must point to an entity access block that specifies the

class which is the parent of the object being created. The Object_name_ptr of the

entity access block is optional. If the Object_name_ptr is specified, it must point to

a field of type ObjectName that contains the name of the requested new object.

Otherwise, RODM assigns the new object a name.

If you are creating an object of the EKG_Method class or the

EKG_NotificationQueue class, the object name is required. Object names for these

classes are limited to 8 characters.

The object name is not returned to the caller through this interface, but can be

accessed by querying the MyName field of the object. RODM assigns names in the

form EKGddddddd where ddddddd is a decimal number from 0000000 to 9999999. If

you specify the object name, do not specify an object name that begins with EKG.

The Object_ID field in the entity access block is set by RODM when the object is

successfully created. The Method_Parms short_lived_parameters are passed to the

notification method on the MyObjectChildren field of the class and the notification

method, if one exists, is triggered.

When a new object is created, it contains all of the public locally- defined and

inherited fields that appear on the class of the new object. The values in these

fields are initially the default values inherited from the class except for the

system-defined fields, which are set by RODM, and fields of type ObjectLink,

which are empty fields.

All subfields, wherever they exist, begin existence on a new object with inherited

values except for the notify subfield. A Notify subfield starts out with the null

value.

If the parent class does not have any object children when this object is created,

RODM updates the WhatIAm field of the class to indicate that the class now has

object children.

EKG_CreateSubfield — Create a Subfield

Purpose

This function creates one or more subfields for an existing field in an existing class

in the RODM data cache.

Function Block Format

 Table 73. Function Block for the EKG_CreateSubfield Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Class_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 4 Bit(32) In Subfield_map

EKG_CreateObject

388 Resource Object Data Manager and GMFHS Programmer’s Guide

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 74. Example Names for the EKG_CreateSubfield Function

Example Name

PL/I function block EKG11306

PL/I response block None

PL/I usage coding EKG51306

C function block EKG31306

C response block None

C usage coding EKG61306

Summary

 Table 75. Summary of the EKG_CreateSubfield Function

Function ID 1306

Type Administrative

User API Yes

Object-specific method No

Object-independent method No

Initialization method Yes

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 5

Usage

Subfields can be created only on an existing field of a class. Subfields must be

created in the class in which the field was created.

If a specified subfield already exists and other specified subfields do not exist, the

subfields that do not exist are created and a warning return code is generated.

EKG_DeleteClass — Delete a Class

Purpose

This function deletes an existing class from the RODM data cache. RODM removes

the value in the MyID field of the deleted class from the MyClassChildren

linked-list field of the parent of the deleted class.

Function Block Format

 Table 76. Function Block for the EKG_DeleteClass Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Class_access_info_ptr

EKG_CreateSubfield

Chapter 14. Application Programming Reference 389

Table 76. Function Block for the EKG_DeleteClass Function (continued)

Offset Length Type Use Parameter Name

008 4 SelfDefiningDataPtr In Method_parms

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 77. Example Names for the EKG_DeleteClass Function

Example Name

PL/I function block EKG11303

PL/I response block None

PL/I usage coding EKG51303

C function block EKG31303

C response block None

C usage coding EKG61303

Summary

 Table 78. Summary of the EKG_DeleteClass Function

Function ID 1303

Type Administrative

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered Notification methods on MyClassChildren

and WhatIAm fields of parent class triggered

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 5

Usage

You cannot delete a RODM system-defined class or a class that has children.

Deleting a class will change the value of the WhatIAm field of the parent of the

class if the parent class no longer has any class children.

EKG_DeleteField — Delete a Field

Purpose

This function deletes a field from a class in the RODM data cache. The field is also

deleted from any classes and objects that inherit the field from this class.

EKG_DeleteClass

390 Resource Object Data Manager and GMFHS Programmer’s Guide

Function Block Format

 Table 79. Function Block for the EKG_DeleteField Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Class_access_info_ptr

008 4 Pointer In Field_access_info_ptr

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 80. Example Names for the EKG_DeleteField Function

Example Name

PL/I function block EKG11305

PL/I response block None

PL/I usage coding EKG51305

C function block EKG31305

C response block None

C usage coding EKG61305

Summary

 Table 81. Summary of the EKG_DeleteField Function

Function ID 1305

Type Administrative

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 5

Usage

Fields can be deleted only from classes; they cannot be deleted from objects.

Deletion of a public field on a class removes the existence of that field from all

descendant classes.

Before a public field can be deleted from a class, you must delete all objects

created from that class and from descendent classes of that class.

Local values assigned to a field are discarded when that field is deleted.

Private fields can be deleted at any time.

EKG_DeleteField

Chapter 14. Application Programming Reference 391

EKG_DeleteNotifySubscription — Delete Notification

Subscription

Purpose

This function deletes one or more notification subscriptions from a field.

Function Block Format

 Table 82. Function Block for the EKG_DeleteNotifySubscription Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 24 RecipientSpec In Subscription_info

036 8 ObjectID In Notify_method

044 4 SelfDefiningDataPtr In Long_lived_parm

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 83. Example Names for the EKG_DeleteNotifySubscription Function

Example Name

PL/I function block EKG11413

PL/I response block None

PL/I usage coding EKG51413

C function block EKG31413

C response block None

C usage coding EKG61413

Summary

 Table 84. Summary of the EKG_DeleteNotifySubscription Function

Function ID 1413

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered Notification methods triggered

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 3

EKG_DeleteNotifySubscription

392 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage

Deleting a notification subscription does not delete the notification blocks that are

queued on the notification queue when the delete function is issued. The

notification queue object is not deleted.

The notification subscription that is to be deleted is uniquely identified by four

fields: the User_appl_ID field, the Notification_queue field, the Notify_method

field, and the Long_lived_parm field. Using these four fields, the

EKG_DeleteNotifySubscription function deletes one or more notification

subscriptions based on the first of the following rules that applies:

1. If the Notification_queue field is set to an asterisk followed by seven blanks

("* "), and the Notify_method and Long_lived_parm fields are set to

null values, all subscriptions associated with the specified User_appl_ID field

are deleted.

2. If the Notification_queue field is set to an asterisk followed by seven blanks

("* "), all subscriptions associated with the specified User_appl_ID,

Notify_method, and Long_lived_parm fields are deleted.

3. If the Notify_method field is set to the null value, RODM deletes the

notification subscriptions that meet the other criteria without considering the

value in the Notify_method field.

4. If the Long_lived_parm field is set to the null value, RODM deletes the

notification subscriptions that meet the other criteria without considering the

value in the Long_lived_parm field.

Specifying User_appl_ID as a null value does not have the same effect as

specifying null values for the other parameters. A Null User_appl_ID value is

interpreted the same here as for the EKG_AddNotifySubscription function; it

requires RODM to supply a default value. The default is determined exactly as for

the EKG_AddNotifySubscription function (see “EKG_AddNotifySubscription —

Add Notification Subscription” on page 373).

To specify a null Long_lived_parm, declare a pointer to the Long_lived_parm data

type with a value of zero.

EKG_DeleteObject — Delete an Object

Purpose

This function deletes an existing object from a specified class. RODM deletes the

object ID of the deleted object from the MyObjectChildren field of the parent class

of the deleted object.

Function Block Format

 Table 85. Function Block for the EKG_DeleteObject Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 SelfDefiningDataPtr In Method_parms

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

EKG_DeleteNotifySubscription

Chapter 14. Application Programming Reference 393

Examples

 Table 86. Example Names for the EKG_DeleteObject Function

Example Name

PL/I function block EKG11410

PL/I response block None

PL/I usage coding EKG51410

C function block EKG31410

C response block None

C usage coding EKG61410

Summary

 Table 87. Summary of the EKG_DeleteObject Function

Function ID 1410

Type Action

User API Yes

Object-specific method No

Object-independent method Yes

Initialization method Yes

Methods triggered Notification methods on MyClassChildren

and WhatIAm fields of object class triggered

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 5 (delete method object) 3 (delete other

object)

Usage

The Method_parms data is passed to any notification methods assigned to the

MyObjectChildren and WhatIAm fields on the object class.

All ObjectLink type links from all fields of the target object to other objects must

be deleted before this object is deleted. RODM returns an error if ObjectLink type

links still exist.

If the parent class of this object does not have any children after this object is

deleted, RODM updates the WhatIAm field of the class to indicate that it is now a

class with no children.

EKG_DeleteSubfield — Delete a Subfield

Purpose

This function deletes one or more subfields from the specified field of a class in the

RODM data cache. The subfields must be deleted from the field in the class where

the field was created. RODM also deletes the subfields from any class or object

that inherits the specified field.

EKG_DeleteObject

394 Resource Object Data Manager and GMFHS Programmer’s Guide

Function Block Format

 Table 88. Function Block for the EKG_DeleteSubfield Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Class_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 4 Bit(32) In Subfield_map

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 89. Example Names for the EKG_DeleteSubfield Function

Example Name

PL/I function block EKG11307

PL/I response block None

PL/I usage coding EKG51307

C function block EKG31307

C response block None

C usage coding EKG61307

Summary

 Table 90. Summary of the EKG_DeleteSubfield Function

Function ID 1307

Type Administrative

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 5

Usage

You can delete a subfield only from the class on which it was created. If a subfield

is defined on a parent class, you must delete it from that parent class, not from any

child classes that inherit the subfield.

You cannot delete the value subfield. The value of Subfield_map bit 1 must always

be 0 (zero) for this function.

EKG_DeleteSubfield

Chapter 14. Application Programming Reference 395

If you instruct RODM to delete a subfield that does not exist, RODM returns a

warning; it does, however, delete any other subfields that you instructed it to

delete, if they exist.

Before a subfield of a public field can be deleted from a class, you must delete all

objects created from that class and from descendent classes of that class.

EKG_DelObjDelSubs — Delete Object Deletion Subscription

Purpose

This function deletes a deletion-subscription for an object.

Function Block Format

 Table 91. Function Block for the EKG_DelObjDelSubs Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 8 ApplicationID In User_appl_ID

016 8 SubscribeID In Notification_queue

024 8 Anonymous(8) In User_word

032 4 SelfDefiningDataPtr In Long_lived_parm

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 92. Example Names for the EKG_DelObjDelSubs Function

Example Name

PL/I function block EKG11418

PL/I response block None

PL/I usage coding EKG51418

C function block EKG31418

C response block None

C usage coding EKG61418

Summary

 Table 93. Summary of the EKG_DelObjDelSubs Function

Function ID 1418

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method No

Methods triggered No

EKG_DeleteSubfield

396 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 93. Summary of the EKG_DelObjDelSubs Function (continued)

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 3

Usage

Deleting a deletion-subscription does not delete the notification blocks that are

queued on the notification queue when the delete function is issued. The

notification queue object is not deleted.

The subscription that is to be deleted is uniquely identified by three fields: the

User_appl_ID field, the Notification_queue field, and the Long_lived_parm field.

Using these three fields, the EKG_DelObjDelSubs function deletes one or more

deletion-subscriptions based on the first of the following rules that applies:

1. If the Notification_queue field is set to an asterisk followed by seven blanks

("* "), and the Long_lived_parm field is set to null values, all

subscriptions associated with the specified User_appl_ID field are deleted.

2. If the Notification_queue field is set to an asterisk followed by seven blanks

("* "), all subscriptions associated with the specified User_appl_ID and

Long_lived_parm fields are deleted.

3. If the Long_lived_parm field is set to the null value, RODM deletes the

notification subscriptions that meet the other criteria without considering the

value in the Long_lived_parm field.

Specifying User_appl_ID as a null value does not have the same effect as

specifying null values for the other parameters. A null User_appl_ID value is

interpreted the same here as for the EKG_AddObjDelSubs function; it requires

RODM to supply a default value. The default is determined exactly as for the

EKG_AddObjDelSubs function (see “Function Parameter Descriptions” on page

444).

To specify a null Long_lived_parm, declare a pointer to the Long_lived_parm data

type with a value of zero.

EKG_Disconnect — Disconnect from RODM

Purpose

This function disconnects the user application from RODM.

Function Block Format

 Table 94. Function Block for the EKG_Disconnect Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

EKG_DelObjDelSubs

Chapter 14. Application Programming Reference 397

Examples

 Table 95. Example Names for the EKG_Disconnect Function

Example Name

PL/I function block EKG11102

PL/I response block None

PL/I usage coding EKG51102

C function block EKG31102

C response block None

C usage coding EKG61102

Summary

 Table 96. Summary for the EKG_Disconnect Function

Function ID 1102

Type Access

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered Notification

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 1

Usage

After you disconnect from RODM, RODM does not accept any other function

requests with your disconnected access block until you issue the EKG_Connect

function request.

Processing of notification queues and subscriptions when you disconnect from

RODM is controlled by setting the EKG_StopMode field of your user object. If you

do not intend to reconnect later, set EKG_StopMode in your user object to 1 to

cause all notification subscriptions to be deleted. See the EKG_StopMode field in

“EKG_User Class” on page 201.

When you disconnect, all notification queues on behalf of your user application ID

that are in active status (EKG_Status in the corresponding objects in class

EKG_NotificationQueue is set to 1) continue to accumulate notification blocks. If

you reconnect at a later time, you must reestablish notification ECBs (field

EKG_ECBAddress) within all of your existing notification queue objects before any

notifications can be received.

When you disconnect from RODM, your user object is deleted if all subscriptions

are deleted (or none were established) and notification queues are purged.

EKG_Disconnect

398 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_ExecuteFunctionList — Execute a List of Functions

Purpose

This function runs a list of RODM functions with a single interface call. RODM

manages the function list to ensure that the target entities are not affected by other

transactions during the call.

Function Block Format

 Table 97. Function Block for the EKG_ExecuteFunctionList Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Integer In Number_of_Functions

: First element, array of structure

008 0 Structure — Function_info_array

008 4 Pointer In Function_block_ptr

012 4 Pointer Out Response_block_reference

016 4 Integer Out Response_block_used

020 4 Integer Out Return_code

024 4 Integer Out Reason_code

: Second element, array of structure (if used)

028 0 Structure — Function_info_array

028 4 Pointer In Function_block_ptr

032 4 Pointer Out Response_block_reference

036 4 Integer Out Response_block_used

040 4 Integer Out Return_code

044 4 Integer Out Reason_code

Note: Function block contains Number_of_functions array elements

 Table 98. Response Block for the EKG_FunctionList Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 — — Out Response_data

Note: A response block is not required if no function returns data.

Response_block_used is the total for all functions. The function block

contains the amounts used by individual functions.

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

EKG_ExecuteFunctionList

Chapter 14. Application Programming Reference 399

Examples

 Table 99. Example Names for the EKG_ExecuteFunctionList Function

Example Name

PL/I function block EKG11600

PL/I response block None

PL/I usage coding EKG51600

C function block EKG31600

C response block None

C usage coding EKG61600

Summary

 Table 100. Summary of the EKG_ExecuteFunctionList Function

Function ID 1600

Type User API Service

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered Yes

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2 (list of queries only) 3 (list includes actions)

Authorization levels: EKG_ExecuteFunctionList can perform only action functions and

query functions. These action and query functions cannot have authorization levels greater

than 3.

Usage

The return code and reason code returned in the transaction information block for

the EKG_ExecuteFunctionList function are the highest return code for any

individual function, and its corresponding reason code.

RODM manages the function list to ensure that the target entities are not affected

by other transactions during the call.

If the response block overflow situation is encountered, all output length values

(response_block_used parameters) are set by RODM, but pointer values (for

example, response_block_reference parameters) for transaction results that are

contained wholly in the overflow buffer are set to null. When you retrieve the

overflow block, it is your responsibility to parse that data using the length

information returned on the original call.

If the list contains functions not authorized to you, those functions are skipped (no

action will be attempted) and an error return code and reason code are set for

those functions.

EKG_ExecuteFunctionList

400 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_LinkNoTrigger, EKG_LinkTrigger — Link Two Objects

Purpose

These functions are used to establish a link between two fields on two objects. The

EKG_LinkTrigger function triggers change methods and notification methods; the

EKG_LinkNoTrigger function does not.

Function Block Format

 Table 101. Function Block for EKG_LinkNoTrigger Function and the EKG_LinkTrigger

Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr_1

008 4 Pointer In Field_access_info_ptr_1

012 4 Pointer In Entity_access_info_ptr_2

016 4 Pointer In Field_access_info_ptr_2

020 4 SelfDefiningDataPtr In Method_parms¹

:

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 102. Example Names for the EKG_LinkNoTrigger Function and the EKG_LinkTrigger

Function

Example Name

PL/I function block (EKG_LinkTrigger) EKG11405

PL/I function block (EKG_LinkNoTrigger) EKG11406

PL/I response block None

PL/I usage coding (EKG_LinkTrigger) EKG51405

PL/I usage coding (EKG_LinkNoTrigger) EKG51406

C function block (EKG_LinkTrigger) EKG31405

C function block (EKG_LinkNoTrigger) EKG31406

C response block None

C usage coding (EKG_LinkTrigger) EKG61405

C usage coding (EKG_LinkNoTrigger) EKG61406

Summary

 Table 103. Summary of the EKG_LinkNoTrigger Function and the EKG_LinkTrigger Function

 Function ID

 EKG_LinkNoTrigger

 EKG_LinkTrigger

 1406

 1405

Type Action

User API Yes

EKG_LinkNoTrigger, EKG_LinkTrigger

Chapter 14. Application Programming Reference 401

Table 103. Summary of the EKG_LinkNoTrigger Function and the EKG_LinkTrigger

Function (continued)

Object-specific method No

Object-independent method Yes

Initialization method Yes

Methods triggered EKG_LinkTrigger

EKG_LinkNoTrigger

 Change methods and notification

methods

 No

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 3

Usage

Links can be performed only on fields within objects. Fields of classes cannot be

linked. The fields being linked must be on different objects.

Each of the two fields to be linked must be type ObjectLink or ObjectLinkList. Use

an ObjectLink field if you need only one link. Use an ObjectLinkList field if you

need more than one link for a field.

No assumption can be made regarding the order of links within a field of type

ObjectLinkList.

If a link is performed on a field of type ObjectLink that was previously linked to

another field, the link function will fail.

If a link is performed on a field of type ObjectLinkList that was previously linked

to another field, the link function will succeed. If the field that it is linked to is also

of type ObjectLinkList, the link is added and previous links are retained.

Do not use EKG_LinkNoTrigger with GMFHS resources.

When the EKG_LinkTrigger function is issued, the link operation is performed

before the notification methods are triggered. If there are change methods defined

on one or both of the fields to be linked, the link proceeds after the change

methods, but only if one of the following is true:

v Both change methods explicitly set a zero return code with EKG_SetReturnCode.

v Neither change method sets a return code. In this case, RODM assumes a zero

return code and the link proceeds.

If the link does not proceed, the notification methods are not triggered. If the

objects are successfully linked, the notification methods are triggered in the

following order:

1. Notification methods for the field specified by Field_access_info_ptr_1

2. Notification methods for the field specified by Field_access_info_ptr_2

3. Notification methods for the parent class of the first field

4. Notification methods for the parent class of the second field

EKG_LinkNoTrigger, EKG_LinkTrigger

402 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_Locate—Locate Objects Using Public Indexed Field

Purpose

This function returns the list of object IDs of all objects in RODM that match the

search criteria. The search criteria is specified as the value of a character field that

has been defined as public_indexed. See “Indexed Fields” on page 220 for a

description of using public indexed fields and the EKG_Locate function.

Function Block Format

 Table 104. Function Block for the EKG_Locate Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Anonymous(4) — Reserved, must be X'00000000'

008 4 Pointer In Field_access_info_ptr

012 2 Smallint In Data_type, must be 4 or 32

014 2 Anonymous(2) — Reserved, must be X'0000'

016 4 Integer In Indexed_data_length

020 4 Pointer In Indexed_data_ptr

 Table 105. Response Block for the EKG_Locate Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 — ObjectIDList Out Requested_data

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 106. Example Names for the EKG_Locate Function

Example Name

PL/I function block EKG11509

PL/I response block EKG21509

PL/I usage coding EKG51509

C function block EKG31509

C response block EKG41509

C usage coding EKG61509

Summary

 Table 107. Summary of the EKG_Locate Function

Function ID 1509

Type Query

User API Yes

Object-specific method Yes

EKG_Locate

Chapter 14. Application Programming Reference 403

Table 107. Summary of the EKG_Locate Function (continued)

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

The EKG_Locate function acts on all objects in RODM with the specified field,

regardless of the class the objects are in.

The EKG_Locate function works with fields of data types CharVar and IndexList

that are created as public_indexed only. If you use the EKG_Locate function on a

field named DisplayResourceName, RODM will return the Object IDs of all objects

matching the search criteria regardless of case of the field or search criteria. For

DBCS values, you can get unexpected matches.

EKG_LockObjectList — Lock List of Objects

Purpose

This function was previously used to obtain explicit locks for a list of objects.

RODM now controls locking automatically, and this function is no longer

necessary. This function remains available for compatibility with existing

applications. No changes to existing applications that use this function are

required.

Function Block Format

 Table 108. Function Block for the EKG_LockObjectList Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Integer In Object_list_length

: First element, array of structure

008 0 Structure — Object_array

008 8 ObjectID In Object_ID

016 4 Integer Out Reason_code¹

: Second element, array of structure (if used)

020 0 Structure — Object_array

020 8 ObjectID In Object_ID

028 4 Integer Out Reason_code¹

Note: Function block contains Object_list_length array elements

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

EKG_Locate

404 Resource Object Data Manager and GMFHS Programmer’s Guide

Examples

 Table 109. Example Names for the EKG_LockObjectList Function

Example Name

PL/I function block EKG12002

PL/I response block None

PL/I usage coding EKG52002

C function block EKG32002

C response block None

C usage coding EKG62002

Summary

 Table 110. Summary of the EKG_LockObjectList Function

Function ID 2002

Type Method API Service

User API No

Object-specific method No

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

For compatibility with existing applications, the value 0 is always returned in the

Reason_code field.

EKG_MessageTriggeredAction — Trigger an Action by a

Message

Purpose

This function runs a RODM function asynchronously. It enables an object-specific

method to act on other objects in the data cache.

Function Block Format

 Table 111. Function Block for the EKG_MessageTriggeredAction Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Function_block_ptr

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

EKG_LockObjectList

Chapter 14. Application Programming Reference 405

Examples

 Table 112. Example Names for the EKG_MessageTriggeredAction Function

Example Name

PL/I function block EKG12009

PL/I response block None

PL/I usage coding EKG52009

C function block EKG32009

C response block None

C usage coding EKG62009

Summary

 Table 113. Summary of the EKG_MessageTriggeredAction Function

Function ID 2009

Type Method API Service

User API No

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

Not all functions can be run by the EKG_MessageTriggeredAction function. The

entry “Triggered by EKG_MessageTriggeredAction function” in the Summary table

for each function tells you whether that function can be run by this function.

The method that uses the EKG_MessageTriggeredAction function receives a return

code and reason code that specifies whether the function request was accepted by

RODM. However, the method cannot determine when the action takes place. To

detect problems with methods triggered and functions run by the

EKG_MessageTriggeredAction function, subscribe to the EKG_LastAsyncError field

of the EKG_System and EKG_User classes. See “Asynchronous Error Notification”

on page 325 for more information.

Functions run by the EKG_MessageTriggeredAction function cannot return a

response block to the calling method.

This function is intended for use in object-specific methods; it enables the

object-specific method to act on an object other than the object with which the

method is associated. However, object-independent methods can also use this

function.

EKG_MessageTriggeredAction

406 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_OutputToLog — Output to Log

Purpose

This function writes a log record to the current RODM log data set. This enables

methods to record error or diagnostic information.

Function Block Format

 Table 114. Function Block for the EKG_OutputToLog Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Log_message

008 2 Smallint In Message_CCSID

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 115. Example Names for the EKG_OutputToLog Function

Example Name

PL/I function block EKG12008

PL/I response block None

PL/I usage coding EKG52008

C function block EKG32008

C response block None

C usage coding EKG62008

Summary

 Table 116. Summary of the EKG_OutputToLog Function

Function ID 2008

Type Method API Service

User API No

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

RODM maintains a log (a VSAM entry sequence data set) where methods can

write character strings (type 1 log records). This is the same log where RODM

writes error records for error condition in RODM.

EKG_OutputToLog

Chapter 14. Application Programming Reference 407

RODM places the method name, a time stamp, a unique transaction identifier, and

the log record type at the beginning of the record in the RODM log.

EKG_QueryEntityStructure — Query Structure of an Entity

Purpose

This function queries the structure of an object or class and returns a list of its

fields. The field list includes the field name, field ID, data type, and inheritance

status.

Function Block Format

 Table 117. Function Block for the EKG_QueryEntityStructure Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 — — Not used

012 2 — — Not used

014 2 Anonymous(2) — Reserved

016 4 — — Not used

 Table 118. Response Block for the EKG_QueryEntityStructure Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 2 Smallint Out Field_info_element_size

010 2 Smallint Out Field_info_count

: First element, array of structure

012 0 Structure — Field_info_array

012 4 FieldID Out Field_ID

016 2 Bit(16)

 bit 0

 bit 1

 bit 2

—

 Out

 Out

 Out

Bit_map

v Private_public_flag

v Local_inherited_flag

v Indexed_flag

018 2 Smallint Out Data_type

020 67 ShortName Out Field_name

087 1 — — Reserved

: Second element, array of structure (if used)

088 0 Structure — Field_info_array

088 4 FieldID Out Field_ID

092 2 Bit(16)

 bit 0

 bit 1

 bit 2

—

 Out

 Out

 Out

Bit_map

v Private_public_flag

v Local_inherited_flag

v Indexed_flag

094 2 Smallint Out Data_type

096 67 ShortName Out Field_name

EKG_OutputToLog

408 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 118. Response Block for the EKG_QueryEntityStructure Function (continued)

Offset Length Type Use Parameter Name

161 1 — — Reserved

Note: Function block contains Field_info_count array elements

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 119. Example Names for the EKG_QueryEntityStructure Function

Example Name

PL/I function block EKG11503

PL/I response block EKG21503

PL/I usage coding EKG51503

C function block EKG31503

C response block EKG41503

C usage coding EKG61503

Summary

 Table 120. Summary of the EKG_QueryEntityStructure Function

Function ID 1503

Type Query

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

The response data contains an array that consists of one array element for each

field in the object or class. There are Field_info_count elements in the response

block; each element is of size Field_info_element_size.

EKG_QueryField — Query a Field

Purpose

This function queries the value of a field on an object or a class.

EKG_QueryEntityStructure

Chapter 14. Application Programming Reference 409

Function Block Format

 Table 121. Function Block for the EKG_QueryField Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 — — Not used

014 2 Anonymous(2) — Reserved

016 4 SelfDefiningDataPtr In Method_parms

 Table 122. Response Block for the EKG_QueryField Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 2 Smallint Out Data_type

010 — Anonymous Out Data

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 123. Example Names for the EKG_QueryField Function

Example Name

PL/I function block EKG11501

PL/I response block EKG21501

PL/I usage coding EKG51501

C function block EKG31501

C response block EKG41501

C usage coding EKG61501

Summary

 Table 124. Summary of the EKG_QueryField Function

Function ID 1501

Type Query

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered Query method for the target field triggered

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

EKG_QueryField

410 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage

If there is a query method on the field, the Method_parm field is passed to that

query method when the method is run. If there is no query method on the field,

the Method_parm field is ignored.

If the value subfield is queried and the data type returned is CharVar, the data

string is immediately followed by a null terminating byte of X'00'. If the value

subfield is queried and the data type returned is GraphicVar, the data string is

immediately followed by a null terminating double-byte of X'0000'.

For a successful query, RODM returns a reason code that specifies whether the

returned value is a local value or an inherited value.

Multiple field values can be queried using the EKG_QueryMultipleSubfields

function.

EKG_QueryFieldID — Query Field Identifier

Purpose

This function returns a field ID from a specified field name.

Function Block Format

 Table 125. Function Block for the EKG_QueryFieldID Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 — — Not used

008 4 Pointer In Field_access_info_ptr

012 2 — — Not used

014 2 Anonymous(2) — Reserved

016 4 — — Not used

 Table 126. Response Block for the EKG_QueryFieldID Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 4 FieldID Out Field_ID

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 127. Example Names for the EKG_QueryFieldID Function

Example Name

PL/I function block EKG11505

PL/I response block EKG21505

PL/I usage coding EKG51505

C function block EKG31505

EKG_QueryField

Chapter 14. Application Programming Reference 411

Table 127. Example Names for the EKG_QueryFieldID Function (continued)

Example Name

C response block EKG41505

C usage coding EKG61505

Summary

 Table 128. Summary of the EKG_QueryFieldID Function

Function ID 1505

Type Query

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

The Field_ID in the Field_access_info_ptr is ignored for this function.

This function obtains a field ID from the specified field name. If the field name is

not defined for any class, RODM issues return code 4 with reason code 56.

Because all identical field names defined across all classes in the RODM data cache

share the same field ID, the class information is not necessary for this function to

distinguish identical field names in different classes.

Note: To obtain the object ID associated with an object name, query the MyID field

of the object under a specified class; to obtain the class ID associated with a

class name, query the MyID field of the class.

EKG_QueryFieldName — Query a Field Name

Purpose

This function returns a field name from a specified field ID.

Function Block Format

 Table 129. Function Block for the EKG_QueryFieldName Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 — — Not used

014 2 Anonymous(2) — Reserved

016 4 — — Not used

EKG_QueryField

412 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 130. Response Block for the EKG_QueryFieldName Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 67 ShortName Out Field_name

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 131. Example Names for the EKG_QueryFieldName Function

Example Name

PL/I function block EKG11506

PL/I response block EKG21506

PL/I usage coding EKG51506

C function block EKG31506

C response block EKG41506

C usage coding EKG61506

Summary

 Table 132. Summary of the EKG_QueryFieldName Function

Function ID 1506

Type Query

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

This function obtains a field name from the specified field ID in an object or class.

If the field ID is not defined for the object or class, a warning message with a

reason code is returned.

While all identical field names defined across all classes in the RODM data cache

share the same field ID, not all identical field IDs share the same field name.

However, all field IDs within a given object or class are unique within that object

or class. Therefore, the object or class information is necessary to uniquely identify

the field name from the specified field ID.

EKG_QueryFieldName

Chapter 14. Application Programming Reference 413

To obtain the object name associated with an object ID, query the MyName field of

the object; to obtain the class name associated with a class ID, query the MyName

field of the class.

You must set the Field_ID parameter in the field access information block for this

function. The Field_name parameter in the field access information block is

ignored for this function.

EKG_QueryFieldStructure — Query Structure of a Field

Purpose

This function queries the definition of a field and returns the data type, inheritance

state, and subfield map of the specified field.

Function Block Format

 Table 133. Function Block for the EKG_QueryFieldStructure Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 — — Not used

014 2 Anonymous(2) — Reserved

016 4 — — Not used

 Table 134. Response Block for the EKG_QueryFieldStructure Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 2 Smallint Out Data_type

010 2 Smallint Out Inheritance_state

012 4 Bit(32) Out Subfield_map

016 4 Bit(32) Out Local_copy_map

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 135. Example Names for the EKG_QueryFieldStructure Function

Example Name

PL/I function block EKG11504

PL/I response block EKG21504

PL/I usage coding EKG51504

C function block EKG31504

C response block EKG41504

C usage coding EKG61504

EKG_QueryFieldName

414 Resource Object Data Manager and GMFHS Programmer’s Guide

Summary

 Table 136. Summary of the EKG_QueryFieldStructure Function

Function ID 1504

Type Query

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

The value of the notify subfield is never inherited. If a notify subfield exists, it

always contains a locally defined value. This value is initially null.

The values of subfields with data types ClassLinkList, ObjectLink, and

ObjectLinkList are never inherited. If these subfields exist, they always contain

locally defined values. These values are initially null.

The value subfield is always locally created. Its value can be inherited or locally

defined. The value is initially inherited.

The values of the prev_val and timestamp subfields are never inherited. If these

subfields exist, they always contain locally defined values. These values are

initially null.

EKG_QueryFunctionBlockContents — Query Function Block

Contents

Purpose

This method API function obtains a copy of the function block of the user API or

method API function request that triggered this method. This function enables a

triggered method to get information about the function that triggered it.

Function Block Format

 Table 137. Function Block for the EKG_QueryFunctionBlockContents Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

 Table 138. Response Block for the EKG_QueryFunctionBlockContents Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 4 Integer Out Function_block_origin

012 — Anonymous Out Function_block_copy

EKG_QueryFieldStructure

Chapter 14. Application Programming Reference 415

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 139. Example Names for the EKG_QueryFunctionBlockContents Function

Example Name

PL/I function block EKG12001

PL/I response block EKG22001

PL/I usage coding EKG52001

C function block EKG32001

C response block EKG42001

C usage coding EKG62001

Summary

 Table 140. Summary of the EKG_QueryFunctionBlockContents Function

Function ID 2001

Type Method API Service

User API No

Object-specific method Yes

Object-independent method Yes

Initialization method No

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

If this function is called by a change, query, or notify method, this function returns

the function block contents of the function that caused the method to be triggered.

For example, if an EKG_ChangeField function triggers a notify method, the

EKG_QueryFunctionBlockContents function issued by the notify method returns

the function block of the EKG_ChangeField function.

If this function is called by an object-independent method, this function returns the

function block contents of the EKG_TriggerOIMethod function.

If this function is called by a named method, this function returns the function

block contents of the EKG_TriggerNamedMethod function.

The function block data returned by this function is put in Function_block_copy.

The pointers in the function block point to the corresponding information blocks in

the same Function_block_copy. The method using the

EKG_QueryFunctionBlockContents function can use these pointers to get all the

information contained in Function_block_copy.

EKG_QueryFunctionBlockContents

416 Resource Object Data Manager and GMFHS Programmer’s Guide

Because all pointers in the returned function block are adjusted to point to the data

in the response block, the method cannot use these pointers to change RODM data

or the original function block.

The data referenced by the pointers in the returned function block is placed in the

response block immediately following the copy of the function block.

If the size of the response block is not sufficient to contain all of the returned

function block data, the Response_block_used field is set to the actual size required

and the data in the response block is truncated.

If the new data value cannot be placed in the response block of a returned function

block containing change API function data, the other function block data is

provided but the New_data_ptr is set to null.

If either the new data value or the old data value cannot be placed in the response

block of a returned function block containing swap API function data, the other

function block data is provided and RODM does the following:

v If the value specified by the New_data_ptr pointer cannot be placed in the

response block, RODM sets the New_data_ptr and the Old_data_ptr to null.

v Otherwise, the new data value is placed in the response block:

– If the value specified by the Old_data_ptr pointer cannot be placed in the

response block, RODM sets the Old_data_ptr to null.

A response block size deficiency is not considered to be a response block overflow

condition. RODM returns the truncated data and the required data length but the

method must reinitiate the request with a larger response block if it is to obtain the

omitted data.

EKG_QueryMultipleSubfields — Query Multiple Value

Subfields

Purpose

This function queries multiple value subfields for an object with a single call to the

user API or the method API. This function queries object subfields, not class

subfields. It does not trigger any associated query methods.

Function Block Format

 Table 141. Function Block for the EKG_QueryMultipleSubfields Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Integer In Number_of_subfields

Note: First element, array of structure

012 0 Structure — Field_info_array

012 4 Pointer In Field_access_info_ptr

016 4 Anonymous(4) — Reserved

020 4 Pointer Out Response_block_reference

024 4 Integer Out Response_block_used

028 4 Integer Out Return_code

EKG_QueryFunctionBlockContents

Chapter 14. Application Programming Reference 417

Table 141. Function Block for the EKG_QueryMultipleSubfields Function (continued)

Offset Length Type Use Parameter Name

032 4 Integer Out Reason_code

Note: Second element, array of structure (if used)

036 0 Structure — Field_info_array

036 4 Pointer In Field_access_info_ptr

040 4 Anonymous(4) — Reserved

044 4 Pointer Out Response_block_reference

048 4 Integer Out Response_block_used

052 4 Integer Out Return_code

056 4 Integer Out Reason_code

Note: Function block contains Number_of_subfields array elements

 Table 142. Response Block for the EKG_QueryMultipleSubfields Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 0 Anonymous(1) Out Requested_info_array

Note: First and subsequent elements, array of requested information

008 2 Smallint Data_type

010 — Anonymous Data_value

Array notes:

v Response block contains Number_of_subfields array elements if all subfield queries are

successful. Unsuccessful queries are not included in the array.

v The Response_block_used field in the function block defines the length of the

corresponding element in the response block.

v The return code and reason code are for each individual subfield queried.

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 143. Example Names for the EKG_QueryMultipleSubfields Function

Example Name

PL/I function block EKG11508

PL/I response block EKG21508

PL/I usage coding EKG51508

C function block EKG31508

C response block EKG41508

C usage coding EKG61508

EKG_QueryMultipleSubfields

418 Resource Object Data Manager and GMFHS Programmer’s Guide

Summary

 Table 144. Summary of the EKG_QueryMultipleSubfields Function

Function ID 1508

Type Method API Service

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

The EKG_QueryMultipleSubfields function does not trigger any query methods.

The value specified in the number_of_subfields field cannot exceed 100,000.

It is your responsibility to provide the Entity_access_info_block, the

Response_block, the number of queried fields, and a list of field IDs or field names

(which are specified in the Field_access_info_blocks—one block per field

requested).

The return code and reason code returned in the transaction information block for

the EKG_QueryMultipleSubfields function is the highest return code for any

individual query and the first corresponding reason code.

If the response block overflow situation is encountered, all output length values

(response_block_used parameters) are set by RODM, but pointer values (for

example, response_block_reference parameters) for transaction results that are

contained completely in the overflow buffer are set to null. When you retrieve the

overflow block with EKG_QueryResponseBlockOverflow, it is your responsibility

to parse that data using the length information returned on the original call. The

overflow processing is only available to the user API; the method API for this

function discards any overflow data.

If the subfield queried returns data of type CharVar, the data string is immediately

followed by a null terminating byte of X'00'. If the subfield queried returns data of

type GraphicVar, the data string is immediately followed by a null terminating

double-byte of X'0000'.

After a successful query, RODM returns a reason code that specifies whether the

returned value is a local value or an inherited value.

EKG_QueryNotifyQueue — Query Notification Queue

Purpose

This function returns the next notification block from the specified notification

queue.

EKG_QueryMultipleSubfields

Chapter 14. Application Programming Reference 419

Function Block Format

 Table 145. Function Block for the EKG_QueryNotifyQueue Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 8 SubscribeID In Notification_queue

 Table 146. Response Block for the EKG_QueryNotifyQueue Function (Notification Block)

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 2 Smallint Out Notification_queue_count

010 2 Smallint Out Response_block_type

012 4 ClassID Out Class_ID

016 8 ObjectID Out Object_ID

024 4 FieldID Out Field_ID

028 2 Smallint Out Subfield

030 8 ApplicationID Out User_appl_ID

038 8 SubscribeID Out Notification_queue

046 8 MethodName Out Method_name

054 8 Anonymous(8) Out User_word

062 — SelfDefining Out User_area

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 147. Example Names for the EKG_QueryNotifyQueue Function

Example Name

PL/I function block EKG11507

PL/I response block EKG21507

PL/I usage coding EKG51507

C function block EKG31507

C response block EKG41507

C usage coding EKG61507

Summary

 Table 148. Summary of the EKG_QueryNotifyQueue Function

Function ID 1507

Type Query

User API Yes

Object-specific method No

Object-independent method No

EKG_QueryNotifyQueue

420 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 148. Summary of the EKG_QueryNotifyQueue Function (continued)

Initialization method No

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

If the queried notification queue is not empty, the first (oldest) notification block

on the notification queue is returned in the response block, and that notification

block is deleted from the notification queue. The Notification_queue_count field in

the response block specifies the number of notification blocks in the notification

queue prior to this function call. A Notification_queue_count value greater than

zero indicates that a notification block was placed in the response block.

The Class_ID, Object_ID, Field_ID, and Subfield fields of the response block

specify the object or class, field, and subfield where the method that generated the

notification is located.

v If the Class_ID and Object_ID are both null, an object-independent method

triggered the notification. In that case, the Field_ID and Subfield are set to zero.

v If the Object_ID is null, but the Class_ID is not null, the field is in the class.

v If the Object_ID field is not null, the Class_ID field specifies the object class, and

the field is in the object.

v If the executing method that called the notification function was a query, change,

or notify method, the Subfield field is set to the identifier of that type of

subfield. In this case, the Field_ID field specifies the field that was possibly

changed, thus causing this notification to be generated.

v If the Subfield field specifies the notify subfield, the field was changed and a

notification method was triggered.

v If the executing method was a named method, the Subfield field is set to 1 for

the value subfield.

v If the executing method was an object-independent method, the Subfield field is

set to zero.

The User_appl_ID that is returned identifies the user that caused the notification to

be triggered.

The Notification queue field contains the same notification queue name that was

specified in the original subscription.

The User_word field might contain the same user information that was specified in

the original subscription, but the notification method actually determines the value

returned in this field.

The Method_name field specifies the name of the notifying method.

The User_area string contains a maximum of 32767 bytes of data supplied by the

notifying method.

EKG_QueryNotifyQueue

Chapter 14. Application Programming Reference 421

EKG_QueryObjectName — Query Object Name

Purpose

This function returns the object name of an object when you supply the object ID.

This function can be used by object-specific methods only. The object-specific

method can use this function to get the object name of any object, not just the

object with which the method is associated.

Function Block Format

 Table 149. Function Block for the EKG_QueryObjectName Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 8 ObjectID In Object_ID

 Table 150. Response Block for the EKG_QueryObjectName Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 67 ShortName Out Class_name

075 1 — — Reserved

076 — ObjectName Out Object_name

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 151. Example Names for the EKG_QueryObjectName Function

Example Name

PL/I function block EKG12011

PL/I response block EKG22011

PL/I usage coding EKG52011

C function block EKG32011

C response block EKG42011

C usage coding EKG62011

Summary

 Table 152. Summary of the EKG_QueryObjectName Function

Function ID 2011

Type Method API Service

User API No

Object-specific method Yes

Object-independent method No

Initialization method No

Methods triggered No

EKG_QueryObjectName

422 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 152. Summary of the EKG_QueryObjectName Function (continued)

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

Object-specific methods have access to the ObjectIDs of other objects through link

fields. This function enables the object-specific method to associate the object name

with an object ID. The EKG_MessageTriggeredAction function enables the

object-specific method to then take some action on another object.

This function does not trigger the query method on the MyName field if one is

present.

EKG_QueryResponseBlockOverflow — Query for Response

Block Overflow

Purpose

This function queries the response block overflow buffer. The overflow buffer

contains excess output from a user application function that previously caused a

response block overflow.

Function Block Format

 Table 153. Function Block for the EKG_QueryResponseBlockOverflow Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Anonymous(4) — Reserved

008 8 TransID In Correlation_ID

 Table 154. Response Block for the EKG_QueryResponseBlockOverflow Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 — Anonymous Out Data

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 155. Example Names for the EKG_QueryResponseBlockOverflow Function

Example Name

PL/I function block EKG11510

PL/I response block EKG21510

PL/I usage coding EKG51510

C function block EKG31510

C response block EKG41510

EKG_QueryObjectName

Chapter 14. Application Programming Reference 423

Table 155. Example Names for the EKG_QueryResponseBlockOverflow Function (continued)

Example Name

C usage coding EKG61510

Summary

 Table 156. Summary of the EKG_QueryResponseBlockOverflow Function

Function ID 1510

Type Query

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

The Data field in the response block contains the continuation of the data in the

response block that was returned by the original function. For data types that have

length fields or headers, the length field or header is usually stored in the original

response block.

RODM provides an overflow buffer for functions called from user application

programs only. For query methods that return a value to a user API query request,

all data output to the response block by the method is returned to the caller. If the

amount of data exceeds the size of the user-supplied response block, RODM places

the excess data in the response block overflow buffer.

For all other methods and for query methods that are triggered by a method API

query request, all data output to the response block by the method might not be

returned to the caller. If the amount of data exceeds the size of the

method-supplied response block, RODM truncates the data to the size of the

response block and discards the excess.

If RODM places data in the overflow buffer, you must use the

EKG_QueryResponseBlockOverflow function to retrieve the contents of the buffer

before RODM accepts any other function requests using the specified access block.

You can make only one call for the overflow buffer to retrieve the overflow data. If

the Response_block_length specified is less than the amount of data in the buffer,

RODM fills the response block based on the specified size and discards any

remaining data.

Response block overflow buffers maintained by RODM are identified by

Transaction_IDs. Specify the Transaction_ID value returned in the transaction

information block of the function that caused the overflow as the Correlation_ID

parameter for this function request.

EKG_QueryResponseBlockOverflow

424 Resource Object Data Manager and GMFHS Programmer’s Guide

If you want to discard the data in the overflow buffer without using it, set

Response_block_length to 0 when you call the EKG_QueryResponseBlockOverflow

function.

See “Response Block” on page 314 for additional information about response block

overflow.

EKG_QuerySubfield — Query a Subfield

Purpose

This function queries the value of a subfield of a field on an object or a class.

Function Block Format

 Table 157. Function Block for EKG_QuerySubfield Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 Smallint In Subfield

014 2 Anonymous(2) — Reserved

016 4 — — Not used

 Table 158. Response Block for the EKG_QuerySubfield Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 2 Smallint Out Data_type

010 — Anonymous Out Data

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 159. Example Names for the EKG_QuerySubfield Function

Example Name

PL/I function block EKG11502

PL/I response block EKG21502

PL/I usage coding EKG51502

C function block EKG31502

C response block EKG41502

C usage coding EKG61502

Summary

 Table 160. Summary of the EKG_QuerySubfield Function

Function ID 1502

EKG_QueryResponseBlockOverflow

Chapter 14. Application Programming Reference 425

Table 160. Summary of the EKG_QuerySubfield Function (continued)

Type Query

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization 2

Usage

Querying a RODM managed subfield, prev_val or timestamp, for example, differs

from querying other subfields. RODM-managed subfield values always correspond

to their respective value subfield. If an object has a local value for the value

subfield and a managed subfield exists, that managed subfield has either of the

following two values:

v If the prev_val or timestamp existed at the time the field value was set, the

prev_val or timestamp subfields have a local value reflecting appropriate values.

v If these subfields were created subsequent to the last setting of the local field

value, these subfields contain a Null value.

When a RODM-managed subfield is queried:

v If the field has a local value and the managed subfield exists, its local value is

returned.

v If the field has no local value, a value for the managed subfield is determined

from the inherited field.

If the subfield queried returns data of type CharVar, the data string is immediately

followed by a null terminating byte of X'00'. If the subfield queried returns data of

type GraphicVar, the data string is immediately followed by a null terminating

double-byte of X'0000'.

Notification subfield values are never inherited. The EKG_QuerySubfield function,

when triggered against a notification subfield, returns a value only if the subfield

is locally defined. Subfields with data types ClassLinkList, ObjectLink, and

ObjectLinkList are never inherited. The EKG_QuerySubfield function, when

triggered against a value, prev_val, or timestamp subfield, returns a value only if

the subfield is locally defined. Otherwise the query returns the null value.

After a successful query, RODM returns a reason code that specifies whether the

returned value is a local value or an inherited value.

EKG_ResponseBlock — Output to Response Block

Purpose

This function writes data to the current response block. The data is of the

SelfDefining type.

EKG_QuerySubfield

426 Resource Object Data Manager and GMFHS Programmer’s Guide

Function Block Format

 Table 161. Function Block for the EKG_ResponseBlock Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 SelfDefiningDataPtr In Data_to_be_returned

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 162. Example Names for the EKG_ResponseBlock Function

Example Name

PL/I function block EKG12004

PL/I response block None

PL/I usage coding EKG52004

C function block EKG32004

C response block None

C usage coding EKG62004

Summary

 Table 163. Summary of the EKG_ResponseBlock Function

Function ID 2004

Type Method API Service

User API No

Object-specific method Query and named only

Object-independent method Yes

Initialization method No

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

Each time an object-independent or named method runs this function, a new

SelfDefining data string is appended to the current response block. Each time a

query method runs this function, a new SelfDefining data string overwrites the

current response block.

If the size of the data pointed to by Data_to_be_returned is larger than the size of

the current response block, RODM truncates the data to the size of the response

block and issues a warning return code. This function does not write to the

response block overflow buffer.

The EKG_ResponseBlock function writes data to the current response block. For

this function, the current response block is the response block of the method that

EKG_ResponseBlock

Chapter 14. Application Programming Reference 427

issued this function. Because methods can call other methods, this might not be the

same as the function block of the method that was first run.

When this function is used by a query method, the following actions are taken by

RODM:

v RODM uses the length field from the self-defining string to determine response

block storage requirements and removes that field from the data. This means

that the application sees the exact same format of data in the response block

regardless of whether the data was provided directly by RODM or by a method

through the use of this function.

v The value returned to the user through this self-defining string cannot be a null

string (that is, the length of the self-defining string must be greater than 2). If

the self-defining string is not formatted properly, RODM does not modify the

response block.

EKG_RevertToInherited — Revert to Inherited Value

Purpose

This function deletes the locally defined value of a field or subfield of an object or

class. This causes the field or subfield to inherit the value defined on its parent

class.

Function Block Format

 Table 164. Function Block for the EKG_RevertToInherited Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 Smallint In Subfield

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 165. Example Names for the EKG_RevertToInherited Function

Example Name

PL/I function block EKG11411

PL/I response block None

PL/I usage coding EKG51411

C function block EKG31411

C response block None

C usage coding EKG61411

Summary

 Table 166. Summary of the EKG_RevertToInherited Function

Function ID 1411

Type Action

EKG_ResponseBlock

428 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 166. Summary of the EKG_RevertToInherited Function (continued)

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 3

Usage

Fields and subfields which are locally created on a class are not inherited from a

parent class. Because these fields and subfields are not inherited, there is no

inherited value for them to revert to. RODM issues a warning return code if the

target of this function is locally created.

You cannot use the EKG_RevertToInherited function with any of the following

fields or subfields:

v System-defined fields

v Fields of data type ObjectLink or ObjectLinkList

v Notify subfield

v Prev_val subfield

v Timestamp subfield

v System fields defined as read-only under the following system classes:

– EKG_System class

– EKG_User class

– EKG_Method class

– EKG_NotificationQueue class

If the prev_val or timestamp subfields are defined and the value subfield is the

target of the EKG_RevertToInherited function, the prev_val and timestamp

subfields also revert to inherited values. See “RODM Subfields” on page 213 for

more information about inheritance of the prev_val and timestamp subfields.

Specify the Subfield parameter as 0 to cause all subfields of the field except the

notify subfield to revert to their inherited values. You cannot specify the Subfield

parameter as 4 (notify), 5 (prev_val), or 6 (timestamp).

When reverting to inherited values, the subfields of the same field can inherit

values from different levels of parent classes. For example, the value of the value

subfield can be inherited from the immediate parent class, and the value of the

query subfield can be inherited from the parent class of the parent class.

EKG_SendNotification — Send a Notification

Purpose

This function sends a notification block to a specified notification queue when the

value of a field within an object or class changes.

EKG_RevertToInherited

Chapter 14. Application Programming Reference 429

Function Block Format

 Table 167. Function Block for the EKG_SendNotification Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 8 ApplicationID In User_appl_ID

012 8 SubscribeID In Notification_queue

020 8 Anonymous(8) In User_word

028 4 SelfDefiningDataPtr In Method_output_message

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 168. Example Names for the EKG_SendNotification Function

Example Name

PL/I function block EKG12005

PL/I response block None

PL/I usage coding EKG52005

C function block EKG32005

C response block None

C usage coding EKG62005

Summary

 Table 169. Summary of the EKG_SendNotification Function

Function ID 2005

Type Method API Service

User API No

Object-specific method Yes

Object-independent method Yes

Initialization method No

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

This function creates a notification block and places the notification block in the

specified Notification_queue for the specified User_appl_ID. If the specified

Notification_queue is empty, RODM posts the user’s ECB associated with this

queue.

For more information about notification, see “EKG_AddNotifySubscription — Add

Notification Subscription” on page 373, “EKG_DeleteNotifySubscription — Delete

Notification Subscription” on page 392, and “EKG_QueryNotifyQueue — Query

EKG_SendNotification

430 Resource Object Data Manager and GMFHS Programmer’s Guide

Notification Queue” on page 419. If the posting of the user’s ECB for the

notification queue fails, RODM purges all notification queues and subscriptions

based on the value of the EKG_StopMode field in the EKG_User_Class object. See

“EKG_User Class” on page 201 for the possible values of EKG_StopMode.

EKG_SetReturnCode — Set Return and Reason Codes

Purpose

This function sets the return code and reason code that a method returns to the

caller of the method.

Function Block Format

 Table 170. Function Block for the EKG_SetReturnCode Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Integer In Value_for_return_code

008 4 Integer In Value_for_reason_code

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 171. Example Names for the EKG_SetReturnCode Function

Example Name

PL/I function block EKG12006

PL/I response block None

PL/I usage coding EKG52006

C function block EKG32006

C response block None

C usage coding EKG62006

Summary

 Table 172. Summary of the EKG_SetReturnCode Function

Function ID 2006

Type Method API Service

User API No

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

EKG_SendNotification

Chapter 14. Application Programming Reference 431

Usage

The EKG_SetReturnCode function changes the return code of the caller to the

value of the Value_for_return_code parameter if he value of Value_for_return_code

is greater than the previous value of the return code. This function sets the value

of the reason code of the caller to the value of the Value_for_reason_code

parameter if the return code was changed.

The value of Value_for_return_code can be 0, 4, 8, or 12. The value of

Value_for_reason_code can be from 0 to 65535. If you write methods that issue

reason codes, use reason codes in the range 49152-65535.

Use the following guidelines for any return codes issued by methods that you

write:

Return Code

Meaning

0 If reason code is also 0, the operation was successful and there are no

complications. If the reason code is not 0, the operation was successful, but

there are messages which might be logged.

4 A problem was encountered, retry the request or function later. The reason

code might supply more information.

8 The request or function failed because of a logic error. Do not retry the

request or function. The reason code might supply more information.

12 The request or function failed because RODM is not available. Do not retry

the request or function. The reason code might supply more information.

If the method that calls EKG_SetReturnCode is triggered from within a transaction

that is initiated by a function that is contained in the list of an

EKG_ExecuteFunctionList user API call, the return code and the reason code are

propagated to the individual return code and reason code fields for that function

in the list. In addition, if this return code is the highest return code of all functions

in the list, this return code and reason code become the EKG_ExecuteFunctionList

user API transaction return code and reason code set in the transaction information

block.

When the EKG_SetReturnCode function is called and the specified return code is

greater than or equal to EKG_MLogLevel in the EKG_User class object, RODM

writes a type-3 log record for object-specific methods and a type-4 log record for

object-independent methods. If this function is requested by a method running

asynchronously, RODM compares the return code to the MLOG_LEVEL

customization parameter and then writes the log record as described above. When

a log record is written from a method that is running asynchronously, RODM sets

the EKG_LastAsyncError field to the return code and triggers notification methods

for all applications that are subscribed to this field.

For more information about how RODM determines return and reason codes, see

“Error Conditions in Transactions” on page 317.

Method writers must be aware of the implications of issuing return and reason

codes from methods. See “Error Conditions in Transactions” on page 317 for

information about how an application might interpret reason and return codes that

are returned by methods.

EKG_SetReturnCode

432 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_Stop — Stop RODM

Purpose

This function stops the RODM program that you are connected to. You can

optionally specify that RODM perform a checkpoint operation before stopping.

Function Block Format

 Table 173. Function Block for the EKG_Stop Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 2 Smallint In Stop_type

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 174. Example Names for the EKG_Stop Function

Example Name

PL/I function block EKG11202

PL/I response block None

PL/I usage coding EKG51202

C function block EKG31202

C response block None

C usage coding EKG61202

Summary

 Table 175. Summary of the EKG_Stop Function

Function ID 1202

Type Control

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered Notification methods installed on the

EKG_LastCheckpointID field are triggered

only if the checkpoint is successful.

Notification methods installed on the

EKG_LastCheckpointResult field are

triggered whenever a checkpoint is

requested. Notification methods cannot be

installed on any other fields.

Triggered by the

EKG_MessageTriggeredAction function

No

Authorization 6

EKG_Stop

Chapter 14. Application Programming Reference 433

Usage

After RODM is stopped by the use of this function, it can be restarted only with an

operator command.

EKG_SwapField — Swap a Field

Purpose

This function compares the value of the target field with a specified test value. If

they are equal, this function changes the value of the target field to the specified

new value.

Function Block Format

 Table 176. Function Block for the EKG_SwapField Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 — — Not used

014 2 Smallint In Data_type

016 4 Integer In New_char_data_length

020 4 Pointer In New_data_ptr

024 4 Integer In Old_char_data_length

028 4 Pointer In Old_data_ptr

032 4 SelfDefiningDataPtr In Method_parms

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 177. Example Names for the EKG_SwapField Function

Example Name

PL/I function block EKG11402

PL/I response block None

PL/I usage coding EKG51402

C function block EKG31402

C response block None

C usage coding EKG61402

Summary

 Table 178. Summary of the EKG_SwapField Function

Function ID 1402

Type Action

User API Yes

Object-specific method No

EKG_Stop

434 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 178. Summary of the EKG_SwapField Function (continued)

Object-independent method No

Initialization method No

Methods triggered Notification and Change methods triggered

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 3

Usage

RODM compares the value of the field that is the target of this function with the

test value pointed to by Old_data_ptr. If the values are equal, RODM changes the

value of the target field to the new value pointed to by New_data_ptr. If the values

are not equal, RODM does not change the value of the field and issues return code

8 with reason code 39.

The data type of the new data must be the same as the data type of the target

field. The EKG_SwapField function cannot be used for fields with a data type of

ObjectID, ObjectIDList, ObjectLink, ObjectLinkList, ClassID, ClassIDList, or

ClassLinkList.

If New_data_ptr is null, RODM sets the field to the null value for its data type.

If a change method is defined for the target field, RODM triggers the change

method if the value pointed to by Old_data_ptr is equal to the value of the target

field. If RODM triggers a change method, RODM passes the value of

New_data_ptr to the change method instead of changing the value of the field.

If notification methods are defined for the target field, RODM triggers the

notification methods when the target field is successfully changed by this function

or by the change method for the target field. If the target field is on an object,

RODM also triggers the notification methods defined for the same field in the

object’s parent class.

The EKG_SwapField function issues return code 0 if it successfully updates the

value of the target field. The reason code indicates the details of the change:

Reason code

Explanation

0 A local value existed and was changed.

26 The existing value is the same as the new value.

142 An inherited value existed and was replaced by a local value.

If both 0 (zero) and 26 or both 26 and 142 can be issued, RODM always issues 26.

EKG_SwapSubfield — Swap a Subfield

Purpose

This function compares the value of the target subfield with a specified test value.

If they are equal, this function changes the value of the target subfield to the

specified new value.

EKG_SwapField

Chapter 14. Application Programming Reference 435

Function Block Format

 Table 179. Function Block for the EKG_SwapSubfield Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 2 Smallint In Subfield

014 2 Smallint In Data_type

016 4 Integer In New_char_data_length

020 4 Pointer In New_data_ptr

024 4 Integer In Old_char_data_length

028 4 Pointer In Old_data_ptr

032 4 — — Not used

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 180. Example Names for the EKG_SwapSubfield Function

Example Name

PL/I function block EKG11404

PL/I response block None

PL/I usage coding EKG51404

C function block EKG31404

C response block None

C usage coding EKG61404

Summary

 Table 181. Summary of the EKG_SwapSubfield Function

Function ID 1404

Type Action

User API Yes

Object-specific method No

Object-independent method No

Initialization method No

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 3

EKG_SwapSubfield

436 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage

RODM compares the value of the subfield that is the target of this function with

the test value pointed to by Old_data_ptr. If the values are equal, RODM changes

the value of the target subfield to the new value pointed to by New_data_ptr. If

the values are not equal, RODM does not change the value of the subfield and

issues return code 8 with reason code 39.

The data type of the new data must be the same as the data type of the existing

subfield. The EKG_SwapSubfield function cannot be used for subfields with a data

type of ObjectID, ObjectIDList, ObjectLink, ObjectLinkList, ClassID, ClassIDList, or

ClassLinkList.

If New_data_ptr is null, RODM sets the subfield to the null value for its data type.

RODM does not trigger any methods or update the prev_val and timestamp

subfields when the value of a subfield is changed by this function.

The EKG_SwapSubfield function issues return code 0 (zero) if it successfully

updates the value of the target subfield. The reason code indicates the details of

the change:

Reason code

Explanation

0 A local value existed and was changed.

26 The existing value is the same as the new value.

142 An inherited value existed and was replaced by a local value.

If both 0 (zero) and 26 or both 26 and 142 can be issued, RODM always issues 26.

EKG_TriggerNamedMethod — Trigger a Named Method

Purpose

This function triggers a named method within a specified object or class.

Function Block Format

 Table 182. Function Block for the EKG_TriggerNamedMethod Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr

008 4 Pointer In Field_access_info_ptr

012 4 SelfDefiningDataPtr In Method_parms

 Table 183. Response Block for the EKG_TriggerNamedMethod Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 — Anonymous Out Concat_of_strings

EKG_SwapSubfield

Chapter 14. Application Programming Reference 437

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 184. Example Names for the EKG_TriggerNamedMethod Function

Example Name

PL/I function block EKG11415

PL/I response block EKG21415

PL/I usage coding EKG51415

C function block EKG31415

C response block EKG41415

C usage coding EKG61415

Summary

 Table 185. Summary of the EKG_TriggerNamedMethod Function

Function ID 1415

Type Action

User API Yes

Object-specific method Yes

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 5 (trigger EKG_Refresh named method) 3

(trigger other named method)

Usage

The Field_access_info_ptr must point to a field of type MethodSpec. The

method_parameter_list of this MethodSpec field becomes the long-lived parameters

of the named method. The SelfDefining string pointed to by the Method_Parms

parameter becomes the short-lived parameters sent to the named method. This

SelfDefining string has a maximum length of 254 bytes.

A named method can act only on fields in the object or class in which the named

method is defined.

If a named method causes an overflow in the response block, the named method

itself will receive a return code and reason code for the overflow. However, the

method might not pass this return code and reason code back to the program that

triggered the method. Always compare the Response_block_length parameter with

the Response_block_used parameter returned in the response block if a named

method is triggered. If the value of the Response_block_used parameter is larger

than the value of the Response_block_length parameter, an overflow occurred.

EKG_TriggerNamedMethod

438 Resource Object Data Manager and GMFHS Programmer’s Guide

EKG_TriggerOIMethod — Trigger an Object-Independent

Method

Purpose

This function triggers an object-independent method.

Function Block Format

 Table 186. Function Block for the EKG_TriggerOIMethod Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 8 MethodName In Method_name

012 4 SelfDefiningDataPtr In Method_parms

 Table 187. Response Block for the EKG_TriggerOIMethod Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 — Anonymous Out Concat_of_strings

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 188. Example Names for the EKG_TriggerOIMethod Function

Example Name

PL/I function block EKG11416

PL/I response block EKG21416

PL/I usage coding EKG51416

C function block EKG31416

C response block EKG41416

C usage coding EKG61416

Summary

 Table 189. Summary of the EKG_TriggerOIMethod Function

Function ID 1416

Type Action

User API Yes

Object-specific method No

Object-independent method Yes

Initialization method Yes

Methods triggered No

Triggered by the

EKG_MessageTriggeredAction function

Yes

EKG_TriggerOIMethod

Chapter 14. Application Programming Reference 439

Table 189. Summary of the EKG_TriggerOIMethod Function (continued)

Authorization 3

Usage

The field pointed to by Method_parms has a maximum length of 32767 bytes.

An object-independent method must be installed by creating a method object

under the EKG_Method class before it can be triggered by this function.

If an object-independent method causes an overflow in the response block, the

object-independent method itself will receive a return code and reason code for the

overflow. However, the method might not pass this return code and reason code

back to the program that triggered the method. Always compare the

Response_block_length parameter with the Response_block_used parameter

returned in the response block if an object-independent method is triggered. If the

value of the Response_block_used parameter is larger than the value of the

Response_block_length parameter, an overflow occurred.

EKG_UnlinkNoTrigger, EKG_UnlinkTrigger — Unlink Two

Objects

Purpose

These functions delete a link between two objects. The EKG_UnlinkTrigger

function triggers change methods and notification methods; the

EKG_UnlinkNoTrigger function does not.

Function Block Format

 Table 190. Function Block for the EKG_UnlinkNoTrigger Function and the EKG_UnlinkTrigger

Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

004 4 Pointer In Entity_access_info_ptr_1

008 4 Pointer In Field_access_info_ptr_1

012 4 Pointer In Entity_access_info_ptr_2

016 4 Pointer In Field_access_info_ptr_2

000 4 Pointer In Method_parms¹

:

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 191. Example Names for the EKG_UnlinkNoTrigger Function and the EKG_Unlink

Trigger Function

Example Name

PL/I function block (EKG_UnlinkTrigger) EKG11407

PL/I function block (EKG_UnlinkNoTrigger) EKG11408

EKG_TriggerOIMethod

440 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 191. Example Names for the EKG_UnlinkNoTrigger Function and the EKG_Unlink

Trigger Function (continued)

Example Name

PL/I response block None

PL/I usage coding (EKG_UnlinkTrigger) EKG51407

PL/I usage coding (EKG_UnlinkTrigger) EKG51407

PL/I usage coding (EKG_UnlinkNoTrigger) EKG51408

C function block (EKG_UnlinkTrigger) EKG31407

C function block (EKG_UnlinkNoTrigger) EKG31408

C response block None

C usage coding (EKG_UnlinkTrigger) EKG61407

C usage coding (EKG_UnlinkNoTrigger) EKG61408

Summary

 Table 192. Summary of the EKG_UnlinkNoTrigger Function and the EKG_UnlinkTrigger

Function

Function ID EKG_UnlinkNoTrigger

EKG_UnlinkTrigger

 1408 1407

Type Action

User API Yes

Object-specific method No

Object-independent method Yes

Initialization method Yes

Methods triggered EKG_UnlinkTrigger

EKG_UnlinkNoTrigger

 Change methods and notification methods

No

Triggered by the

EKG_MessageTriggeredAction function

Yes

Authorization 3

Usage

No assumption can be made regarding the order of links within a field of type

ObjectLinkList.

The fields being unlinked must be of type ObjectLink or ObjectLinkList. The fields

must have been linked using the EKG_LinkNoTrigger function or the

EKG_LinkTrigger function. An ObjectLink field has only one link. An

ObjectLinkList field can have more than one link for a field.

Do not use EKG_UnlinkNoTrigger with GMFHS resources.

When the EKG_UnlinkTrigger function is issued, the unlink operation is performed

before the notification methods are triggered. If there are change methods defined

on one or both of the fields to be unlinked, the unlink proceeds after the change

methods, but only if one of the following is true:

v Both change methods explicitly set a zero return code with EKG_SetReturnCode.

v Neither change method sets a return code. In this case, RODM assumes a zero

return code and the unlink proceeds.

EKG_UnlinkNoTrigger, EKG_UnlinkTrigger

Chapter 14. Application Programming Reference 441

If the unlink operation does not proceed, the notification methods are not

triggered. If the fields are successfully unlinked, the notification methods are

triggered in the following order:

1. Notification methods for the field specified by Field_access_info_ptr_1

2. Notification methods for the field specified by Field_access_info_ptr_2

3. Notification methods for the parent class of the first field

4. Notification methods for the parent class of the second field

EKG_UnlockAll — Unlock All Held Entities

Purpose

This function was previously used to free all locks held by a level-1

object-independent method. RODM now controls locking automatically, and this

function is no longer necessary. This function remains available for compatibility

with existing applications. No changes to existing applications that use this

function are required.

Function Block Format

 Table 193. Function Block for the EKG_UnlockAll Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 194. Example Names for the EKG_UnlockAll Function

Example Name

PL/I function block EKG12003

PL/I response block None

PL/I usage coding EKG52003

C function block EKG32003

C response block None

C usage coding EKG62003

Summary

 Table 195. Summary of the EKG_UnlockAll Function

Function ID 2003

Type Method API Service

User API No

Object-specific method No

Object-independent method Yes

Initialization method Yes

Methods triggered No

EKG_UnlinkNoTrigger, EKG_UnlinkTrigger

442 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 195. Summary of the EKG_UnlockAll Function (continued)

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

EKG_WhereAmI — Where Am I

Purpose

This function returns the class, object, field, and subfield to which the method

name is assigned and the context in which the object-specific method is being run.

Function Block Format

 Table 196. Function Block for the EKG_WhereAmI Function

Offset Length Type Use Parameter Name

000 4 Integer In Function_ID

 Table 197. Response Block for the EKG_WhereAmI Function

Offset Length Type Use Parameter Name

000 4 Integer In Response_block_length

004 4 Integer Out Response_block_used

008 4 ClassID Out Class_ID

012 8 ObjectID Out Object_ID

020 4 FieldID Out Field_ID

024 2 Smallint Out Subfield

026 2 Anonymous(2) — Reserved

028 8 ObjectID Out Requesting_method_ID

See “Function Parameter Descriptions” on page 444 for more information about the

parameters listed. See “Abstract Data Type Reference” on page 223 for more

information about the abstract data types listed.

Examples

 Table 198. Example Names for the EKG_WhereAmI Function

Example Name

PL/I function block EKG12007

PL/I response block EKG22007

PL/I usage coding EKG52007

C function block EKG32007

C response block EKG42007

C usage coding EKG62007

Summary

 Table 199. Summary of the EKG_WhereAmI Function

Function ID 2007

EKG_UnlockAll

Chapter 14. Application Programming Reference 443

Table 199. Summary of the EKG_WhereAmI Function (continued)

Type Method API Service

User API No

Object-specific method Yes

Object-independent method No

Initialization method No

Methods triggered No

Triggered by EKG_MessageTriggeredAction

function

No

Authorization None

Usage

The Subfield parameter indicates the type of method. The Subfield parameter is set

to 1 for named methods.

The Object_ID parameter is set to null if the method is defined on a class.

Function Parameter Descriptions

Bit_map

A bit map of flags describing a field. Bit_map is made up of the

Private_public_flag and Local_inherited_flag.

Change_status

The Change_status parameter is used to inform a method whether or not the

value of a field has changed.

lass_access_info_ptr

The Class_access_info_ptr is a pointer to an entity access information block

where only the class information is used by this function call. The object

information in that access block must be set to null values if the naming_count

information is set to zero.

Class_ID

The class identifier.

Class_name

The name of the class this function acts on.

Concat_of_strings

A response data string of the Anonymous type. The string is a concatenation of

zero or more SelfDefining data strings.

Correlation_ID

The unique ID of a transaction assigned by RODM.

Data

The data returned by the RODM function. This data is of type Data_type. For

the Data parameter of an overflow block, the data type is specified in the

original response block for the function that caused the overflow.

Data_to_be_returned

The Data_to_be_returned parameter must be set by the caller to point at

whatever is to be concatenated into the data area of the response block.

Data_type

The RODM abstract data type of the specified parameter.

EKG_WhereAmI

444 Resource Object Data Manager and GMFHS Programmer’s Guide

Entity_access_info_ptr

Pointer to the entity access information block that specifies the entity this

function acts on.

Entity_access_info_ptr_1

The pointer to the entity access information block that specifies the first entity

this function acts on.

Entity_access_info_ptr_2

The pointer to the entity access information block that specifies the second

entity this function acts on.

Field_access_info_ptr

The pointer to the field access information block that specifies the field of the

object this function acts on.

Field_access_info_ptr_1

The pointer to the field access information block that specifies the field of the

first object this function acts on.

Field_access_info_ptr_2

The pointer to the field access information block that specifies the field of the

second object this function acts on.

Field_ID

The field identifier.

Field_info_array

For EKG_QueryEntityStructure, an array of parameters describing the fields

that make up an object or a class. For EKG_QueryMultipleSubfields, an array

of fields whose value subfields will be queried.

Field_info_count

The number of fields in Field_info_array.

Field_info_element_size

The size of each element of Field_info_array.

Field_name

The name of the field. Variable length field with maximum length 67 bytes.

Field_type_flag

A Field_type_flag specifies whether the new field is to be public, private, or

public-indexed. Valid values are:

Value Meaning

1 Public

2 Private

3 Public-indexed

Function_block_copy

A copy of the queried function block.The Function_block_copy parameter

contains a copy of the function block for the function that triggered the

executing method.

Function_block_origin

The Function_block_origin parameter specifies whether the originating function

was called by a user application or by a method. Valid values are:

Value Meaning

1 User application

2 Method

Function Parameter Descriptions

Chapter 14. Application Programming Reference 445

Function_block_ptr

The pointer to the function block for a function to be run. See the description

of the specific function for the format of the function block.

Function_ID

The function ID that identifies this function to RODM.

Function_info_array

The array of functions to be run.

Indexed_data_length

Length of the indexed data that RODM is attempting to locate.

Indexed_data_ptr

Pointer to the indexed data that RODM is attempting to locate. Indexed data is

of type CharVar or IndexList. Indexed_data_ptr must point to the first byte of

the character data of a CharVar data value or an individual IndexList data

item. The length of the character string must be specified in

Indexed_data_length.

Inheritance_state

The value of this field is always 1.

Last_checkpoint_ID

The transaction ID of the last checkpoint request. The Last_checkpoint_ID is set

to zero when RODM is cold-started.

Local_copy_map

The Local_copy_map is a bit map defined as follows (bits are numbered 1–32

from left to right). RODM sets a Local_copy_map bit to 1 in an output block to

indicate that the corresponding subfield contains locally-defined data.

Bit Subfield

1 Value

2 Query

3 Change

4 Notify

5 Prev_val

6 Timestamp

7–32 Reserved

Local_inherited_flag

A flag that specifies whether a field is locally defined or is inherited from a

parent class. Valid values are:

Value Meaning

0 Locally defined

1 Inherited

Log_message

The Log_message parameter points to the character string to be written to the

RODM log. This is an AnonymousVar string of a maximum 32709 bytes.

Long_lived_parm

This is the pointer to long-lived-parameters passed to the notification methods.

The parameters identified by this pointer have a maximum length of 254 bytes.

Message_CCSID

The Message_CCSID value identifies the code page and character set definition

used for the string pointed to by Log_message. This value can be used by

applications which process the RODM log data set.

Function Parameter Descriptions

446 Resource Object Data Manager and GMFHS Programmer’s Guide

Method_name

The name of the method that this function triggers or the name of the method

that put this notification block on the notification queue.

Method_output_message

A pointer to the data that is placed on the notification queue by the calling

method and is passed to the user application. The maximum length of the

message is 32767 bytes.

Method_parms

The pointer to the short-lived parameters passed to a method. The short-lived

parameters are passed to the notification method associated with the object the

function acts on. For the EKG_SwapField function, the short-lived parameters

are also passed to the change method. For the EKG_QueryField function, the

short-lived parameters are passed to the query method instead of the

notification method. For the EKG_TriggerNamedMethod and

EKG_TriggerOIMethod functions, the short-lived parameters are passed to the

method being triggered.

New_char_data_length

The length of the new data for data types CharVar and GraphicVar. This

parameter is ignored for other data types. The data pointed to must be the first

byte of the character data and the length must be specified in the

New_Char_data_length parameter.

New_data_ptr

The pointer to the new data that is to replace the value of the target field.

Notification_queue

The Notification_queue specified by the function. See “RODM Notification

Process” on page 318.

Notification_queue_count

The number of notification blocks on the notification_queue before this

function acts on the queue.

Notify_method

The object ID of the notification method that is associated with this notification

subscription.

Number_of_fields

A value that specifies the number of fields to be changed.

Number_of_functions

A value that specifies the number of functions to be run. You specify one

element of Function_information_array for each function.

Number_of_subfields

A value that specifies the number of value subfields to be queried. You specify

one element of Field_info_array for each query.

Object_array

The array of objects this function acts on.

Object_ID

The object identifier of the object this function acts on, or one element of

Object_array of objects this function acts on.

Object_list_length

The number of objects in the array.

Object_name

The name of the object this function acts on.

Function Parameter Descriptions

Chapter 14. Application Programming Reference 447

Old_char_data_length

The length of the old data if the data type of the old data is CharVar or

GraphicVar. This parameter is ignored for other data types.

Old_data_ptr

The pointer to the old data.

Private_public_flag

The Private_public_flag specifies whether a field is private (not inherited by its

children) or public (inherited by its children). Valid values are:

Value Meaning

0 Public

1 Private

Parent_access_info_ptr

The Parent_access_info_ptr is the pointer to an entity access information block

where only the class information is used by this function call. The object

information in that access block must be set to null values if the Naming_count

information is set to zero.

Reason_code

The reason code from RODM.

Requesting_method_ID

The method Object_ID of the current method object.

Response_block_length

The length in bytes of the response block supplied by the method or

application using this function. This value must include 8 bytes for the

Response_block_length and Response_block_used parameters.

Response_block_reference

The pointer set by RODM to the address within the response of the first byte

of returned data for this function. This parameter is set to zero when no data is

returned. One common response block is shared by all operations originating

from a single user API call. These interactions include any that are specified in

an EKG_ExecuteFunctionList or EKG_QueryMultipleSubfields function call.

Response_block_type

The response_type_block specifies whether a notification block was generated

by a notification method or by an object-deletion subscription. Valid values are:

Value Meaning

1 Generated by a notification method

2 Generated when an object was deleted and an object-deletion

subscription existed for that object

Response_block_used

The length in bytes of the data returned by RODM. If the response block

supplied by the method or application is too small to hold the data that is to

be returned, the value of Response_block_used is set to the size that the

response block was in order to hold the data. This value is larger than the

value of Response_block_length and includes 8 bytes for the

Response_block_length and Response_block_used parameters. This parameter

is set to zero when no data is returned.

 If a transaction provides response block data and does not cause a response

block overflow, the Response_block_used parameter is less than or equal to the

Response_block_length parameter. If the transaction does cause a response

block overflow, the Response_block_used parameter is greater than the

Response_block_length parameter.

Function Parameter Descriptions

448 Resource Object Data Manager and GMFHS Programmer’s Guide

Response_data

The area in an EKG_ExecuteFunctionList response block that contains the data

returned by query functions. Use Response_block_reference pointers (see

above) in the function block to retrieve the data for individual functions. The

format is the same as that following the 8-byte header in the normal response

block for the function.

Return_code

The Return_code and Reason_code values indicate status of this particular

function request. The highest numeric value is duplicated in the

Transaction_info_block parameter for of the EKGUAPI call. If there is a tie for

the worst error, the first among the worst is reported.

Stop_ECB

The parameter used to notify users that the current version of RODM is

stopping in response to either an operator request or an API request. If a user

application calls EKGWAIT, this ECB must always be included in the list.

Stop_type

Specify Stop_type of 1 to stop RODM after it has quiesced and performed a

checkpoint operation. Specify Stop_type of 2 to stop RODM after it has

quiesced without performing a final checkpoint operation.

Subfield

Identifies the specific subfield for this function. Valid values for all functions

except EKG_WhereAmI are:

Value Subfield

0 All subfields except Notify (valid only for EKG_RevertToInherited

function)

1 Value

2 Query

3 Change

4 Notify

5 Prev_val

6 Timestamp

Valid values for the EKG_WhereAmI function are:

Value Subfield

1 Value (method must be named method)

2 Query

3 Change

4 Notify (notification method)

Subfield_map

The Subfield_map is a bit map defined as follows (bits are numbered 0–31

from left to right). Setting a bit to 1 specifies that the function acts on that

subfield. RODM sets a Subfield_map bit to 1 in an output block to indicate

that the corresponding subfield exists.

Bit Subfield

0 Value

1 Query

2 Change

3 Notify

4 Prev_val

5 Timestamp

6–31 Reserved (must be set to zero)

Function Parameter Descriptions

Chapter 14. Application Programming Reference 449

Subscription_info

Specifies the notification subscription this function acts on. Subscription_info is

defined as data type RecipientSpec and contains the User_appl_ID and

Notification_queue for the specified subscription.

User_appl_ID

If the User_appl_ID parameter in the function block is set to the null value

(blank) for this field, RODM will default to the User_appl_ID value defined in

the Access_block that starts this transaction. For a subscription notification, the

User_appl_ID parameter specifies the application which is being notified. If a

method initiated through the message interface specifies a null User_appl_ID,

the name supplied by RODM is that which was specified in the Access_block

which originally issued the message transaction.

 For an APF (authorized program facility) authorized program, the

User_password does not need to be specified. The User_appl_ID without the

User_password identifies the user to RODM and determines the user’s

authority level. For application programs that are not APF authorized, the

User_password is required. The User_appl_ID and the User_password are

combined to identify the user to RODM, and to determine the user’s authority

level using the EKG_Connect function.

User_password

For application programs that are not APF authorized, both the User_appl_ID

and the User_password are required to be specified in the RODM access block

to validate the user authority level and to connect to RODM. The validated

User_appl_ID is used by RODM to determine the specific level of access

authority granted to the user. This parameter is a maximum of 8 bytes with

shorter values left justified in the parameter and padded on the right with

blanks.

 In performing the validation of the User_appl_ID and User_password for

programs that are not APF authorized, RODM uses the RACROUTE interfaces

on z/OS systems. The user ID, password and access authorization level are

assumed to have been registered to the security manager supporting those

interfaces.

 If a User_appl_ID is specified, the User_password value must be valid for

programs that are not APF authorized. If the User_appl_ID parameter in the

Access_block is all blanks, both for programs that are APF authorized and for

programs that are not APF authorized, the User_password field is ignored. A

system authorization facility (SAF) product such as Resource Access Control

Facility (RACF), attempts to associate an authorized user ID with this function

call. If that user ID is not located, the connection request is rejected. If a

verified user ID is found, it is put into the User_appl_ID parameter of the

Access_block.

User_area

A data area containing the data supplied by the method that put the

notification block on the notification queue.

User_word

The User_word parameter is intended to be the information passed to the

notification method through the invocation parameters. The parameter is set by

the caller in the function block used by the EKG_AddNotifySubscription

function, saved with the subscription request in RODM, made available to a

notification method as a passed parameter, and is assumed to be passed to the

notification function unmodified when notification takes place. The notification

method determines the final value for User_word.

Function Parameter Descriptions

450 Resource Object Data Manager and GMFHS Programmer’s Guide

Value_for_reason_code

The reason code passed to the caller of the method.

Value_for_return_code

The return code passed to the caller of the method.

RODM Return and Reason Codes

For each function call you make to RODM, the RODM program issues a return

code and reason code. The reason code gives you more specific information about

the possible cause of a problem.

The following four sections describe the possible reason codes for each of the four

return codes. The tables provide explanations and suggested corrective actions.

“List of Reason Codes for Each Function” on page 469 and “List of Functions for

Each Reason Code” on page 471 provide a cross-reference so that you can

determine the codes that are issued for any particular function call you use. “List

of Reason Codes from NetView-Supplied Methods” on page 478 lists the reason

codes returned by the NetView-supplied methods.

Reason codes can fall into one of three ranges based on which program or method

issued the reason code:

Range Issued By

0–32767 RODM application programming interfaces

32768–49151 NetView-supplied methods

49152–65535 Customer-written methods

If you write methods that issue reason codes, use reason codes in the range

49152–65535.

Reason codes in the range 32781–32996 are issued by the NetView-supplied

methods EKGCTIM, EKGMIMV, EKGNEQL, EKGNLST, EKGNOTF, EKGNTHD,

and FLBTRNMM. These reason codes are issued when the method receives an

error or warning from a RODM transaction. Subtract 32780 from the reason code

issued by the method to get the original value issued by RODM for the

transaction. You can then look up the original value in the following tables. The

methods issue the return code for the transaction without change.

Reason codes in the range 32810–32904 are issued by the EKGSPPI method when it

receives an error from the program-to-program interface module CNMNETV. The

reason code issued is 32809 plus the return code from CNMNETV. Subtract 32809

from the reason code issued by the EKGSPPI method. The result is the return code

from CNMNETV. Refer to the IBM Tivoli NetView for z/OS Application Programmer’s

Guide for the meaning of this return code.

Writers of methods must be aware of the implications of issuing return and reason

codes from methods. See “Error Conditions in Transactions” on page 317 for

information about how an application might interpret reason and return codes that

are returned by methods.

The IBM Tivoli NetView for z/OS Troubleshooting Guide contains additional

information about troubleshooting RODM problems, especially abend problems.

Function Parameter Descriptions

Chapter 14. Application Programming Reference 451

Reason Codes for Return Code 0

Table 200 describes the reason codes that are returned with return code 0.

 Table 200. Reason Codes for Return Code 0

Reason

Code Description Corrective Action

0 The system successfully performs the requested

function.

None

26 The new data value is the same as the old data

value. If a local copy did not previously exist for

the field, one is created.

None

48 Not used. None

142 The system performs the request successfully and

a local copy is created.

None

143 The system performs the request successfully and

the returned value is an inherited value.

None

167 Not used. None

180 The user object will not be deleted when the user

disconnects from RODM. The possible cause is

that links from the user object to the queue object

are not removed because the StopMode specifies

to keep the queue objects.

None

185 The Disconnect is successful. The user object is not

deleted from RODM because links to Notification

Queue objects still exist.

Try to connect and disconnect again.

32769 Compared data values do not match. Specify the value subfield for the data to be

compared.

Reason Codes for Return Code 4

Table 201 describes the reason codes that are returned with return code 4.

 Table 201. Reason Codes for Return Code 4

Reason

Code Description Corrective Action

1 The system rejects the request because RODM is

doing one of the following:

v Quiescing—waiting for all current transactions

to complete following a checkpoint request.

v Writing the master window and the translation

windows to the checkpoint data sets.

RODM rejects all new user API requests and

returns this reason code.

Retry the request after the checkpoint process is

completed.

2 The system rejects the request because RODM is

starting.

Retry the request after RODM is initialized

completely.

3 The system rejects the request because RODM is

stopping.

Restart the specified RODM or connect to another

existing RODM by updating the RODM_name

field in the RODM access block. Retry the request.

Reason Codes for Return Code 0

452 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 201. Reason Codes for Return Code 4 (continued)

Reason

Code Description Corrective Action

5 The system rejects the request because RODM has

been stopped with a checkpoint request. The

specified Sign_on_token is no longer valid.

If this reason code was a result of the

EKG_Connect function, retry the request after

restarting the specified RODM. If this reason code

was not result of a EKG_Connect function, connect

to another RODM by correcting the RODM_name

field in the access block to get a new

Sign_on_token. Retry the request with the new

Sign_on_token.

6 The system rejects the request because RODM has

been stopped without a checkpoint request. The

specified Sign_on_token is no longer valid.

If this reason code was a result of the

EKG_Connect function, retry the request after

restarting the specified RODM. If this reason code

was not result of a EKG_Connect function, connect

to another RODM by correcting the RODM_name

field in the access block to get a new

Sign_on_token. Retry the request with the new

Sign_on_token.

24 The system cannot trigger one or more methods in

the notification list. The original transaction itself

completed successfully. Possible causes are that the

notification method is recursive, or there are errors

in executing the method.

Make sure that all methods in the notification list

are valid.

27 The response block is not large enough. An

overflow block is created. An overflow block is not

created for query functions issued by a method.

Retrieve the data from the overflow block using

the query response block overflow function.

28 RODM log files are not available. Both the

primary and secondary log files can not be opened

or written successfully, or the LOGT command

was issued. The transaction failed.

Contact the system administrator.

29 The log record size is larger than the default

maximum of 32761 bytes. The record is truncated

to 32761 bytes.

Check the size of the Method_parms in the

function block or check the size of the log message

specified for the Output to Log (2008) function.

30 The Stop_ECB in the function block is null. This

user will not be notified when the specified

RODM is stopping.

None

34 The specified queue object is created but the link

with the user object cannot be created. The

required storage might not be available.

None

38 The operator stopped the checkpoint request by

direct response to a WTOR issued by RODM. This

reason code is contained in the

EKG_LastCheckpointResult field of the

EKG_System object and is not returned through

the method API or user API.

Contact operator.

40 The system does not change the field value

because the field already contains the primary

inheritance value.

None

41 The system rejects the request because the field is

locally created.

None

42 The specified method is a null module because it

has been deleted by an unsuccessful module

refresh. The transaction failed.

Refresh the method and retry the request. If not

successful, delete the method and reinstall it.

Reason Codes for Return Code 4

Chapter 14. Application Programming Reference 453

Table 201. Reason Codes for Return Code 4 (continued)

Reason

Code Description Corrective Action

44 There is no message in the specified notification

queue for the user.

None

46 The overflow block is cleaned without retrieving

because the response block provided by the user is

null.

None

47 Some of the overflow data is discarded because

the response block provided by the user is not

large enough.

None

48 Not used. None

49 Not used. None

50 The posting fails because the user has not

requested a WAIT on the specified ECB address,

or because the specified ECB address is not valid.

The queue objects or the subscriptions will be

deleted according to the StopMode of the user

object.

None

52 The system rejects the request because the

specified class does not exist or the parent class of

the specified object ID does not exist. RODM sets

the return code to 4 for query functions and to 8

for other functions.

Correct the class or parent class. Retry the request.

54 The system rejects the request because the

specified object does not exist. RODM sets the

return code to 4 for query functions and to 8 for

other functions.

Correct the object data. Retry the request.

56 The system rejects the request because the

specified field does not exist. RODM sets the

return code to 4 for query functions and to 8 for

other functions.

Correct the field data. Retry the request.

57 The system rejects the request because the

specified primary parent of the object is not a class

with object children. RODM sets the return code to

4 for query functions and to 8 for other functions.

Correct the primary parent class data. If the

primary parent class data is correct, verify the

class ID portion of the object ID. Retry the request.

62 The system rejects the request because the

specified subfield does not exist. RODM sets the

return code to 4 for query functions and to 8 for

other functions.

Correct the subfield data. Retry the request.

72 The target fields have already been linked. The

system has taken no action.

Correct the entity and field information. Retry the

request.

75 The target fields are not linked. The system has

taken no action.

Correct the field information. Retry the request.

81 The system rejects the request because the

specified method is not installed. RODM sets the

return code to 4 for requests to delete a method

object and to 8 for other functions.

Install the specified method. Retry the request.

92 The system rejects the request because the field to

be created already exists under the specified class.

Correct the field data. Retry the request.

Reason Codes for Return Code 4

454 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 201. Reason Codes for Return Code 4 (continued)

Reason

Code Description Corrective Action

97 A field with the specified field name already exists

on a child class. The new field is created on the

parent class and the existing field on the child

class is marked as containing locally defined data.

None

100 One or more requested subfields are not valid.

Any valid subfields are created. RODM sets the

return code to 4 for create field functions and to 8

for create subfield functions.

Correct the subfield map. Retry the request.

104 One or more specified subfields already exist. Correct the subfield map. Retry the request.

110 The system rejects the request because the

specified object name is used by another object

under the specified parent class.

Correct the object name. Retry the request.

112 The system rejects the request because the

specified field already has a notification

subscription with the same parameters.

Correct the request data. Retry the request.

133 The system cannot update the value of the

timestamp subfield. There might not be enough

storage.

Issue another transaction for the same resource

and check the return and reason codes from that

transaction. Return code 12, reason code 211

means there is not enough storage.

If the problem is caused by not enough storage,

free storage and retry the request.

146 One or more specified subfields do not exist in the

specified field.

Correct the subfield information. Retry the request.

158 The notification cannot be placed in the

notification queue because the queue has reached

its maximum limit.

Query the notification queue content or enlarge

the value of EKG_Maximum_Q_Entries.

173 The system performs the request successfully and

one notification queue is created by RODM.

Change the EKG_ECBAddress of this notification

queue object to a valid value.

174 The notification information block has been put

into the notification queue. The system cannot

post the specified user because the ECB address is

null.

None

175 Part of the user message is truncated because it is

longer than 32767 bytes.

None

181 The notification cannot be attached to the specified

queue because the queue is not active.

Change the EKG_Status value of the specified

queue object.

182 The notification has been put in the notification

queue. The system cannot post the specified user.

None

183 The information from the notification block has

been put in the response block. The system cannot

release the storage used by the notification block.

None

191 The system rejects the request because the

specified method object is the NullMeth object.

Correct the method object information. Retry the

request.

204 The original data in the response block is

overwritten.

None

205 Not used. None

206 Not used. None

Reason Codes for Return Code 4

Chapter 14. Application Programming Reference 455

Table 201. Reason Codes for Return Code 4 (continued)

Reason

Code Description Corrective Action

208 The response block overflow data is discarded

because the user has specified to not save

overflow data.

If the response block overflow data is needed,

change the value of the EKG_RBOverflowAction

field to save. Retry the request.

209 The user request to wait on a list of ECBs cannot

be completed because an ECB address of 0 is

found.

Correct the ECB address.

221 Not used. None

604 A correlated aggregate object was not created

because the agent provided an incorrect

correlation value (network address).

Modify the agent (distributed manager) to provide

a valid network address.

605 A correlated aggregate object was not created

because a correlated aggregate object already

exists.

None

32770 Part of the method output message from the

NetView-supplied notification method is discarded

because the length exceeds 32767 bytes. The

request completed successfully.

Correct the method output message.

45081 A method encountered an error but was able to

complete its function. Either an incorrect field

value was provided, for which RODM used a

default value, or the method detected a

notification method failure after it successfully

changed the value of a field in RODM.

The condition that caused this error must be

corrected to avoid future failures. The method logs

information on the error in messages written as

type-1 RODM log entries. If the error is caused by

a notification method failure, the message includes

the reason code set by the notification method. If

the error was caused by an incorrect field value,

the RODM log specifies the field, the incorrect

value, and the default value used in its place.

Correct the incorrect value.

Reason Codes for Return Code 8

Table 202 describes the reason codes that are returned with return code 8.

 Table 202. Reason Codes for Return Code 8

Reason

Code Description Corrective Action

8 The system rejects the request because the API

version is not valid.

Correct the API version information in the

transaction information block. Retry the request.

9 The system rejects the request because the caller is

not authorized to use the requested function.

Make sure that the User_appl_ID is correct or

contact the system administrator to change the

authority level.

10 The system rejects the request because the function

ID is not valid.

Correct the function ID. Retry the request.

11 The requested function is not complete because

the system does not have enough storage to copy

the short-lived parameters into RODM.

Remove unused entities and fields or contact the

system administrator. Retry the request.

13 The system rejects the request because the

specified RODM is not found.

Start the RODM with the specified name or correct

the RODM_name field in the RODM access block.

Retry the request.

Reason Codes for Return Code 4

456 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

14 The system rejects the request because an incorrect

Sign_on_token is detected. The user application

has not connected to the specified RODM using

the EKG_Connect function, or the Sign_on_token

has been changed.

If two or more applications connect to RODM

using the same user ID and one application

disconnects from RODM, the Sign_on_token for

the remaining applications is canceled by RODM.

This reason code will be issued when a remaining

application sends a function request to RODM.

Make sure the user application does not modify

the Sign_on_token. Connect to the specified

RODM using the EKG_Connect function to get a

valid Sign_on_token. Retry the request with the

new Sign_on_token.

15 The system rejects the request because the number

of concurrently executing API function calls has

reached the limit specified in the customization

file.

Retry the request later or increase the

CONCURRENT_USERS value in the RODM

customization file. Warm start RODM.

16 The system rejects the request because no RODM

currently exists in the system.

Start the RODM with the specified name. Retry

the request.

17 The system rejects the request because the RODM

service module in CSA is not found.

Contact the system administrator.

18 The system rejects the request because the

specified function is not allowed for this method.

Correct the function ID in the function block.

Retry the request.

21 The system cannot perform the requested list of

functions because the number of list requests

provided by the user is zero or negative.

Correct the Number_of_functions field. Retry the

request.

22 The system rejects the request because the

notification queue name is null.

Correct the notification queue name. Retry the

request.

23 The system rejects the request because the data

(types CharVar, GraphicVar, MethodSpec,

SelfDefining, or BERVar) passed to RODM is not

valid.

Correct the data. Retry the request.

33 The system rejects the request because no storage

is available for storing the log record information.

Delete unused entities. Retry the request.

35 Checkpoint master window error. The VSAM data

set identified by the EKGMAST DD statement in

the RODM start up JCL is not available or not

usable. This reason code is contained in the

EKG_LastCheckpointResult field of the

EKG_System object and is not returned through

the method API or user API.

Contact the system administrator.

36 Checkpoint translation window error. The VSAM

data set identified by the EKGTRAN DD

statement in the RODM start up JCL is not

available or not usable. This reason code is

contained in the EKG_LastCheckpointResult field

of the EKG_System object and is not returned

through the method API or user API.

Contact the system administrator.

Reason Codes for Return Code 8

Chapter 14. Application Programming Reference 457

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

37 Checkpoint data window error. One or more of

the VSAM data sets identified by the DD

statements in the RODM start up JCL whose

names have a prefix of EKGD are not available or

not usable. This reason code is contained in the

EKG_LastCheckpointResult field of the

EKG_System object and is not returned through

the method API or user API.

Contact the system administrator.

39 The system rejects the request because the data

pointed to by Old_data_ptr is not equal to the

target field.

Correct Old_data_ptr. Retry the request.

52 The system rejects the request because the

specified class does not exist or the parent class of

the specified object ID does not exist. RODM sets

the return code to 4 for query functions and to 8

for other functions.

Correct the class or parent class. Retry the request.

54 The system rejects the request because the

specified object does not exist. RODM sets the

return code to 4 for query functions and to 8 for

other functions.

Correct the object data. Retry the request.

56 The system rejects the request because the

specified field does not exist. RODM sets the

return code to 4 for query functions and to 8 for

other functions.

Correct the field data. Retry the request.

57 The system rejects the request because the

specified primary parent of the object is not a class

with object children. RODM sets the return code to

4 for query functions and to 8 for other functions.

Correct the primary parent class data. If the

primary parent class data is correct, verify the

class ID portion of the object ID. Retry the request.

60 The system rejects the request because the field

type is public and there are still objects existing

under the class or descendent classes.

Delete the objects under the class before deleting

the public field or its subfields.

61 The system rejects the request because the subfield

number is not valid.

Correct the subfield number. Retry the request.

62 The system rejects the request because the

specified subfield does not exist. RODM sets the

return code to 4 for query functions and to 8 for

other functions.

Correct the subfield data. Retry the request.

65 The system rejects the request because this

function does not apply to fields with data type

ObjectLink or ObjectLinkList.

Correct the function ID or field identifier. Retry

the request.

66 The system rejects the request because the data

type of the new data is not the same as the data

type of the specified field.

Correct the data type or field. Retry the request.

67 The system rejects the request because this

function does not apply to a system-defined field.

Correct the function ID or the field. Retry the

request.

70 The system rejects the request because this

function does not apply to a notify subfield.

Correct the subfield or function ID. Retry the

request.

71 The system rejects the request because this

function does not apply to a prev_val or

timestamp subfield.

Correct the subfield or function ID. Retry the

request.

Reason Codes for Return Code 8

458 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

73 The system rejects the request because the two

target objects are identical.

Correct the entity information. Retry the request.

74 The system rejects the request because the field

data type is not allowed for a link or unlink

function.

Correct the field information. Retry the request.

76 The system rejects the request because the notify

subfield does not exist.

Create a notify subfield for the specified field.

77 The system rejects the request because this

function does not apply to some of the

system-defined fields.

Correct the fields. Retry the request.

79 The system rejects the request because the

specified function block pointer in the list is null.

Correct the function block pointer. Retry the

request.

80 The system rejects the request because this module

recursively calls itself.

Update the related methods to remove the

recursive call. Retry the request.

81 The system rejects the request because the

specified method, or a method called by the

specified method, is not installed. RODM sets the

return code to 4 for requests to delete a method

object and to 8 for other functions.

Install the specified method. If the specified

method is installed correctly, ensure that all

methods called by the specified method are

installed correctly. Retry the request.

83 The system rejects the request because the

response block length is less than eight bytes.

Correct the response block length. Retry the

request.

84 The user has already connected to RODM. None

85 The system rejects the request because the

specified Stop_type is not valid.

Correct the Stop_type. You can specify the value of

Stop_type as 1 or 2. Retry the request.

86 The system rejects the request because the

specified class name is not valid or is a RODM

reserved class name.

Correct the class name. Retry the request.

87 The system rejects the request because the

specified class name has been used by another

class.

Correct the class name. Retry the request.

89 The system rejects the request because the

universal class or a system-created class cannot be

deleted.

Correct the class information. Retry the request.

90 The system rejects the request because some

entities exist under the specified class.

Delete all entities under the specified class. Retry

the request.

91 The system rejects the request because the

specified field name is not valid or is a reserved

RODM field name.

Correct the field name. Retry the request.

93 The system rejects the request because the field to

be created already exists in the subclass and has a

different data type or different subfields.

Correct the field data. Retry the request.

94 The system rejects the request because the field to

be created already exists in a child class with a

different field type.

Correct the field data. Retry the request.

95 The system rejects the request because the field

type flag is not valid.

Correct the field type flag. You can specify the

value of the field type flag as 1, 2, or 3. Retry the

request.

Reason Codes for Return Code 8

Chapter 14. Application Programming Reference 459

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

96 The system rejects the request because the data

type is not valid or is a reserved data type.

Correct the data type. You cannot create fields

using reserved data types. Retry the request.

98 The system rejects the request because a user

application is not allowed to delete system-defined

fields.

Correct the field information. Retry the request.

100 One or more requested subfields are not valid.

Any valid subfields are created. RODM sets the

return code to 4 for create field functions and to 8

for create subfield functions.

Correct the subfield map. Retry the request.

103 The system rejects the request because the field or

subfield does not exist under the specified class.

Correct the class information to specify the class

where the field or subfield exists. Retry the

request.

106 The system rejects the request because the value

subfield cannot be deleted.

Correct the subfield name. Retry the request.

107 The system rejects the request because the method

object name is not valid.

Correct the method name. Retry the request.

108 The system rejects the request to delete the

method because the method is in use.

Check the value of the EKG_UsageCount field of

the method object. If the value is greater than 0,

the method is being used; retry the request later.

109 The system rejects the request because the

user-provided object name is not valid or is a

RODM reserved object name.

If the request was a non_connect request, correct

the object name. If the request was a connect

request, correct the User_appl_ID so that it

conforms to the rules for RODM object names.

Retry the request.

111 The system rejects the request because the

specified object is linked to other objects.

Unlink all other objects from the specified object.

Retry the request.

113 The system rejects the request because the

specified subscription does not exist.

Correct the request data. Retry the request.

115 The system rejects the request because the data

type for this field is not valid for this function.

Correct the field data type. Retry the request.

117 A function in the list is rejected because the

function ID in the function information array is

not valid. Functions with valid function IDs are

processed.

Correct the function ID in the function information

array.

120 The system rejects the request because an overflow

block with the specified correlation ID does not

exist.

Correct the correlation ID. Retry the request.

Reason Codes for Return Code 8

460 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

127 The system rejects the request because the user ID

is not authorized to RODM.

If you are running RODM with security active,

ensure that the task that is trying to connect to

RODM is defined to your security product, and

has read access to the appropriate RODM

resources defined in the RODMMGR class. For

example, the user must have access to at least the

RODM1 resource in the RODMMGR class to

connect to RODM. (The RODM portion of RODM1 is

determined by the SEC_RNAME keyword in

EKCUST.) If the task that is trying to connect to

RODM is a started procedure, ensure that you

have defined the task to the STARTED class in the

SAF product. In RACF, this can also be

accomplished by defining the task in the started

procedure table, ICHRIN03; however, using the

STARTED class is preferred.

If you are not running RODM with security active,

it is possible that you are trying to connect to

RODM with a blank user ID. This is not allowed.

You must specify a user ID on the connect request

when security is not active.

If you run the RODM loader when security is not

active, you will also get this reason code because

the loader first tries to connect with a blank user

ID. It will then automatically attempt to connect

with a non-blank user ID. In this case, the reason

code can be ignored.

Note: Running with a blank user ID is allowed

when RODM is running with security active

because the user ID can be extracted from the SAF

product.

To run with security active you must:

v Have an SAF product installed

v Have a security class active for RODM

(RODMMGR or user defined)

v Identify the security class with the SEC_CLASS

keyword in EKGCUST.

128 The system rejects the request for one of the

following reasons:

v The password is expired.

v The password is not authorized.

v The user ID has been revoked in the SAF

product.

If the password is expired or not authorized,

correct the problem and retry the request.

If the password is not the problem, have the

security administrator check the status of the user

ID in the SAF product.

130 The system rejects the request because a

connection was requested in cross-memory mode.

Issue the connection request in non-cross-memory

mode.

131 The system rejects the request because the

overflow block has not been cleaned.

Issue a query response block overflow request to

retrieve the overflow data. Retry the request.

Reason Codes for Return Code 8

Chapter 14. Application Programming Reference 461

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

134 The system cannot update the value of the

prev_val subfield. There might not be enough

storage.

Issue another transaction for the same resource

and check the return and reason codes from that

transaction. Return code 12, reason code 211

means there is not enough storage.

If the problem is caused by not enough storage,

free some storage and retry the request.

135 The system rejects the request because the length

of the long-lived parameters is not valid.

Correct the parameter lengths. Retry the request.

136 The system rejects the request because the length

of the Method_parms is not valid.

Correct the parameter length. The maximum

length is 254 bytes. Retry the request.

138 The system rejects the request because the

Old_data_ptr is null.

Correct the Old_data_ptr. Retry the request.

139 The system rejects the request because the field ID

is not specified and the field name pointer or field

name length is not valid.

Specify either a valid field ID or a valid field

name pointer and field name length. Retry the

request.

140 The system rejects the request because the class ID

is not specified and the class name is not valid.

Specify a valid class ID or a valid class name.

Retry the request.

141 The system rejects the request because the

specified field of data type ObjectLink is already

linked to another field.

Correct the field information. Retry the request.

144 The system rejects the request because a

system-created field or subfield cannot be deleted

by a user application.

Correct the field or subfield information. Retry the

request.

145 The system rejects the request because the

specified field or subfield is read only.

Correct the field or subfield information. Retry the

request.

147 The system rejects the request because the length

of the new data is not valid.

Correct the data length. Retry the request.

148 The system rejects the request because the create

subfield function is not valid for a system-defined

field.

Correct the field information. Retry the request.

150 The system rejects the request because the object

ID is not specified and the object name

information is not valid.

Specify a valid object ID or a valid object name.

Retry the request.

159 The system rejects the request because the object

directory or the field name table has reached its

maximum size limit.

Select another object or field. Retry the request.

160 The system rejects the request because the field

name is not specified.

Specify the field name. Retry the request.

163 The system rejects the request because the pointer

to the entity access information block is not valid.

Correct the entity access information block pointer.

Retry the request.

164 The system rejects the request because the pointer

to the field access information block is not valid.

Correct the field access information block pointer.

Retry the request.

165 The system rejects the request because the

Naming_count of the entity access information

block is not valid.

Correct the Naming_count value. Valid

Naming_count values are 0, 1, and 2. Retry the

request.

166 The system rejects the request because the

Naming_count of the field access information

block is not valid.

Correct the Naming_count value. Valid

Naming_count values are 0 and 1. Retry the

request.

Reason Codes for Return Code 8

462 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

169 The system rejects the request because the object

ID is not specified.

Specify the object ID. Retry the request.

170 The system rejects the request because a user

application cannot create or delete a system object.

Correct the parent class information. Retry the

request.

176 The system rejects the request because the new

data is not valid.

Correct the new data. Valid values for

EKG_StopMode are 1, 2, and 3; for EKG_Status

and EKG_MTraceFlag are 0 and 1; for

EKG_RBOverflowAction and

EKG_ExternalLogState are 1 and 2. Valid values

for EKG_LogLevel and EKG_MLogLevel are

0—999. Retry the request.

186 The system rejects the request because the user

application cannot create classes under the system

classes.

Correct the parent class information. Retry the

request.

187 The system rejects the request because the

specified subfield map is null.

Correct the subfield map. Retry the request.

192 The system rejects the request because the

specified function ID is not valid asynchronous

execution.

Correct the function ID. Retry the request.

193 The return or reason code set by the method is not

valid.

Correct the return or reason code in the method.

Valid return codes are 0, 4, 8, and 12. Valid reason

codes are from 0 to 65535.

195 The system rejects the request because the system

field cannot be changed at the class level.

Correct the data. Retry the request.

201 The system rejects the request because the data to

be return is a null string.

Correct the data. Retry the request.

202 The system rejects the request because the

checkpoint function is disabled.

Make sure that all checkpoint data sets are defined

when RODM is started.

203 The system rejects the request because there is no

response block.

Specify a response block. Retry the request.

207 The EKG_Connect function cannot be completed.

Possible causes are that RACF is active but the

class specified in the customization file is not

active in RACF or the class is not defined in

RACF.

Contact the system administrator.

210 The user request to wait on a list of ECBs cannot

be completed because the number of ECBs is zero.

Correct the number of ECBs in the list.

214 The system rejects the request because the

Naming_count of the Entity Access Information

Block is not valid. Because the function needs

valid object access information, the Naming_count

of the Entity Access Information Block must be 0

or 2.

Correct the Naming_count. Valid values are 0 and

2. Retry the request.

215 The system rejects the request because the user is

not allowed to update EKG_MTraceFlag of

NullMeth.

Correct the method object information.

220 The system rejects the link or unlink request

because one or both of the change methods

defined to the fields to be linked or unlinked

returned a non-zero return code.

Examine the change method to see what criteria it

uses to allow links or unlinks and make sure you

meet those criteria.

Reason Codes for Return Code 8

Chapter 14. Application Programming Reference 463

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

223 The system rejects the query multiple subfields

request because the Number_of_subfields field of

the function block was specified as zero, less than

zero, or greater than 100,000.

The system rejects the change multiple fields

request because the Number_of_subfields field of

the function block was specified as zero, less than

zero, or greater than 256.

Specify a correct value for the

Number_of_subfields field.

Specify a correct value for the Number_of_Fields

field.

224 The system rejects the request because the input

data type is not allowed for an indexed field.

Correct the input data type or the Field_type_flag.

Retry the request.

225 The system rejects the request because the field

has not been created with the corresponding

Field_type_flag.

Correct the field name, or the field ID and field

type information. Retry the request.

226 You tried to connect a program that is not APF

authorized with a blank password specified.

Either specify the correct password in the

User_password field of the function block, or

make the program APF authorized.

227 The system rejects the request because a reserved

field in the function block is not zero.

Ensure that all of the reserved fields in the

function block are set to zero. Retry the request.

228 The system rejects the request because the indexed

data length field for the locate function is not

valid.

Ensure that the indexed data length field is

between 0 and 32767 for data type CharVar, and

between 0 and 254 for data type IndexList. Retry

the request.

229 The system rejects the request because the index

data value pointer for the locate function is not

valid.

Correct the indexed data value pointer. Retry the

request.

230 The system rejects the request because the length

of the IndexList field does not equal the sum of

each element including each element’s 2-byte

length field.

Ensure that the length is correct. Retry the request.

231 The system rejects the request because the

IndexList field contains a duplicate value.

Ensure that each value is unique within the field.

Retry the request.

232 The system rejects the request because a length

found in a value of the IndexList field is not valid.

Ensure that the length of each value is between 0

and 254 bytes. Retry the request.

32768 The data specified in the Long_lived_parm is not

valid. The error might be in the request code,

option code or enable change_status parameter.

The error might also be that the data type of the

tested value is not valid. The request failed.

Correct the Long_lived_parm.

32771 The system rejects the request because the data

type of the value subfield queried is not valid.

Verify the correct data type for the method being

used. See “NetView-Supplied Methods” on page

479 for a description of the NetView-supplied

methods. Correct the parameter list passed to the

method.

32772 The system rejects the NetView-supplied

notification method because the data type of the

value in the specified field is not valid. The

request failed.

Correct the field data type of the specified field.

Valid field data types are Smallint, Integer,

Floating, TimeStamp or CharVar.

32790 The short-lived parameter passed to the method is

a null pointer.

Correct the pointer.

Reason Codes for Return Code 8

464 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

32791 One or more data items in the short-lived

parameter is not of data type CharVar.

Correct the short-lived parameter.

32792 One or more data items in the short-lived

parameter is too long.

Correct the short-lived parameter.

32793 Incorrect number of data items in the short-lived

parameter.

Correct the short-lived parameter.

32794 The RCVRID_CHARVAR value in the short-lived

parameter passed to the EKGSPPI method is blank

or null.

Specify a valid value for RCVRID_CHARVAR.

32795 The ASSIST_CHARVAR value in the short-lived

parameter passed to the EKGSPPI method is not

valid.

Specify a valid value for ASSIST_CHARVAR.

32796 The TASKINFO_CHARVAR value in the

short-lived parameter passed to the EKGSPPI

method is not valid.

Specify a valid value for TASKINFO_CHARVAR.

32797 The TASKNAME_CHARVAR value in the

short-lived parameter passed to the EKGSPPI

method is blank or null.

Specify a valid value for TASKNAME_CHARVAR.

32798 The CMD_CHARVAR value in the short-lived

parameter passed to the EKGSPPI method is blank

or null.

Specify a valid value for CMD_CHARVAR.

45057 The DUIFCUAP method parameters specify

deleting the AggregationParent to

AggregationChild link between two objects.

However, the specified objects do not have this

link.

If the objects were never linked, or if the objects

were previously unlinked by the DUIFCUAP

method, no action is needed. If the objects were

unlinked without using the DUIFCUAP method,

run the DUIFFAWS method. If the objects were

unlinked using the DUIFCUAP method, but the

method did not complete successfully, run the

DUIFFAWS method.

45058 The DUIFCUAP method parameters specify

creating the AggregationParent to

AggregationChild link between two objects.

However, the specified objects already have this

link.

If the objects were previously linked by the

DUIFCUAP method, no action is needed. If the

objects were linked without using the DUIFCUAP

method, run the DUIFFAWS method. If the objects

were linked using the DUIFCUAP method, but the

method did not complete successfully, run the

DUIFFAWS method.

45061 Not used. None

45066 The DUIFCUAP does not create the requested link.

Creating the requested link creates a loop in the

aggregation hierarchy, or a loop already exists in

the aggregation hierarchy above the objects for

which the link was requested. Information about

the loop path is written to the RODM log.

Correct the parameters passed to DUIFCUAP to

specify valid objects to be linked, or remove the

loop from the aggregation hierarchy. Run

DUIFFAWS to make sure that aggregate objects are

properly initialized. Run DUIFCUAP again to

create the desired link.

45070 The short-lived input parameters provided to a

method are not valid. The parameters might have

been supplied by the INVOKED_WITH RODM

load function primitive statement. The parameters

are written to the RODM log.

Check the RODM log and verify that the

parameters sent to the method have the correct

format and value for the method.

Reason Codes for Return Code 8

Chapter 14. Application Programming Reference 465

Table 202. Reason Codes for Return Code 8 (continued)

Reason

Code Description Corrective Action

45071 An object specified in the input parameters to the

DUIFCUAP method or the DUIFCLRT method

does not exist in RODM. Information about the

missing object is written to the RODM log.

Create the missing object or correct the input

parameters for the method and retry the request.

45077 An error occurred for a method that was triggered

for this transaction. Diagnostic information is

written to the RODM log.

Check the RODM log for information on the

specific error that occurred.

45078 An error occurred while processing a transaction.

The RODM data cache might contain inconsistent

field values.

Check the RODM log for information on the

specific error that occurred. Correct the specific

error. Repeat the transaction or run the DUIFFAWS

method.

45079 An error occurred while processing a transaction.

Some part of the change required for the

transaction was completed, but not all of it.

Check the RODM log for information on the

specific error that occurred. Correct the specific

error. Repeat the transaction.

45080 The value or data type of the data specified by the

New_data_ptr parameter for an EKG_ChangeField

function request is not valid.

Check the RODM log for information on the

specific field where the error occurred. Correct the

error. Repeat the transaction.

45082 An error occurred while processing a transaction.

The value of the DisplayStatus field of one or

more aggregate objects might be incorrect.

Check the RODM log for information on the

specific error that occurred. Correct the specific

error. Repeat the transaction or run the DUIFFRAS

method.

45083 An object passed to the method in the

self-defining method parameters is not in the

expected class.

Verify that the method parameters are valid.

For GMFHS method DUIFCLRT, the first object

specified in the method parameters must be a real,

aggregate, or shadow object, and the second object

specified must be a display resource type object.

For GMFHS method DUIFCUAP, the first object

specified in the method parameters must be a real

or aggregate object and the second object specified

must be an aggregate object.

45092 An attempt to connect the GMFHS application to

RODM failed. Another GMFHS application is

already connected to RODM.

Make sure that the name of the RODM application

as specified in the GMFHS initialization member

(DUIGINIT) is correct. Only one GMFHS

application can connect to RODM at a time.

45093 The version of GMFHS methods installed in

RODM is incompatible with the version of the

GMFHS application that attempted a connection

with RODM.

Make sure that the name of the RODM application

as specified in the GMFHS initialization member

(DUIGINIT) is correct. The version of the GMFHS

application must be the same as the version of the

GMFHS methods installed in RODM.

Reason Codes for Return Code 12

Table 203 describes the reason codes that are returned with return code 12.

 Table 203. Reason Codes for Return Code 12

Reason

Code Description Corrective Action

7 Not used. None

Reason Codes for Return Code 8

466 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 203. Reason Codes for Return Code 12 (continued)

Reason

Code Description Corrective Action

19 All or some of the response block overflow data is

discarded because the overflow block does not

have enough storage.

Issue the query response block overflow function

to clean up the overflow block. Retry the request

using a larger response block. The

Response_block_used field in the response block

contains the amount of storage needed for the

response data.

20 The requested function might not complete

because an abend occurred during the transaction.

Verify that the control blocks passed to RODM for

the transaction are valid. Refer to the IBM Tivoli

NetView for z/OS Troubleshooting Guide for

information on diagnosing abend problems.

25 The system rejects the request because the

transaction tries to update data in a data window

currently being written by RODM in a checkpoint

process.

Retry the request later.

63 The system rejects the request to create a method

object because the system cannot load the module

of the specified method into the RODM address

space.

Verify that the method exists in the method

library.

68 Not used. None

82 The module of the specified method has been

deleted by an unsuccessful module refresh.

Refresh the module of the method again.

118 Not used. None

121 The system rejects the request because there is not

enough storage. Storage has run out in one of the

following places:

v In the VSAM translation checkpoint data sets

v In the translation window

The most likely reason for this return and reason

code is that the VSAM data set is too small. If this

is the case, message EKG1116I is also written to

the console. If you receive this message, increase

the size of the RODM translation checkpoint data

set. The checkpoint data set size is specified by

DDname EKGTRAN in the RODM startup JCL.

122 The system rejects the request because there is not

enough storage. Storage has run out in one of the

following places:

v In the VSAM checkpoint data sets

v In the RODM dataspace

The most likely reason for this return and reason

code is that the VSAM checkpoint data sets are too

small. If this is the case, you will also receive

message EKG1117I on the system console. If you

receive this message, increase the size of the

RODM data window checkpoint data set or add

another data window checkpoint data set. The

checkpoint data sets are specified by DDname

EKGDnnn in the RODM startup JCL.

123 Not used. None

124 The system rejects the request because there is no

ID available for the class.

Delete unused entities. Retry the request.

126 The system rejects the request because there is no

ID available for the field.

Delete unused fields. Retry the request.

156 The system rejects the request to create a queue

object because there is no storage for the

notification queue block.

Delete unused entities. Retry the request later.

157 The system rejects the request because there is no

storage for the notification information block.

Retry the request later.

177 The system rejects the request because no

system-generated object name is available.

Specify the object name. Retry the request.

Reason Codes for Return Code 12

Chapter 14. Application Programming Reference 467

Table 203. Reason Codes for Return Code 12 (continued)

Reason

Code Description Corrective Action

179 The system rejects the request because the system

cannot create the user object. The possible cause is

that not enough storage is available.

Retry the request later.

188 Not used. None

194 The system cannot complete the request because

the method has an execution error.

Check the RODM log record for further

information.

198 The system rejects the request because the system

cannot change the fields of the user object. There

might not be enough storage available.

Free some storage and retry the request.

199 An operator canceled the user transaction. Check with the operator.

200 The system cancels the user transaction because of

RODM is quiescing.

Retry the request or method later.

211 The system cannot process the error because no

storage is available. The storage held is not

released. The system cannot be used until it is

restarted.

Contact the system administrator to restart RODM.

212 The system cannot complete the transaction

because an unrecoverable error occurred. RODM

will write a type-2 log record to the RODM log.

Check the content of the log record for

information about the transaction that caused the

abend. Refer to the IBM Tivoli NetView for

z/OS Troubleshooting Guide for information on

diagnosing abend problems.

213 The requested function did not complete because

an abend occurred when RODM accessed the

interface blocks of the application or method.

Check the interface blocks for errors that can cause

address exceptions. Refer to the IBM Tivoli NetView

for z/OS Troubleshooting Guide for information on

diagnosing abend problems.

216 Not used. None

240 The RODM transaction did not complete normally.

An ABEND might have occurred.

Check the RODM log for information on the

specific error that occurred. After correcting the

error, repeat the transaction.

600 An EKG_QueryMultipleSubfields request issued

by the correlation function failed for one real

object.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

601 An EKG_QueryMultipleSubfields request issued

by the correlation function failed for one aggregate

object.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

602 An EKG_ChangeMultipleFields request issued by

the correlation function failed for one aggregate

object.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

603 An EKG_Locate request issued by the correlation

function failed for one real object.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

603 An EKG_Locate request issued by the correlation

function failed for one real object.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

Reason Codes for Return Code 12

468 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 203. Reason Codes for Return Code 12 (continued)

Reason

Code Description Corrective Action

604 An aggregateSystem object was not created by the

correlate function because the correlatable value

was less than 2 characters in length.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

605 An EKG_CreateObject request issued by the

correlate function failed for one aggregate object.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

606 An EKG_TriggerOIMethod request issued by the

correlate function failed to link to a

DisplayResourceType for one aggregate object.

Ignore this error if the correlation function

performed correctly. If the correlation function did

not perform correctly, contact IBM Software

Support.

45085 Not used. None

45086 An error occurred when the objects in a view

changed.

Check the RODM log for information on the

specific error that occurred. After correcting the

error, repeat the transaction.

List of Reason Codes for Each Function

Table 204 lists the function IDs of the RODM API functions and the reason codes

returned by each function.

 Table 204. Reason Codes for API Functions

Function ID Reason Codes

Common reason codes for user API 0 1 2 3 5 6 8 9 10 13 14 15 16 17 20 23 25 131

199 200 211 212 213 240

Common reason codes for method API 0 10 18 20 192

1101 30 84 109 127 128 130 179 198 207

1102 180 198

1201 35 36 37 38 202

1202 85 202

1302 24 52 86 87 121 122 124 136 140 163 165 186

32768 32769 32770 32772

1303 24 52 89 90 136 140 163 165 32768 32769

32770 32772

1304 52 91 92 93 94 95 96 97 100 121 122 126 139

140 159 160 163 164 165 166

1305 52 60 98 103 139 140 144 163 164 165 166

1306 52 100 103 104 122 139 140 148 163 164 165

166 187

1307 52 60 98 103 106 139 140 144 146 163 164 165

166 187

1401 24 26 42 52 54 56 57 65 66 67 80 81 122 133

134 135 136 139 140 142 145 147 150 163 164

165 166 176 194 195 215 230 231 232 32768

32769 32770 32771 32772

Reason Codes for Return Code 12

Chapter 14. Application Programming Reference 469

Table 204. Reason Codes for API Functions (continued)

Function ID Reason Codes

1402 24 26 39 52 54 56 57 65 66 67 80 81 122 133

134 135 136 138 139 140 142 145 147 150 163

164 165 166 176 194 195 215 230 231 232

32768 32769 32770 32772

1403 26 52 54 56 57 61 62 65 66 67 70 71 81 122 135

139 140 142 145 147 150 163 164 165 166 176

195 215 230 231 232

1404 26 39 52 54 56 57 61 62 65 66 67 70 71 81 122

135 138 139 140 142 145 147 150 163 164 165

166 176 195 215 230 231 232

1405 24 52 54 56 57 72 73 74 122 133 136 139 140

141 145 150 163 164 166 214 220 32768 32769

32770 32772

1406 52 54 56 57 72 73 74 122 133 139 140 141 145

150 163 164 166 214

1407 24 52 54 56 57 73 74 75 133 136 139 140 145

150 163 164 166 214 220 32768 32769 32770

32772

1408 52 54 56 57 73 74 75 133 139 140 145 150 163

164 166 214

1409 22 24 34 52 63 107 109 110 121 122 136 140

150 156 159 163 165 170 177 214 604 605

32768 32769 32770 32772

1410 22 24 52 54 57 81 107 108 111 113 136 140 150

163 170 191 214 32768 32769 32770 32772

1411 40 41 52 54 56 57 61 62 65 67 70 71 122 139

140 145 150 163 164 165 166

1412 22 52 54 56 57 76 77 81 112 122 135 139 140

150 156 163 164 165 166 173

1413 22 52 54 56 57 76 77 113 135 139 140 150 163

164 165 166

1415 42 52 54 56 57 80 81 82 115 136 139 140 150

163 164 165 166 191 194 214 32768 32771

1416 11 42 80 81 191 194

1417 22 52 54 57 77 109 112 122 135 140 150 156

163 173 214

1418 22 52 54 57 77 109 113 135 140 150 163 214

1419 24 26 42 52 54 56 57 65 66 67 80 81 122 133

134 135 136 139 140 142 145 147 150 163 164

165 166 176 194 215 223 227 230 231 232 602

32768 32769 32770 32771 32772

1501 19 27 42 52 54 56 57 80 83 136 139 140 143

150 163 164 165 166 194 208

1502 19 27 52 54 56 57 61 62 83 136 139 140 143

150 163 164 165 166 208

1503 19 27 52 54 57 83 139 140 150 163 164 165 166

208

1504 19 27 52 54 56 57 83 139 140 150 163 164 165

166 208

Reason Codes for Each Function

470 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 204. Reason Codes for API Functions (continued)

Function ID Reason Codes

1505 19 27 56 139 164 166 208

1506 19 27 52 54 56 57 83 139 140 150 163 164 165

166 208

1507 19 22 27 44 54 57 83 183 208

1508 27 52 56 83 139 140 150 163 164 165 166 223

600 601

1509 139 164 166 224 225 227 228 229 603

1510 46 47 120

1600 21 79 83 117

2001 27 83

2002 21 52 54 118

2004 27 83 201 203 204

2005 22 50 157 158 174 175 181 182

2006 28 29 33 193 45086

2008 28 29 33

2011 19 27 54 169 208

EKGWAIT 209 210

List of Functions for Each Reason Code

Table 205 lists the RODM reason codes and the function IDs of the RODM API

functions that return each reason code. See Table 206 on page 477 to resolve a

function ID to its function name.

 Table 205. Function IDs for Each Reason Code

Reason Code Function ID

0 Common reason code for user API and

method API.

1 Common reason code for user API.

2 Common reason code for user API.

3 Common reason code for user API.

5 Common reason code for user API.

6 Common reason code for user API.

8 Common reason code for user API.

9 Common reason code for user API.

10 Common reason code for user API and

method API.

11 1416

13 Common reason code for user API.

14 Common reason code for user API.

15 Common reason code for user API.

16 Common reason code for user API.

17 Common reason code for user API.

Reason Codes for Each Function

Chapter 14. Application Programming Reference 471

Table 205. Function IDs for Each Reason Code (continued)

Reason Code Function ID

18 Common reason code for method API.

19 1501 1502 1503 1504 1505 1506 1507 2011

20 Common reason code for user API and

method API.

21 1600 2002

22 1409 1410 1412 1413 1417 1418 1507 2005

23 Common reason code for user API.

24 1302 1303 1401 1402 1405 1407 1409 1410 1419

25 Common reason code for user API.

26 1401 1402 1403 1404 1419

27 1501 1502 1503 1504 1505 1506 1507 1508 2001

2004 2011

28 2006 2008

29 2006 2008

30 1101

33 2006 2008

34 1409

35 1201

36 1201

37 1202

38 1201

39 1402 1404

40 1411

41 1411

42 1401 1402 1415 1416 1419 1501

44 1507

46 1510

47 1510

50 2005

52 1302 1303 1304 1305 1306 1307 1401 1402 1403

1404 1405 1406 1407 1408 1409 1410 1411 1412

1413 1415 1417 1418 1419 1501 1502 1503 1504

1506 1508 2002

54 1401 1402 1403 1404 1405 1406 1407 1408 1410

1411 1412 1413 1415 1417 1418 1419 1501 1502

1503 1504 1506 1507 2002 2011

56 1401 1402 1403 1404 1405 1406 1407 1408 1411

1412 1413 1415 1419 1501 1502 1504 1505 1506

1508

57 1401 1402 1403 1404 1405 1406 1407 1408 1410

1411 1412 1413 1415 1417 1418 1419 1501 1502

1503 1504 1506 1507

60 1305 1307

Functions for Each Reason Code

472 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 205. Function IDs for Each Reason Code (continued)

Reason Code Function ID

61 1403 1404 1411 1502

62 1403 1404 1411 1502

63 1409

65 1401 1402 1403 1404 1411 1419

66 1401 1402 1403 1404 1419

67 1401 1402 1403 1404 1411 1419

70 1403 1404 1411

71 1403 1404 1411

72 1405 1406

73 1405 1406 1407 1408

74 1405 1406 1407 1408

75 1407 1408

76 1412 1413

77 1412 1413 1417 1418

79 1600

80 1401 1402 1415 1416 1419 1501

81 1401 1402 1403 1404 1410 1412 1415 1416 1419

82 1415

83 1501 1502 1503 1504 1506 1507 1508 1600 2001

2004

84 1101

85 1202

86 1302

87 1302

89 1303

90 1303

91 1304

92 1304

93 1304

94 1304

95 1304

96 1304

97 1304

98 1305 1307

100 1304 1306

103 1305 1306 1307

104 1306

106 1307

107 1409 1410

108 1410

Functions for Each Reason Code

Chapter 14. Application Programming Reference 473

Table 205. Function IDs for Each Reason Code (continued)

Reason Code Function ID

109 1101 1409 1417 1418

110 1409

111 1410

112 1412 1417

113 1410 1413 1418

115 1415

117 1600

118 2002

120 1510

121 1302 1304 1409

122 1302 1304 1306 1401 1402 1403 1404 1405 1406

1409 1411 1412 1417 1419

124 1302

126 1304

127 1101

128 1101

130 1101

131 Common reason code for user API.

133 1401 1402 1405 1406 1407 1408 1419

134 1401 1402 1419

135 1401 1402 1403 1404 1412 1413 1417 1418 1419

136 1302 1303 1401 1402 1405 1407 1409 1410 1415

1419 1501 1502

138 1402 1404

139 1304 1305 1306 1307 1401 1402 1403 1404 1405

1406 1407 1408 1411 1412 1413 1415 1419 1501

1502 1503 1504 1505 1506 1508 1509

140 1302 1303 1304 1305 1306 1307 1401 1402 1403

1404 1405 1406 1407 1408 1409 1410 1411 1412

1413 1415 1417 1418 1419 1501 1502 1503 1504

1506 1508

141 1405 1406

142 1401 1402 1403 1404 1419

143 1501 1502

144 1305 1307

145 1401 1402 1403 1404 1405 1406 1407 1408 1411

1419

146 1307

147 1401 1402 1403 1404 1419

148 1306

150 1401 1402 1403 1404 1405 1406 1407 1408 1409

1410 1411 1412 1413 1415 1417 1418 1419 1501

1502 1503 1504 1506 1508

Functions for Each Reason Code

474 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 205. Function IDs for Each Reason Code (continued)

Reason Code Function ID

156 1409 1412 1417

157 2005

158 2005

159 1304 1409

160 1304

163 1302 1303 1304 1305 1306 1307 1401 1402 1403

1404 1405 1406 1407 1408 1409 1410 1411 1412

1413 1415 1417 1418 1419 1501 1502 1503 1504

1506 1508

164 1304 1305 1306 1307 1401 1402 1403 1404 1405

1406 1407 1408 1411 1412 1413 1415 1419 1501

1502 1503 1504 1505 1506 1508 1509

165 1302 1303 1304 1305 1306 1307 1401 1402 1403

1404 1409 1411 1412 1413 1415 1419 1501 1502

1503 1504 1506 1508

166 1304 1305 1306 1307 1401 1402 1403 1404 1405

1406 1407 1408 1411 1412 1413 1415 1419 1501

1502 1503 1504 1505 1506 1508 1509

169 2011

170 1409 1410

173 1412 1417

174 2005

175 2005

176 1401 1402 1403 1404 1419

177 1409

179 1101

180 1102

181 2005

182 2005

183 1507

186 1302

187 1306 1307

191 1410 1415 1416

192 Common reason code for method API.

193 2006

194 1401 1402 1415 1416 1419 1501

195 1401 1402 1403 1404

198 1101 1102

199 Common reason code for user API.

200 Common reason code for user API.

201 2004

202 1201 1202

203 2004

Functions for Each Reason Code

Chapter 14. Application Programming Reference 475

Table 205. Function IDs for Each Reason Code (continued)

Reason Code Function ID

204 2004

207 1101

208 1501 1502 1503 1504 1505 1506 1507 2011

209 EKGWAIT

210 EKGWAIT

211 Common reason code for user API.

212 Common reason code for user API.

213 Common reason code for user API.

214 1405 1406 1407 1408 1409 1410 1415 1417 1418

215 1401 1402 1403 1404 1419

220 1405 1407

223 1419 1508

224 1509

225 1509

226 1101

227 1419 1509

228 1509

229 1509

230 1401 1402 1403 1404 1419

231 1401 1402 1403 1404 1419

232 1401 1402 1403 1404 1419

240 Common reason code for user API.

600 1508

601 1508

602 1419

603 1509

604 1409

605 1409

32768 1302 1303 1401 1402 1405 1407 1409 1410 1415

1419

32769 1302 1303 1401 1402 1405 1407 1409 1410 1419

32770 1302 1303 1401 1402 1405 1407 1409 1410 1419

32771 1401 1415 1419

32772 1302 1303 1401 1402 1405 1407 1409 1410 1419

45086 2006

Functions for Each Reason Code

476 Resource Object Data Manager and GMFHS Programmer’s Guide

List of Function Names by Function ID

Table 206 lists the RODM API function names by their function ID.

 Table 206. Function Names by Function ID

Function ID Function Name

1101 EKG_Connect

1102 EKG_Disconnect

1201 EKG_Checkpoint

1202 EKG_Stop

1302 EKG_CreateClass

1303 EKG_DeleteClass

1304 EKG_CreateField

1305 EKG_DeleteField

1306 EKG_CreateSubfield

1307 EKG_DeleteSubfield

1401 EKG_ChangeField

1402 EKG_SwapField

1403 EKG_ChangeSubfield

1404 EKG_SwapSubfield

1405 EKG_LinkTrigger

1406 EKG_LinkNoTrigger

1407 EKG_UnLinkTrigger

1408 EKG_UnLinkNoTrigger

1409 EKG_CreateObject

1410 EKG_DeleteObject

1411 EKG_RevertToInherited

1412 EKG_AddNotifySubscription

1413 EKG_DeleteNotifySubscription

1415 EKG_TriggerNamedMethod

1416 EKG_TriggerOIMethod

1417 EKG_AddObjDelSubs

1418 EKG_DelObjDelSubs

1419 EKG_ChangeMultipleFields

1501 EKG_QueryField

1502 EKG_QuerySubfield

1503 EKG_QueryEntityStructure

1504 EKG_QueryFieldStructure

1505 EKG_QueryFieldID

1506 EKG_QueryFieldName

1507 EKG_QueryNotifyQueue

1508 EKG_QueryMultipleSubfields

1509 EKG_Locate

1510 EKG_QueryResponseBlockOverflow

Function Names by Function ID

Chapter 14. Application Programming Reference 477

Table 206. Function Names by Function ID (continued)

Function ID Function Name

1600 EKG_ExecuteFunctionList

2001 EKG_QueryFunctionBlockContents

2002 EKG_LockObjectList

2003 EKG_UnlockAll

2004 EKG_ResponseBlock

2005 EKG_SendNotification

2006 EKG_SetReturnCode

2007 EKG_WhereAmI

2008 EKG_OutputToLog

2009 EKG_MessageTriggeredAction

2011 EKG_QueryObjectName

List of Reason Codes from NetView-Supplied Methods

Table 207 lists the NetView-supplied methods and the reason codes that are

returned by each method.

 Table 207. Reason Codes for NetView-Supplied Methods

Method Reason Codes

DUIFCATC 45070 45077 45078 45081 45088

DUIFCCAN 45077 45081 45088

DUIFCLRT 45070 45071 45077 45078 45081 45083 45088

DUIFCUAP 45065 45070 45071 45077 45081 45088

DUIFCUUS 45070 45077 45078 45081 45088

DUIFECDS 45070 45077 45078 45079 45081 45088

DUIFFAWS 45088

DUIFFIRS 45070 45077 45078 45081 45088

DUIFFRAS 45077 45081 45088

DUIFFSUS 45070 45077 45078 45081 45088

DUIFRFDS 45077 45081 45088

DUIFVCFT 45070 45077 45081 45088

EKGCTIM 32768 32771 32780

EKGMIMV 32768 32771 32780

EKGNEQL 32768 32769 32770 32772 32780 32954

EKGNLST 32768 32769 32770 32772 32780 32954

EKGNOTF 32768 32770 32780 32954

EKGNTHD 32768 32769 32770 32772 32780 32954

EKGSPPI 32780 32790 32791 32792 32793 32794 32795

32796 32797 32798 32809+

Function Names by Function ID

478 Resource Object Data Manager and GMFHS Programmer’s Guide

Maximizing RODM Performance

This section describes how to maximize system performance while running

RODM. The structure and size of the data model, the design of methods, and the

design of user applications all affect performance.

Data Model Structure and Size

Execution time for some functions increases as the number of classes between the

object and the universal class (root) increases. Keep the number of vertical classes

to a minimum. For best performance, do not exceed 100 vertical classes.

Method Design

Use functions that do not trigger methods whenever possible in methods you

write. This limits the scope of actions resulting from a single transaction and

reduces system utilization.

User Application Design

If you do not need to trigger the query method for a field, and your data model

contains many vertical classes, you can improve performance by using the query

subfield function instead of the query field function.

The RODM notification process uses resources for each notification subscription.

Delete any unneeded notification subscriptions.

Customization Parameters and System Fields

For the best performance, set the RODM logging levels so that logging is kept to a

minimum. The suggested value for the LOG_LEVEL and MLOG_LEVEL

customization parameters, and the corresponding EKG_LogLevel and

EKG_MLogLevel fields in the EKG_User class is 8.

Note: Values smaller than 8 can cause GMFHS to report method errors.

Indexed Fields

The EKG_Locate function makes it easier for an application to retrieve a list of

Object IDs. Rather than scanning the entire data model using the query field

functions, use the EKG_Locate function which scans just the tables that contain the

Object IDs.

For better performance, the indexed field must be created before populating the

data model. Improved performance can also be gained by ensuring that objects

have indexed field values where the first 254 bytes are unique.

NetView-Supplied Methods

This section provides a brief introduction to the NetView-supplied methods. These

methods are provided with RODM to supply specific kinds of functions. You can

replace a NetView-supplied method and add locally developed ones.

NetView-supplied methods use the method API. These methods are described in

this section on a functional basis. All parameters passed to methods are specified

as SelfDefining data strings.

Maximizing RODM Performance

Chapter 14. Application Programming Reference 479

RODM Notification Methods

In addition to notifying the required subscriber that the data has changed, all

RODM notification methods return the values of the value, prev_val, and

timestamp subfields. This data is returned to the subscriber in the User_area of the

notification queue block. See “EKG_QueryNotifyQueue — Query Notification

Queue” on page 419 for a description of this block. If the User_area cannot contain

all the data, a null data string is returned. The order of the data returned is:

1. The value in the value subfield

2. The value in the prev_val subfield

3. The value in the timestamp subfield

The data type of the returned data is SelfDefining. Each output value is preceded

by a tag code (corresponding to the numbers 1, 2, and 3 above) to identify which

subfield the data came from. If a particular subfield is not defined, that tag code is

not included in the SelfDefining data string. Table 208 is an example of the data

that is returned in the data string.

 Table 208. Example User_data Returned with EKGNOTF Notification Method

Offset Length Value Description

000 2 34 Total length of SelfDefining string

002 2 21 Smallint data type code

004 2 01 Value field indicator

006 2 10 Value data type flag (Integer)

008 4 value Value data (Integer)

012 2 21 Smallint data type code

014 2 02 Prev_val field indicator

016 2 10 Prev_val data type flag (Integer)

018 4 prev_val Prev_val data (Integer)

022 2 21 Smallint data type code

024 2 03 Timestamp field indicator

026 2 27 Timestamp data type flag (TimeStamp)

028 8 timestamp Timestamp data (TimeStamp)

The NetView-supplied notification methods notify subscribers only when the data

value of the field changes such that the new value is different from the old value.

In addition, each method must be passed a parameter specifying how the

notification must be performed, as follows:

Always

A notification is sent to the subscriber specified to the method through its

invocation parameters each time the method is run.

Once A single notification is generated and the method then deletes itself from

the field’s notification list.

If a notification method is installed on the field of an object, then when a change is

made to the object field, the notification subscriptions assigned to that field are

run. After the notifications of the object are processed, any notification

subscriptions assigned to the same field in the primary parent are run.

Methods that perform comparison operations to determine if a notification

generated can be assigned only to fields of the following data types:

NetView-Supplied Methods

480 Resource Object Data Manager and GMFHS Programmer’s Guide

v Smallint

v Integer

v Float

v TimeStamp

v CharVar

EKGNOTF: General Notification

Function

Notify its subscriber of any change to the associated field value.

Long-lived-parameters

A 2-byte integer code designating the execution option of Always or Once.

 Table 209. EKGNOTF Long-lived-parameter Description

Offset Length Value Description

000 2 8 Total length of SelfDefining string

002 2 21 Smallint data type code

004 2 1 or 2 Two byte integer (1=always, 2=once)

006 2 21 Smallint data type code

008 2 1 or 2 Two byte integer (1=notify only if new value is

different from previous value, 2=notify always)

Short-lived-parameters

None required.

EKGNEQL: Notify If Equal

Function

Notify its subscriber when any change to the associated field value causes

that field to be equal to the long-lived-parameter. The function must be

sensitive to all supported RODM data types in order to determine how to

make the appropriate comparison.

Long-lived-parameters

A 2-byte integer code designating the execution option of always or once

followed by the value being tested against the subscribed field. The

long-lived-parameter specifies a Field_ID within the current object where

the test value is specified.

 Table 210. EKGNEQL Long-lived-parameter Description

Offset Length Value Description

000 2 14 Total length of SelfDefining string

002 2 21 Smallint data type code

004 2 1 or 2 Two byte integer (1=always, 2=once)

006 2 21 Smallint data type code

008 2 1 or 2 Two byte integer (1=notify only if new value is

different from previous value, 2=notify always)

010 2 26 Smallint data type code (FieldID)

012 4 Field_ID Field_ID of test value

Short-lived-parameters

None required.

NetView-Supplied Methods

Chapter 14. Application Programming Reference 481

EKGNLST: Notify if Equal to List

Function

Notify its subscriber when any change to the associated field value causes

that field to equal one of the values in the long-lived-parameter. The

function must be sensitive to all supported RODM data types in order to

determine how to make the appropriate comparison.

Long-lived-parameters

A 2-byte integer code designating the execution option of always or once

followed by the number of values in the list and the list of values being

tested against the subscribed field. The long-lived-parameter specifies a

Field_ID within the current object where the comparison list count is

specified and a list of Field_IDs where the test values are specified.

 Table 211. EKGNLST Long-lived-parameter Description

Offset Length Value Description

000 2 14+(N*6) Total length of SelfDefining string

002 2 21 Smallint data type code

004 2 1 or 2 Two byte integer (1=always, 2=once)

006 2 21 Smallint data type code

008 2 1 or 2 Two byte integer (1=notify only if new value is

different from previous value, 2=notify always)

010 2 10 Smallint data type code (Integer)

012 4 N (range 0..n) Number of following Field_IDs

016 2 26 Smallint data type code (FieldID)

018 4 Field_ID Field_ID of first test value

Note: Element of array

010+(N*6) 2 26 Smallint data type code (FieldID)

012+(N*6) 4 Field_ID Field_ID of Nth test value

Short-lived-parameters

None required.

EKGNTHD: Notify If Outside Threshold

Function

Notify its subscriber when any change to the associated field value causes

that field to fall outside the threshold specified in the long-lived-parameter.

This method provides three options.

v The user specifies an upper bound. Subscribers are notified if the value

of the associated field is greater than the parameter.

v The user specifies a lower bound. Subscribers are notified if the value of

the associated field is less than the parameter.

v The user specifies a pair of parameter values. Subscribers are notified if

value of the associated field is greater than the larger parameter or less

than the smaller parameter.

Long-lived-parameters

A 2-byte integer code designating the execution option of always or once,

followed by the particular function being performed and the threshold

values. The long-lived-parameter specifies a Field_ID within the current

object where the function code is specified and Field_IDs as required to

specify the threshold values.

NetView-Supplied Methods

482 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 212. EKGNTHD Long-lived-parameter Description

Offset Length Value Description

000 2 20 or 26 Total length of SelfDefining string

002 2 21 Smallint data type code

004 2 1 or 2 Two byte integer (1=always, 2=once)

006 2 21 Smallint data type code

008 2 1 or 2 Two byte integer (1=notify only if new value is

different from previous value, 2=notify always)

010 2 10 Integer data type code

012 4 1, 2, or 3 Option code (1=upper bound, 2=lower bound,

3=range)

016 2 26 Smallint data type code (FieldID)

018 4 Field_ID For 1, upper bound; for 2 or 3, lower bound

: Next parameters for option code 3 only

022 2 26 Smallint data type code (FieldID)

024 4 Field_ID For 3, upper bound

Short-lived-parameters

None required.

RODM Change Methods

EKGCTIM: Trigger Object-Independent Method

Function

Using the message facility, trigger an object-independent method to

perform some designated function asynchronous to the execution of the

invoking method. If, for example, the object-independent method is

intended to communicate with a real status sender, a SWAP function block

can be passed, in order to communicate old and new value information

from the field associated with this method. This can let the

object-independent method tell the real status sender to change a real

device status from old to new state.

Long-lived-parameters

List of Field_IDs where data is provided to build the required function

block to be passed to the object-independent method. Each consecutive 4

bytes of this parameter string is interpreted as a FieldID of a field within

the current object. The specified fields are queried, and the information is

placed in the function block of the EKG_TriggerOIMethod function.

 Table 213. EKGCTIM Long-lived-parameter Description

Offset Length Value Description

000 2 12 Total length of SelfDefining string

002 2 26 Smallint data type code (FieldID)

004 4 Field_ID Field containing method name

008 2 26 Smallint data type code (FieldID)

010 4 Field_ID Field containing Short-lived-parameter list as a

SelfDefining string

NetView-Supplied Methods

Chapter 14. Application Programming Reference 483

Short-lived-parameters

None required.

RODM Named Methods

EKGMIMV: Increment Value

Function

Increment the value of a specified field, defined within the current object,

by a specified value.

Long-lived-parameters

Two Field_IDs are required. The first four bytes of the string specifies the

Field_ID of field to be incremented. The second four bytes specifies the

Field_ID of the field containing the increment value. These fields must be

integer data type and the increment value can be negative causing the

designated field value to be decremented.

 Table 214. EKGMIMV Long-lived-parameter Description

Offset Length Value Description

000 2 12 Total length of SelfDefining string

002 2 26 Smallint data type code (FieldID)

004 4 Field_ID Field to be incremented

008 2 26 Smallint data type code (FieldID)

010 4 Field_ID Field containing increment value

Short-lived-parameters

None required.

EKGCTIM: Trigger Object-Independent Method

This is the same function as the change method described for this function. This

method, when installed in RODM, can be used in either manner.

RODM Object-Independent Methods

EKGSPPI: Send a command to NetView

The EKGSPPI method is one of the services in the RODM automation platform.

See Chapter 8, “Using the RODM Automation Platform,” on page 189 for more

information about automation tasks using NetView. An extensive RODM

automation scenario using the EKGSPPI method and the automation platform is

contained in the chapter entitled the IBM Tivoli NetView for z/OS Automation Guide.

Function: This object-independent method sends commands to the DSIQTSK task

in NetView. DSIQTSK then dispatches the commands to an autotask, which issues

the commands. NetView supplies two example methods that call the EKGSPPI, one

change method named EKGCPPI and one object-independent method named

EKGOPPI. You can use these example methods as models for your own methods

that trigger EKGSPPI.

The best way to trigger the EKGSPPI method is using the

EKG_MessageTriggeredAction function. This enables EKGSPPI to run

asynchronously. The EKG_MessageTriggeredAction function specifies the

EKG_TriggerOIMethod function, which contains the parameters passed to

EKGSPPI.

NetView-Supplied Methods

484 Resource Object Data Manager and GMFHS Programmer’s Guide

Long-lived parameters: None required.

Short-lived parameters: EKGSPPI accepts a short-lived parameter with the

SelfDefining data type. The short-lived parameter contains seven data items. Each

data item is data type CharVar or data type AnonymousVar. All seven data items

must appear in the order shown, but some can have a null value. The EKGSPPI

method deletes leading blank characters from the value specified for each data

item.

The names used for the data items are the variable names used in the sample

methods EKGCPPI and EKGOPPI. The seven data items in the short-lived

parameter are:

RCVRID_CHARVAR

This data item specifies the name of the command receiver to which EKGSPPI

sends commands. This is the name supplied on the ID field of the CMDRCVR

defined in the DSIQTSKI initialization file for the DSIQTSK task. The EKGSPPI

method converts this name to uppercase. This name has a maximum of 8

characters.

ASSIST_CHARVAR

This data item specifies whether the command is to be sent to a NetView

operator before it is run. The command is issued in the form of a message

(DWO670I). If SAVECMD is specified in the automation table trap for

DWO670I, the command can be saved for the operator that the SAVECMD is

routed to. The operator can use the ASSISCMD to display the command on the

panel. The operator can issue, modify, or cancel the command from the

NetView assist panel. Valid values are:

Value Meaning

ASSIST

Send the command to an operator

NOASSIST

Issue the command without sending it to an operator

null or blanks

Issue the command without sending it to an operator

This value has a maximum of 8 characters.

TASKINFO_CHARVAR

This data item specifies whether the command is run by a specific NetView

autotask. Valid values are:

Value Meaning

ANY DSIQTSK routes the command to the next autotask (after the most

recently used autotask) defined to DSIQTSK. Autotasks are used in the

order in which they are defined in the DSIQTASKI member of

DSIPARM.

ONLY DSIQTSK routes the command to the autotask specified in the

short-lived parameter data item TASKNAME_CHARVAR. If the

specified autotask is not available, the command is not issued.

ONLYANY

DSIQTSK routes the command to the autotask specified in the

short-lived parameter data item TASKNAME_CHARVAR. If the

specified autotask is not available, DSIQTSK routes the command to

the next autotask (after the most recently used autotask) defined to

NetView-Supplied Methods

Chapter 14. Application Programming Reference 485

DSIQTSK. Autotasks are used in the order in which they are defined in

the DSIQTASKI member of DSIPARM.

null or blanks

DSIQTSK routes the command to the next autotask (after the most

recently used autotask) defined to DSIQTSK. Autotasks are used in the

order in which they are defined in the DSIQTASKI member of

DSIPARM.

This value has a maximum of 8 characters.

TASKNAME_CHARVAR

This data item specifies the name of the autotask that DSIQTSK routes the

command to. This is the name specified by the TASK statement of DSIQTSKI,

the initial member of DSIQTSK task. If TASKINFO_CHARVAR is ONLY or

ONLYANY, TASKNAME_CHARVAR is required. The EKGSPPI method

converts this name to uppercase. This value has a maximum of 8 characters.

SENDER_CHARVAR

This data item identifies the sender of the command for commands which

specify ASSIST_CHARVAR as ASSIST. This name is included in the message

sent to the operator. The EKGSPPI method converts this name to uppercase.

This value has a maximum of 8 characters.

CMD_CHARVAR

This data item specifies the command to be issued. A COMMAND_CHARVAR

value is required. This value has a maximum of 240 characters.

CMD_DESC_CHARVAR

This data item specifies a description of the command to be issued. You can

specify blanks or null for this value. This value has a maximum of 780

characters. This description is displayed on the assist panel if ASSIST is

specified for the ASSIST_CHARVAR data item in short-lived parameters.

Output: The command is sent to the DSIQTSK task in NetView.

You can run the EKGSPPI method using the RODM load function. Figure 92 on

page 487 shows an example of invoking EKGSPPI using a RODM load function

primitive statement.

Note: The RODM load function is not an APF (authorized program facility)

authorized program. If the NetView program-to-program interface command

receiver managed by DSIQTSK requires APF authorization, the job fails and

a return code of 8 with a reason code of 32832 is issued by the EKGSPPI

method.

NetView-Supplied Methods

486 Resource Object Data Manager and GMFHS Programmer’s Guide

GMFHS Methods

The methods described in this section are supplied for use with GMFHS. You can

also use these methods with automation code that you write.

Use only these GMFHS methods for the described purposes. For example, do not

use a named method as an object-independent method.

In addition to the GMFHS methods described in this section, GMFHS uses other

methods which cannot be used by your programs. Do not use the methods in this

list with programs you write:

v DUIFCAAP

v DUIFCADT

v DUIFCAPC

v DUIFCASB

v DUIFCATC

v DUIFCCAP

v DUIFCDTC

v DUIFCDUC

v DUIFCGRA

v DUIFCGRT

v DUIFCGR2

v DUIFCGR3

v DUIFCLSR

v DUIFCLS2

v DUIFCLS3

v DUIFCMUU

v DUIFCRDC

v DUIFCRTP

v DUIFCRTU

v DUIFCRUC

v DUIFCSRT

v DUIFCURA

v DUIFCUTC

v DUIFEGSN

v DUIFITKN

v DUIFRAIP

v DUIFRRTC

v DUIFVCVT

v DUIFVDRT

v DUIFVEFC

 OP EKGSPPI INVOKED_WITH -- Trigger the EKGSPPI method --

 (SELFDEFINING)

 ((CHARVAR) ’CNM01’ -- Command receiver name --

 (CHARVAR) ’NOASSIST’ -- Issue without operator intervention --

 (CHARVAR) ’ONLYANY’ -- Use named autotask if available --

 (CHARVAR) ’AUTO1’ -- Autotask name --

 (CHARVAR) ’LOAD FUN’ -- Name of sender of command --

 (CHARVAR) ’some reasonable command goes here’

 -- Command to be sent --

 (CHARVAR) ’This command is sent using the RODM load function.’

 ’ It is an example of triggering the EKGSPPI method ’

 ’ using a RODM load function primitive statement.’

 -- Command description --);

Figure 92. Example RODM Load Function Primitive Statement to Invoke EKGSPPI

NetView-Supplied Methods

Chapter 14. Application Programming Reference 487

v DUIFVEVF

v DUIFVEXV

v DUIFVFPV

v DUIFVGET

v DUIFVIEW

v DUIFVLST

v DUIFVLTT

v DUIFVMDR

v DUIFVNGI

v DUIFVNGN

v DUIFVNOI

v DUIFVNOT

v DUIFVPFR

v DUIFVSUB

v DUIFVTKN

v DUIFVUNS

v DUIFVUPD

v DUIFVVLC

DUIFCCAN: Clear All Notes

This object-independent method can be run by any application to clear the note

field on all UserStatus flags for all real and aggregate objects in RODM.

Function: Use the DUIFCCAN method to clear all note fields without going

through the topology console for each real and aggregate object. An operator ID of

″DUIFCCAN″ will be set to indicate that the note was cleared by this method,

instead of an operator.

Input: This method does not require input parameters and can be triggered with

the following RODM load function primitive statement:

OP DUIFCCAN INVOKED WITH;

Output: If this method encounters errors, it sets a return and reason code and

writes a type 1 record to the RODM log. Table 207 on page 478 lists the reason

codes that can be returned by this method.

DUIFCLRT: Link Resource Type Method

This method is an object-independent method that is run to link or unlink:

v The DisplayResourceType field of a real, aggregate, or shadow object to the

Resources field of an object of the Display_Resource_Type_Class.

v The DisplayResourceType field of a View_Information_Reference_Object to the

Resources field of an object of the Display_Resource_Type_Class.

Function: Use the DUIFCLRT method to ensure that the DisplayStatus field value

of the affected aggregate resources is recalculated when the DisplayResourceType

field of a real or aggregate resource is changed. These changes might occur:

v If the DisplayResourceType value of a GMFHS_Managed_Real_Objects_Class

object is changed, the DefaultAggregationPriorityCopy value of that object might

need to be changed. If this change affects the effective aggregation priority of

that real resource, the aggregate resources affected by that change must be

updated and their DisplayStatus values recalculated. To make this change, the

DUIFCLRT method triggers the DUIFCAPC method.

v If the DisplayResourceType link is changed in an object of the

GMFHS_Aggregate_Objects_Class, GMFHS recalculates the DisplayStatus field

value for that aggregate.

NetView-Supplied Methods

488 Resource Object Data Manager and GMFHS Programmer’s Guide

The DUIFCLRT method cannot be triggered by other methods, including the

EKGLISLM and EKGLIILM initialization methods. Do not trigger the DUIFCUAP

method using another method.

Figure 93 is an example of triggering the DUIFCLRT method using a RODM load

function primitive statement.

Input: Specify the input parameters to the DUIFCLRT method using three of the

four items in a SELFDEFINING data type. The items are summarized in Table 215,

followed by a complete description of each item.

 Table 215. Input Values for DUIFCLRT Operation

Item Description Data Type Required/Optional

�1� Link or unlink CHARVAR or

SMALLINT

Required

�2� Resource object CHARVAR or

OBJECTID

Optional

1

�3� Display resource type CHARVAR or

OBJECTID

Required

�4� View information

reference object

CHARVAR or

OBJECTID

Optional

1

Note:

1 Either the Resource Object or the View Information Resource Object must be

specified; however, both cannot be specified.

 �1� The first item specifies the operation, and can be the CHARVAR data type

or the SMALLINT data type. Valid values are:

 Table 216. Input Values for DUIFCLRT Operation

Operation CHARVAR SMALLINT

Link resources LINK 1

Unlink resources UNLINK 2

 �2� The second item specifies the real, aggregate, or shadow object being linked

or unlinked, and can be the CHARVAR data type or the OBJECTID data type.

This item is optional, however, if it is not specified, the fourth item must be

specified. If you are not specifying this item, the null character must be

specified. For example, use the following code:

 (CHARVAR) ’

For a CHARVAR item, specify the class name and the object name separated

with a period. For an OBJECTID item, specify the class name within single

quotation marks and the object name within single quotation marks, separated

by a period. For example, use the following code:

 (CHARVAR) ’Display_Resource_Type_Class.DUIXC_RTN_NN_DOMAIN_AGG’

 (OBJECTID) ’Display_Resource_Type_Class’.’DUIXC_RTN_NN_DOMAIN_AGG’

OP DUIFCLRT INVOKED_WITH (SELFDEFINING)

 (

 (SMALLINT) 1

 (CHARVAR) ’

 (CHARVAR) ’Display_Resource_Type_Class.DUIXC_RTN_NN_DOMAIN_AGG’

 (OBJECTID) ’View_Information_Reference_Class’.

 ’1.3.18.0.0.2150_Reference’

);

Figure 93. RODM Load Function Primitive Statement Invoking DUIFCLRT

NetView-Supplied Methods

Chapter 14. Application Programming Reference 489

If the class name or object name used in a CHARVAR data item contains a

period, enclose the name in two single quotation marks. For example, if the

class name was Class.name, use the following code:

 (CHARVAR)’Class.name’.Object’

If the class name or object name used in a CHARVAR or OBJECTID data item

contains a single quotation mark (’) character, use two single quotation marks

to specify the single quotation mark. For example, if the name of an object was

Greg’sObject, use the following code:

 (CHARVAR)’Class.Greg’sObject’

 �3�The third item specifies the Display_Resource_Type_Class object being

linked or unlinked. This item is required. The format for the third item is the

same as the format for the second item.

 �4�The fourth item specifies the View_Information_Reference _Object being

linked or unlinked. This item is optional; however, if it is not specified, the

second item must be specified. If you are not specifying this item, the null

character must be specified. For example, use the following code:

 (CHARVAR) ’

The format for the fourth item is the same as the format for the second item.

Output: The link or unlink is performed.

If this method encounters errors, it sets a return and reason code and writes a

type1 record to the RODM log. Table 207 on page 478 lists the reason codes that

can be returned by this method.

DUIFCUAP: Update Aggregation Path Method

This is an object-independent method which is to be run whenever two resource

objects are to be linked or unlinked using the AggregationChild field in an object

of the GMFHS_Aggregate_Objects_Class and the AggregationParent field in a

different GMFHS_Aggregate_Objects_Class object or

GMFHS_Managed_Real_Objects_Class object.

Function: Use this method to ensure that the ″Value.″ (count) fields and the

DisplayStatus field value in the aggregate resource and its aggregation ancestors

above the link or unlink are updated to reflect the addition (for a link) or deletion

(for an unlink) of real resource aggregation descendants.

Use of this method also prevents the introduction of loops into the aggregation

hierarchy. An aggregation hierarchy loop occurs when the AggregationParent field

of an aggregate object contains a link to the AggregationChild field of the same

object or to an object that has an AggregationParent field that is linked either

directly or through other aggregate objects to the AggregationChild field of the

first aggregate object.

While GMFHS is operating, use only the DUIFCUAP method to add aggregate

resources to or delete aggregate resources from aggregation hierarchies. Note that

this requirement is not enforced by RODM.

GMFHS only uses the DUIFCUAP method indirectly, using the RODM load

function because GMFHS does not otherwise change the aggregation hierarchy.

The DUIFCUAP method cannot be triggered by other methods, including the

EKGLISLM and EKGLIILM initialization methods. Do not trigger DUIFCUAP

using another method. Figure 94 on page 491 is an example of triggering the

NetView-Supplied Methods

490 Resource Object Data Manager and GMFHS Programmer’s Guide

DUIFCUAP method using a RODM load function primitive statement.

Input: Specify the input parameters to the DUIFCUAP method using three items

in a SELFDEFINING data type.

v The first item specifies the operation, and can be the CHARVAR data type or the

SMALLINT data type. Valid values are:

 Table 217. Input Values for DUIFCUAP Operation

Operation CHARVAR SMALLINT

Link resources LINK 1

Unlink resources UNLINK 2

v The second item specifies the real or aggregate object being linked or unlinked

that is lower in the aggregation hierarchy. This data item can be the CHARVAR

data type or the OBJECTID data type. For a CHARVAR item, specify the class

name and the object name separated with a period. For an OBJECTID item,

specify the class name within single quotation marks and the object name within

single quotation marks, separated by a period. For example:

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.ETHERNET’

 (OBJECTID)’GMFHS_Aggregate_Objects_Class’.’ETHERNET’

If the class name or object name used in a CHARVAR data item contains a

period, enclose the name in two single quotation marks. For example, if the class

name was Class.name, code:

 (CHARVAR)’Class.name’.Object’

If the class name or object name used in a CHARVAR or OBJECTID data item

contains a single quotation mark (’) character, use two single quotation marks to

specify the single quotation mark. For example, if the name of an object was

Greg’sObject, code:

 (CHARVAR)’Class.Greg’sObject’

v The third item specifies the aggregate object being linked or unlinked that is

higher in the aggregation hierarchy. The format for the third item is the same as

the format for the second item.

Output: The link or unlink is performed.

If this method encounters errors, it sets a return and reason code and writes a type

1 record to the RODM log. Table 207 on page 478 lists the reason codes that can be

returned by this method.

DUIFCUUS: Update User Status Method

This is a named method installed on the UpdateUserStatus field of all objects

under the GMFHS_Displayable_Objects_Parent class during the initial RODM

structure load for GMFHS. The GMFHS_Monitorable_Objects_Class inherits this

method.

Function: Use this method for any application that must change the UserStatus

field value of any descendent class of GMFHS_Displayable_Objects_Parent_Class,

OP DUIFCUAP INVOKED_WITH (SELFDEFINING)

 ((CHARVAR)’LINK’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.ETHERNET’

 (CHARVAR)’GMFHS_Aggregate_Objects_Class.WESTCTR’);

Figure 94. RODM load function primitive statement invoking DUIFCUAP

NetView-Supplied Methods

Chapter 14. Application Programming Reference 491

including the GMFHS_Managed_Real_Objects_Class, the

GMFHS_Aggregate_Objects_Class, and GMFHS_Shadow_Objects_Class.

Input: The following input is required for DUIFCUUS_Update_User_Status

method:

v A 4-byte mask specifying which bits of UserStatus to change

v A 4-byte UserStatus containing the new values

v An 8-byte character field containing the operator ID, method name, or product

that is changing the UserStatus field

v A 20 byte block of reserved fields

Refer to the IBM Tivoli NetView for z/OS Data Model Reference for a description of

the UserStatus field, including bit values.

The following examples illustrate how to set the UserStatus bits. The bits have

been split into lines to help show the different values.

Required bits:

v First 16 bytes contain the mask, UserStatus and operator ID.

v Next 20 bytes are reserved.

The following example RODM load function primitive statement indicates that

OPER1 set the mark bit for the WESTCTR object.

OP ’GMFHS_Aggregate_Objects_Class’.’WESTCTR’.’UpdateUserStatus’

 INVOKED_WITH (SELFDEFINING)

 ((ANONYMOUSVAR)X’8000000080000000D6D7C5D9F1404040’

 ’00’);

The following example RODM load function primitive statement indicates that

OPER1 cleared the mark bit for the WESTCTR object.

OP ’GMFHS_Aggregate_Objects_Class’.’WESTCTR’.’UpdateUserStatus’

 INVOKED_WITH (SELFDEFINING)

 ((ANONYMOUSVAR)X’8000000000000000D6D7C5D9F1404040’

 ’00’);

Notes:

1. The minimum number of bytes that can be sent as input to DUIFCUUS is 36.

Set the mask, UserStatus, and operator ID as desired and set the remaining 20

bytes to zero.

2. When specifying an operator ID:

v The operator ID must be 8 bytes

v The operator ID can be all blanks

The DUIFCUUS method restricts the bits that can be changed based on the class of

the object being changed.

v The marked bit (0x80000000) can be changed for any object.

v The suspended (0x20000000) and automatically clear suspended (0x60000000)

bits can be changed only for objects of classes that are children of the

GMFHS_Real_Objects_Class.

Note: A shortcut to suspending real objects is possible by setting the suspended

bit of an aggregate. The aggregate itself is not suspended; instead the

Child Suspended bit (0x00800000) is set for the aggregate and all real

objects who are children of the aggregate inherit the suspended bit. The

NetView-Supplied Methods

492 Resource Object Data Manager and GMFHS Programmer’s Guide

automatic resume bit can be set in addition to the suspended bit, and it

will also be inherited by the real object children.

v The child suspended bit (0x00800000) can be cleared for an aggregate. The

suspended and automatic resume bits of all real object children of the aggregate

will also be cleared.

v The aggregate threshold inconsistency bit (0x08000000) can be changed only for

objects of class GMFHS_Aggregate_Objects_Class.

v The automation in progress bit (0x04000000) can be changed for any object.

v The not monitored bit can be changed only for objects of children that are

children of the GMFHS_Real_Objects_Class.

Output: If this method is triggered using the EKG_TriggerNamedMethod

function, supply a response block for the output. The response block must be at

least 22 bytes. The Concat_of_strings field in the response block is a SelfDefining

string with the following format:

 Table 218. Output from DUIFCUUS Method

Offset Length Value Description

000 2 12 Total length of SelfDefining string

002 2 30 Data type AnonymousVar

004 2 8 Length of AnonymousVar data

006 8 Value of timestamp subfield of UserStatus field

after update

If this method encounters errors, it sets a return and reason code and writes a type

1 record to the RODM log. Table 207 on page 478 lists the reason codes that can be

returned by this method.

DUIFECDS: Change Display Status Method

This method is a named method that is installed on the ChangeDisplayStatus field

of all objects that are defined on the GMFHS_Managed_Real_Objects_Class.

Function: This method changes the DisplayStatus field of an object of the

GMFHS_Managed_Real_Objects_Class and reports to the caller the effect of the

change. The DisplayStatus field is changed only if one of the following conditions

is satisfied:

v The unconditional change input parameter is non-zero

v The time input parameter is greater-than or equal-to the

SourceStatusUpdateTime field of the object to be changed

The following example RODM load function primitive statement sets the

DisplayStatus of object TRMD401 to 129 (satisfactory) only if the value of the

SourceStatusUpdateTime field is less-than or equal-to 930402143000Z0000.

 OP ’GMFHS_Managed_Real_Objects_Class’.’TRMD401’.’ChangeDisplayStatus’

 INVOKED_WITH (SELFDEFINING)

 ((ANONYMOUSVAR)X’000000810011F9F3F0F4F0F2F1F4F3F0F0F0E9F0F0F0F00000’);

Input: The input is standard for a named method. The following

short_lived_parm input is required for DUIFECDS_Change_Display_Status

method:

v Display_status (Integer) New DisplayStatus

NetView-Supplied Methods

Chapter 14. Application Programming Reference 493

v Source_status_time (CharVar(17)) New SourceStatusUpdateTime in UTC

(Coordinated Universal Time) format. The time stamp provided to DUIFECDS

must be normalized to UTC, that is, the sign and offset portions of the time

stamp must be Z0000.

v Unconditional_change (Smallint). If 0, this method changes the DisplayStatus of

the target object only if the SourceStatusUpdateTime field of the target object is

less than the Source_status_time input parameter. If not 0, this method changes

the DisplayStatus of the target object without checking the Source_status_time

input parameter.

Output: If this method is triggered using the EKG_TriggerNamedMethod

function, supply a response block for the output. The response block must be at

least 22 bytes. The Concat_of_strings field in the response block is a SelfDefining

string with the following format:

 Table 219. Output from DUIFECDS Method

Offset Length Value Description

000 2 12 Total length of SelfDefining string

002 2 30 Data type AnonymousVar

004 2 16 Length of AnonymousVar data

006 4 Integer new value of DisplayStatus field

010 4 Integer previous value of DisplayStatus field

014 8 Value of timestamp subfield of DisplayStatus

field after update

If this method does not change the DisplayStatus field of the target object because

the unconditional change parameter is 0 and the time parameter is less than the

SourceStatusUpdateTime field, the method sets the output parameters as follows:

v New DisplayStatus is set to the current value of DisplayStatus.

v Previous DisplayStatus is set to the current value of DisplayStatus.

v Timestamp is set to 0.

If this method encounters errors, it sets a return and reason code and writes a type

1 record to the RODM log. Table 207 on page 478 lists the reason codes that can be

returned by this method.

DUIFFAWS: Aggregation Warm Start Method

This is an object-independent method that is run to initialize the fields related to

status aggregation in the real and aggregate objects in the RODM data cache.

GMFHS runs this method:

v During initialization of the configuration definition at startup

v When GMFHS recovers a lost connection to RODM

v When a CONFIG NETWORK command is processed

To disable the DUIFFAWS method, code the AGGRST=NO parameter in the

GMFHS startup procedure or code LCON-AGGRST-REQUIRED=NO in the

GMFHS DUIGINIT file.

Function: This method reinitializes:

v The DefaultAggregationPriorityValue field of each real object that is linked to a

Display_Resource_Type_Class object

v The following fields of each aggregate object that is linked to a

Display_Resource_Type_Class object:

NetView-Supplied Methods

494 Resource Object Data Manager and GMFHS Programmer’s Guide

– NOXCPTCount

– PriorityXCPTCount

– SuspendedCount

– StatusGroupCounts

– TotalRealResourceCount

– UnknownCount

– XCPTCount

After reinitializing these fields, this method recalculates the status for each

aggregate object.

You can trigger the DUIFFAWS method using the RODM load function if a failure

or application error causes one or more of the aggregate object fields in the

previous list to be incorrect.

The following RODM load function statement triggers the DUIFFAWS method:

OP DUIFFAWS INVOKED_WITH;

Input: There are no input parameters for this method.

Output: If this method encounters errors, it sets a return and reason code and

writes a type 1 record to the RODM log. Table 207 on page 478 lists the reason

codes that can be returned by this method.

DUIFFIRS: Set Initial Resource Status Method

This method is triggered by GMFHS after the initialization of the configuration

definition. It is triggered for each Non_SNA_Domain_Class object for which

resource status solicitation will not be done and which is linked to an NMG_Class

object which has an AgentStatusEffect field that indicates that the ability to receive

alerts for the resources in the domain is not dependent on the AgentStatus of the

NMG.

This method is also triggered when a gateway communication session is

established for a non-SNA domain for which resource status solicitation will be

done if the value of the InitialResourceStatus field of the domain is not 132

(unknown).

Function: This method is triggered by GMFHS during initialization of the

configuration. It is triggered for each non-SNA domain for which resource status

solicitation will not be done if the non-SNA domain is associated with an NMG

that specifies AgentStatusEffect as 0.

This method is also triggered when status solicitation starts for resources within a

non-SNA domain if the value of InitialResourceStatus field of the non-SNA domain

is not equal to 132 (unknown).

Input: The inputs required for DUIFFIRS_Set_Initial_Resource_Status method are:

v RODM ObjectID of a Non_SNA_Domain_Class object.

v Time in UTC time stamp format to be associated with the change.

v Unconditional change indicator. If the 2-byte field is not equal to 0, this method

sets all resources in the non-SNA domain to the value of the

InitialResourceStatus field for the domain. If the unconditional change indicator

is equal to 0, this method sets resources in the non-SNA domain to the value of

the InitialResourceStatus field only if the resource specifies DisplayStatus equal

to 132 (unknown).

NetView-Supplied Methods

Chapter 14. Application Programming Reference 495

The following hex string is an example of the input parameter to the DUIFFIRS

method. This example specifies a target object in the SNA_Domain_Class which

has a RODM object identifier value of X'00010010F9DC34AA'. The time is specified

as 1430Z on 2 May, 1993. The unconditional change indicator is set to 1, so all

resources in the domain will be updated. The input parameter is:

 X’00010010F9DC34AAF9F3F0F5F0F2F1F4F3F0F0F0E9F0F0F0F00001’

Output: If this method encounters errors, it sets a return and reason code and

writes a type 1 record to the RODM log. Table 207 on page 478 lists the reason

codes that can be returned by this method.

DUIFFRAS: Recalculate Aggregate Status Method

This object-independent method can be triggered to recalculate the DisplayStatus

of all aggregate objects.

Function: This method recalculates the status of every aggregate object based on

each aggregate’s status counter.

Input: This method requires no input parameters. This method can be triggered

with the following RODM load function primitive statement:

 OP DUIFFRAS INVOKED_WITH;

Output: If this method encounters errors, it sets a return and reason code and

writes a type 1 record to the RODM log. Table 207 on page 478 lists the reason

codes that can be returned by this method.

DUIFFSUS: Set Unknown Status Method

This object-independent method is triggered to set the DisplayStatus field value of

all the real objects linked to the Resources field of a specified

Non_SNA_Domain_Class object to 132 (unknown). GMFHS triggers this method:

v After the configuration definition is initialized for each non-SNA for which the

DUIFFIRS method is not triggered

v When the AgentStatus field of an NMG_Class object that is linked to the

ReportsToAgent field of the Non_SNA_Domain_Class object changes from 1

(satisfactory) or 3 (intermediate) to 0 (unknown) or 2 (unsatisfactory) and the

AgentStatusEffect field value indicates that the ability to receive alerts for the

resources in the domain is affected by the AgentStatus of the NMG

v When GMFHS receives an alert that indicates the transaction program or

element manager associated with the domain is down

Function: This method sets value of the DisplayStatus field of all real resource

objects linked to the Resources field of the specified Non_SNA_Domain_Class

object to 132 (unknown). It sets the value of the SourceStatusUpdateTime field of

each of these objects to the specified value.

Input: The inputs required for DUIFFSUS_Set_Unknown_Status method are:

v DomainObjectID representing Domain’s RODM object identifier

v StatusUpdateTime representing New value for SourceStatusUpdateTime field in

UTC format

The following hex string is an example of the input parameter to the DUIFFSUS

method. This example specifies a target object in the SNA_Domain_Class which

has a RODM object identifier value of X'00010010F9DC34AA'. The time is specified

as 1430Z on 2 May, 1993. The input parameter is:

 X’00010010F9DC34AAF9F3F0F5F0F2F1F4F3F0F0F0E9F0F0F0F0’

NetView-Supplied Methods

496 Resource Object Data Manager and GMFHS Programmer’s Guide

Output: If this method encounters errors, it sets a return and reason code and

writes a type 1 record to the RODM log. Table 207 on page 478 lists the reason

codes that can be returned by this method.

DUIFRFDS: Refresh DisplayStatus Change Method DUIFCRDC

This object-independent method can be run by any application to change the

DisplayStatus field to the current DisplayStatus value for every real and aggregate

resource defined in RODM.

Function: This method is useful when the DisplayStatus mapping table,

DUIFSMT, has been changed. Instead of waiting for a status change from the

network to trigger an exception view update, method DUIFRFDS can be run to

cause the status change, which recalculates the exception state of the objects. The

appropriate exception views are then updated.

Input: This method requires no input parameters and can be triggered with the

following RODM load function primitive statement:

 OP DUIFRFDS INVOKED_WITH;

See sample CNMSJH13 for an example of triggering the method.

Output: If this method encounters errors, it sets a return and reason code and

writes a type 1 record to the RODM log. Table 207 on page 478 lists the reason

codes that can be returned by this method.

DUIFVCFT: Change Exception State

This object-independent method can be run by a user method to change the

exception state of an object.

Function: The user method that runs method DUIFVCFT is specified by the

USRXMETH keyword in DisplayStatus mapping table DUIFSMT. Sample user

methods DUIFCUXM and DUIFCUX2 run method DUIFVCFT to set either value

XCPT or NOXCPT in the ResourceTraits field the same way a real DisplayStatus

change is processed. DUIFVCFT will then trigger a method to determine if the

change in exception state will cause the object to be added to or deleted from any

open exception views.

Input: Table 220 lists the input parameters for method DUIFVCFT:

 Table 220. Input Values for DUIFVCFT

Parameter Data Type Length of Field

Total_Length SMALLINT 2

Data_Type SMALLINT 2

Data_Length SMALLINT 2

Resource_Object_ID OBJECTID 8

Requested_exception_status INTEGER 4

Output: The ResourceTraits field of the resource is updated to reflect the

requested exception state.

If this method encounters errors, it sets a return and reason code and writes a type

1 record to the RODM log. Table 207 on page 478 lists the reason codes that can be

returned by this method.

NetView-Supplied Methods

Chapter 14. Application Programming Reference 497

Notes:

1. Resource_Object_ID is the object id of the resource whose changed

DisplayStatus triggered the user method.

2. Set Requested_exception_status to 0 if you do not want the resource to have an

exception state. DUIFVCFT will set value NOXCPT in the ResourceTraits field

for this resource.

3. Set Requested_exception_status to 1 if you do want the resource to have an

exception state. DUIFVCFT will set value XCPT in the ResourceTraits field for

this resource.

4. See “Creating a DisplayStatus Method for Exception Views” on page 111 for

more information.

DUIFVINS: Install View Granularity Method (DUIFVNOT)

This object-independent method installs method DUIFVNOT on a class or field.

Function: DUIFVINS must be run for each new class or connectivity field that is

added to the data model.

DUIFVNOT is inherited by all objects of a class. For a list of all the fields on which

GMFHS installs DUIFVNOT, see sample FLBTRDME.

Input: Table 221 lists the input parameters for method DUIFVINS:

 Table 221. Input Values for DUIFVINS

Parameter Data Type Length of Field

enable_change_status SMALLINT 2

rule INTEGER 4

notification_method OBJECTID 8

class CLASSID 4

field FIELDID 4

enable_change_status

This parameter is used to prevent view change notifications (VCNs) when

a field is set to its previous value.

 The values for this parameter are:

0 Used if either the prev_val subfield does not exist on the field, or if

a VCN must be issued even if the field is changed to its previous

value.

1 Used if the prev_val subfield exists on the field, and if a VCN

must not be issued when the field is changed to its previous value.

rule The criteria used to determine if a field change results in a VCN being

issued. It is implicit in each of these rules, with the exception of

ANY_FIELD_OBJECT_CHANGE, that the objectID or classID and fieldID

involved in the change are used to construct at least one view that is

currently open.

 The values for this parameter are:

1 OBJECT_CHANGE: Send a view update if the field changes at the

object level.

2 VALUE_INCREASE: Send a view update if the field changes at the

object level and the value of the field increases.

NetView-Supplied Methods

498 Resource Object Data Manager and GMFHS Programmer’s Guide

3 VALUE_DECREASE: Send a view update if the field changes at the

object level and the value of the field decreases.

4 CONNECTIVITY: This rule applies to the ObjectLink and

ObjectLinkList data types. Send a view update if the field changes

at the object level and the link or unlink results in a change to the

connectivity displayed in the view. For the following view types,

only one of the objects needs to be currently in a view to indicate a

view change:

 Configuration Parents

 Configuration Logical

 Configuration Physical

 Configuration Backbone

 Configuration Child

 Configuration Child II

 Configuration Child III

For all other view types, both objects must be in a view to indicate

a view change.

5 CLASS_CHANGE: Send a view update if the field changes at the

class level.

6 OBJECT_OR_CLASS_CHANGE: Send a view update if the field

changes at the object or class level.

7 ANY_FIELD_OBJECT_CHANGE: Send a view update if the field

changes at the object level whether or not the field was used to

construct the view. This is for customers that want to monitor

fields that are not involved in view building, including exception

views. The other rules do not result in a VCN for exception views.

See “Defining Exception View Objects and Criteria” on page 100

for more information.

5000 LU_CHANGE: Send a view update if the field changes on an

LU-type object and the monitoringLuCollection field indicates the

LU collection is not in transition.

notification_method

The object ID of the notification method DUIFVNOT.

class The class ID on which DUIFVNOT must be installed.

field The field ID on which DUIFVNOT must be installed.

The following is an example of a RODM loader statement to run DUIFVINS:

 OP DUIFVINS INVOKED_WITH (SELFDEFINING)

 (

 (SMALLINT) 0

 (INTEGER) 1

 (OBJECTID) EKG_Method.DUIFVNOT

 (CLASSID) GMFHS_Real_Objects_Class

 (FIELDID) GMFHS_Real_Objects_Class.DisplayResourceType

);

Output: If this method encounters errors, it sets a return and reason code and

writes a type 1 record to the RODM log. Table 207 on page 478 lists the reason

codes that can be returned by this method.

NetView-Supplied Methods

Chapter 14. Application Programming Reference 499

NetView-Supplied Methods

500 Resource Object Data Manager and GMFHS Programmer’s Guide

Part 5. Appendixes

© Copyright IBM Corp. 1997, 2007 501

502 Resource Object Data Manager and GMFHS Programmer’s Guide

Appendix A. RODM Tools

NetView provides the following tools for use with RODM:

v RODMView

v RODM unload function

v FLCARODM (RODM Access Facility)

v BLDVIEWS

v Visual BLDVIEWS (VBV)

The RODMView function is an interactive application program to view and update

the values of fields in the RODM data cache. RODMView runs under an OST task

in the NetView program.

The RODM unload function can be used to unload classes, objects, and fields. For

example, the RODM unload function can be used to migrate from one version of

RODM to another by unloading an existing RODM and loading the newer version

of RODM with the output from the RODM unload function. See “RODM Unload

Function” on page 538 for more information.

FLCARODM provides a fast and efficient REXX interface to RODM. (FLCARODM

was formerly known as the RODM Access Facility or MultiSystem Manager

Access.) FLCARODM enables you to create, update, and delete objects using a

NetView CLIST written in REXX. FLCARODM provides a simple interface to

RODM and it enables you to exploit the processing advantages of issuing batched

requests to RODM. See “FLCARODM” on page 542 for more information.

BLDVIEWS is a tool that is used for defining custom views which match your

network layout and your preferred style of monitoring it. It works with objects of

the GMFHS, SNA topology manager, and MultiSystem Manager data models.

BLDVIEWS also provides an easy way to map a default set of commands to

generic commands for key MultiSystem Manager resources by enabling generic

command support from a NetView management console (NetView management

console) for MultiSystem Manager discovered network resource objects. See

“BLDVIEWS” on page 585 for more information.

Visual BLDVIEWS (VBV) is an application that simplifies the management of

RODM views and information. VBV provides a graphical, drag-and-drop interface

to the BLDVIEWS tool and the RODMView tool. See the VBV online help for more

information.

Some panels in this appendix show GMFHS information.

RODMView

This section describes how to use RODMView. The following topics are covered:

v Navigating with RODMView

v RODMView restrictions

v Starting RODMView

v Using the RODMView functions

© Copyright IBM Corp. 1997, 2007 503

Navigating Within RODMView

You can navigate within RODMView in the following ways:

v Using the main menu

v Using accelerator PF keys

v Using the PF keys displayed at the bottom of a panel

Panel data entry fields are identified by underscored lines, and there is a command

line at the bottom of each panel.

Navigating Using Menus

RODMView has a main menu panel, which is illustrated in Figure 96 on page 506.

To navigate to the option that you want, enter the corresponding selection number,

or select the appropriate line with the cursor and press Enter. If you enter an

option that is not valid, an error message is displayed.

From any RODMView panel, you can navigate directly to the panel of another

RODMView function by pressing an associated accelerator PF key. Accelerator PF

keys PF13–PF22 correspond to option numbers 1–10 respectively, as shown in

Table 222.

 Table 222. Accelerator PF Keys and Options

PF

Key Option Panel

PF13 Option 1 Access and control

PF14 Option 2 Simple query

PF15 Option 3 Compound query

PF16 Option 4 Locate actions

PF17 Option 5 Link/unlink

PF18 Option 6 Change field

PF19 Option 7 Subfield actions

PF20 Option 8 Create actions

PF21 Option 9 Delete actions

PF22 Option 10 Method actions

On many PC-based terminal emulators, PF keys in the range of PF13–PF22 are

accessed by holding down the shift key (or other control key) and pressing a PF

key in the range 1–10, whose numbers correspond directly to the option numbers.

A list of active PF keys is displayed across the bottom of the RODMView panels.

The PF keys that are displayed and the function they perform vary depending on

the panel that is displayed. Table 223 lists the PF keys and corresponding

functions:

 Table 223. PF Key Function

PF

Key Function

PF1 Displays help information.

PF2 Ends the command and exits.

PF3 Returns control to the previous panel.

PF4 Clears query input fields.

Navigating within RODMView

504 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 223. PF Key Function (continued)

PF

Key Function

PF5 v Repeats the last find request when viewing query output.

v Redisplays the last query or locates output when viewing query and locate

panels.

PF6 Rolls to the next application in the ring.

PF7 Goes back to the previous panel.

PF8 Goes forward to the next panel.

PF9 Copies the query output to the NetView log.

PF10 When the cursor is on a hexadecimal object ID of query or locate output, copies

that object ID to the input line of another panel.

PF11 When the cursor is on a SystemView® class or field name of query or locate

output, translates between the SystemView textual name and numeric identifier.

PF12 Recalls commands entered on the RODMView command line.

RODMView Restrictions

The following is a list of RODMView restrictions:

v The length of a command that RODMView can run is 240 characters. You can

shorten the command that RODMView runs by using class, object, or field IDs

instead of lengthy names.

v The object name input fields are limited to a maximum of 64 bytes on all

RODMView panels even though object names can be a total of 254 bytes in

RODM. You can get around the character limit by using the object ID instead of

the name or by using pattern-matching characters (wild cards) in the name.

v Only the query function supports wild cards.

v Only one copy of RODMView can be run on a single NetView session at a time.

If you attempt to run a second copy of RODMView, the program will exit and

the previous copy of RODMView will regain control.

v You can restrict certain keywords of the EKGVACTM command processor.

Reference: For a list of keywords that can be protected, See the IBM Tivoli

NetView for z/OS Administration Reference. You cannot restrict

keywords for any of the other RODMView command processors.

Starting RODMView

To start RODMView, enter RODMVIEW on the NetView NCCF command line as

shown in Figure 95 on page 506.

Navigating within RODMView

Appendix A. RODM Tools 505

The RODMView main menu is displayed as shown in Figure 96.

 From the RODMView menu you can choose any of the available functions. There

are three ways to choose an option:

v Enter the corresponding number at the prompt next to the selections.

v Move the cursor to the line of the selection and press Enter.

v Use the accelerator PF keys.

You must be signed on to RODM before using any of the other functions.

 NCCF N E T V I E W A01NV OPER2 10/18/97 12:34:56

 - A01NV DSI020I OPERATOR OPER2 LOGGED ON FROM TERMINAL A01A703 USING

 PROFILE (A75PROF), HCL ()

 C A01NV CNM357I PFKDEF : PF KEY SETTINGS NOW ESTABLISHED.

 C A01NV + : DISPFK TO SEE YOUR PF KEY SETTINGS

 ???

RODMVIEW

Figure 95. RODMView NetView Command Line Call

 EKGVMMNI R O D M V i e w A01NV OPER2 10/18/97 12:34:56

 Select one of the following, press Enter.

 __ 1. Access and Control

 2. Simple Query

 3. Compound Query

 4. Locate Objects

 5. Link/Unlink

 6. Change Field

 7. Subfield Actions

 8. Create Actions

 9. Delete Actions

 10. Method Actions

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 96. RODMView Main Menu — EKGVMMNI

Starting RODMView

506 Resource Object Data Manager and GMFHS Programmer’s Guide

Access and Control Function

Select 1. Access and control, from the main menu to display the Access and

Control panel as shown in Figure 97.

 Enter the RODM name and one of the following functions:

v COnnect

v Disconnect

v CHeckpoint

v Stop

v Update

Notes:

1. The capitalized letters of the functions indicate the minimum letters that you

can enter to specify a function. For example, type CO to specify the connect

function.

2. RODM must be started before you can connect to RODM with RODMView.

If you do not specify the user ID, the NetView operator ID is used as the default.

If you do not specify the user password, blanks are used as the user password.

The query pattern-matching character is the character that is used as a wild card

when issuing queries. Note that the asterisk (*) is valid as part of an object name,

and might not be suitable for use as a wild card. The connect function assigns the

value to the wild card. To change it without disconnecting and reconnecting, use

the update function. If the character is changed on this panel, it is only be effective

if the connect or update request is successful.

If there is a system authorization facility enabled on your system, RODM uses it.

Your user ID must be authorized to perform the functions you select. The user ID

might not be the same one as your NetView operator ID. Check with your security

administrator if you are unsure. To avoid access conflicts with other RODM users

and applications, it is best for each RODM user to have a unique RODM user ID

across your z/OS system.

 EKGVACTI Access and Control A01NV OPER2 10/18/97 12:34:56

 RODM name . . rodmname

 User ID . . . rodmuser

 User password

 RODM function connect (COnnect, Disconnect, CHeckpoint, Stop, Update)

 Query pattern matching character *

 Checkpoint before stop Y (Y, N) For Stop function only

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 97. RODMView Access and Control Panel — EKGVACTI

Signing On To RODM

Appendix A. RODM Tools 507

Once you enter the information in the required fields and press Enter, a message is

displayed near the bottom of the panel informing you of the outcome of your

request.

 The message line in the lower-left corner of Figure 98 indicates that the request

was successful with return and reason codes of 0 (zero) from RODM. Return and

reason codes appear in parentheses next to the message. In this example, both the

return and reason codes are 0.

When RODMView receives these return and reason code combinations from

RODM, it tries to convert the combination and to display an associated

RODMView message. Because the RODM return and reason code combinations are

numerous, RODMView only translates the most common combinations. In the case

that RODM returns a return/reason pair that RODMView does not translate, the

RODM reason code and return code are displayed in the following message:

EKGV8037E RODM return code/reason code is (return_code/reason_code)

All RODM-specific return and reason codes are the range of 0–49151. See “RODM

Return and Reason Codes” on page 451 for more information.

If any of the RODMView command processors encounters a problem that is not

due specifically to RODM, the reason code is greater than 67000. These reason

codes are converted by RODMView and the corresponding message is displayed.

When you have successfully signed on to RODM, press PF3 to return to the

RODMView main menu.

Simple Query Function

From the RODMView main menu, select 2. Simple Query to perform different

kinds of queries at various levels of detail. The Simple Query panel is displayed as

shown in Figure 99 on page 509.

 EKGVACTI Access and Control A01NV OPER2 10/18/97 12:34:56

 RODM name . . RODMNAME

 User ID . . . RODMUSER

 User password

 RODM function CONNECT (COnnect, Disconnect, CHeckpoint, Stop, Update)

 Query pattern matching character *

 Checkpoint before stop Y (Y, N) For Stop function only

 EKGV0000I Request is successful(0/0)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 98. RODMView Message for a Successful Connection

Signing On To RODM

508 Resource Object Data Manager and GMFHS Programmer’s Guide

Type the criteria for which you want RODMView to base the query request and

press Enter. For example, if you want to display the object representing your user

ID in the EKG_User class, enter the information as shown in Figure 100. Note that

objects created on the EKG_User class represent users that are currently signed on

to RODM.

 Note that, except for SystemView class and field names, RODM is case-sensitive

for class, object, and field names.

If the specified object exists, the output are displayed as shown in Figure 101 on

page 510.

 EKGVQUEI Simple Query A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView class name _

 Class name _

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name _

 Field ID _

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (Struct, Data, Hex, None)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll F12=PrevCmd

Figure 99. RODMView Query Panel — EKGVQUEI

 EKGVQUEI Simple Query A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView class name _

 Class name EKG_User

 Class ID _

 Object name RODMUSER

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name _

 Field ID _

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (Struct, Data, Hex, None)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll F12=PrevCmd

Figure 100. RODMView Querying Your User ID

Simple Query Function

Appendix A. RODM Tools 509

The Query Output panel shown in Figure 101 shows (in the upper-right corner)

that there are 47 lines of output available, the first 17 of which are displayed on

the current panel.

The 0 return and reason codes in the message indicate that the request was

successful.

For each class entity or field class that RODMView finds that matches the search

criteria, the entity identifier is displayed under the header, Matching entity ID:,

followed by the fields you have specified. In this example, because the query

criteria is very specific, only one entity is found. Leave the Field name and Field

ID fields blank to display all of the fields of this object.

You can also query RODM by numeric identifiers rather than by names. The

identifier of an entity can be found by querying it by name. The identifiers are

displayed in the Matching entity ID section and in the MyID field of that entity for

the sake of clarity.

If numeric identifiers are used at the same time as the corresponding name, the

numeric identifier takes precedence and the names are ignored. For example, if

you query by specifying EKG_System for the Class Name and 1 for the Class ID,

the class that is queried is the UniversalClass because its identifier is 1. The name

EKG_System is disregarded by RODM because a numeric identifier is present.

For each field that exists on the object you query, the field name is displayed, its

data type is displayed in parentheses, and its value is displayed (under the field

name). In some cases, additional information is automatically obtained about the

field.

For example, the RODM-defined data type ClassID is an integer. Because it is

helpful to know what class name corresponds to the number, RODMView further

queries RODM to match the class name with its ID. See the MyPrimaryParentID

field in Figure 101.

 EKGVQUEO Query Output A01NV OPER2 10/18/97 12:34:56

 Lines 1 to 17 of 47

 ---Matching entity ID:

 MyID (OBJECTID)

 (OBJECTID) 000F0006D3299015

 ’RODMUSER’

 (CLASSID) 6

 ’EKG_User’

 - - - - - - - - - - - - - - - - - - - -

 MyPrimaryParentID (CLASSID)

 6

 ’EKG_User’

 EKG_Status (INTEGER)

 1

 EKG_LogLevel (INTEGER)

 8

 EKGV0000I Request is successful (0/0)

 CMD==>

 F1= Help F2= End F3= Return F5= RptFind F6= Roll

Figure 101. RODMView Query Output Panel

Simple Query Function

510 Resource Object Data Manager and GMFHS Programmer’s Guide

For those fields that have no value assigned to them, a blank line follows the line

containing the field name and field data type.

From the query output panel, you can page backward or forward through the

output using PF7 and PF8, or by typing the UP and DOWN commands on the

command line.

The following table is a summary of output control commands available on the

command line of the Query Output panel:

 Table 224. Query Output Control Commands

Command Explanation

UP n Scrolls output up one page, or optionally by n lines.

DOWN n Scrolls output down one page, or optionally by n lines

TOP Scrolls output to the top.

BOTTOM Scrolls output to the bottom.

F find_word Search for find_word from the current panel to the end of

output.

F find_word PREV Search for find_word from the current panel to the

beginning of output. The keyword PREV can be

abbreviated as P.

Note: When searching for a word using the F command, the find_word must be a

single string of alphanumeric characters. Spaces are not permitted even if

they are enclosed in single quotation marks.

You can search for a single word anywhere in the output, starting from the

current panel to the end of the output, by typing the command F

find_word on the command line. Similarly, you can search for a word from

your current position on the panel to the start of the output by typing the

command F find_word PREV or F find_word P on the command line.

Querying RODM Using SystemView Class and Field Names

Some RODM applications, for example, NetView MultiSystem Manager, use a

special naming convention for the SystemView data model. This convention

consists of numbers separated by periods to represent the SystemView name.

RODMView can translate the SystemView data model textual class name. For

example, it can translate the SystemView class name appnNN and the SystemView

field name usageState as shown in Figure 102 on page 512, to the equivalent

RODM class name 1.3.18.0.0.1822 and field name 2.9.3.2.7.39 as shown in

Figure 103 on page 512.

Simple Query Function

Appendix A. RODM Tools 511

Querying RODM Using Pattern-Matching Characters

Use pattern-matching characters to specify a search using less specific criteria. For

example, if you know the name of an object you want to find but do not know

what class it exists under, or if you know a class name contains a certain word,

pattern-matching characters (wild cards) can be used.

Pattern-matching characters in RODMView are available for Class name, Object

name, and Field name input fields for the query functions only.

The default pattern-matching character in RODMView is the asterisk (*), but it can

be changed by the user on the Access and Control panel. Note that an asterisk is a

 EKGVQUEI Simple Query A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView class name appnNN

 Class name _

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 SystemView field name usageState

 Field name _

 Field ID _

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (Struct, Data, Hex, None)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll F12=PrevCmd

Figure 102. RODMView Simple Query Specifying SystemView Class and Field Names

 EKGVQUEI Simple Query A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView class name appnNN

 Class name 1.3.18.0.0.1822

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 SystemView field name usageState

 Field name 2.9.3.2.7.39

 Field ID _

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (Struct, Data, Hex, None)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll F12=PrevCmd

Figure 103. RODMView Simple Query-Translated SystemView Textual Class and Field

Names

Simple Query Function

512 Resource Object Data Manager and GMFHS Programmer’s Guide

valid character in an object name, and unexpected results can occur when querying

for objects that contain asterisks in their names. The following are examples of

search strings that use pattern-matching characters:

Test* Matches on a name starting with Test

*Test Matches on a name ending with Test

Test Matches on a name that contains Test anywhere within it

* Matches every name

For example, to query all the fields related to logging and defined on classes

starting with the letters EKG, specify the query as shown in Figure 104.

 RODMView searches for all fields that contain Log in their names. Every class

defined in RODM is searched.

Figure 105 on page 514 illustrates the output panel for a typical RODM.

 EKGVQUEI Simple Query A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView class name _

 Class name EKG*

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name *Log*

 Field ID _

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (Struct, Data, Hex, None)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll F12=PrevCmd

Figure 104. RODMView Query for Fields That Contain the Word Log

Simple Query Function

Appendix A. RODM Tools 513

As shown in Figure 105, RODMView found two classes that have Log in their field

names: the EKG_User class and the EKG_System class. The EKG_User class has

two fields matching the criteria: EKG_LogLevel and EKG_MLogLevel. The

EKG_System class has the field EKG_ExternalLogState.

The output from the above example shows information at the class level. To see

the same information at the object level, enter a pattern-matching character in the

Object Name input field and on the Class name input field and press Enter.

Some queries display a large number of lines, particularly when using

pattern-matching characters. The query request will not display more lines than

specified in the Maximum lines returned field. If you specify 0, RODMView

defaults to 5000. If the response to a query results in more lines being returned

than specified by the Maximum lines returned field, you are notified in the last

two lines that this has occurred.

Note: Use caution when setting the Maximum lines returned to values greater

than 5000 You can increase the Maximum lines returned value to display

lines that are truncated in a query report. However, if you specify a value

that is too large, you can exceed NetView storage capacity. To correct this,

narrow the scope of your query request . Figure 106 on page 515 illustrates

the results of the previous query request where Maximum lines returned is

set to 10 and the lines returned by the query are 17. Notice that the query

request completed successfully and the excess lines are not displayed. The

last two lines displayed indicate that the query report is truncated. In this

example, increase the Maximum lines returned to a value greater than or

equal to 17 to prevent the query report being truncated.

 EKGVQUEO Query Output A01NV OPER2 10/18/97 12:34:56

 Lines 1 to 17 of 17

 ---Matching entity ID:

 MyID (CLASSID)

 6

 ’EKG_User’

 - - - - - - - - - - - - - - - - - - - -

 EKG_LogLevel (INTEGER)

 8

 EKG_MLogLevel (INTEGER)

 8

 ---Matching entity ID:

 MyID (CLASSID)

 5

 ’EKG_System’

 - - - - - - - - - - - - - - - - - - - -

 EKG_ExternalLogState (INTEGER)

 1

 EKGV0000I Request is successful (0/0)

 CMD==>

 F1= Help F2= End F3= Return F5= RptFind F6= Roll

Figure 105. RODMView Query Output for Fields Containing ’Log’

Simple Query Function

514 Resource Object Data Manager and GMFHS Programmer’s Guide

Compound Query Function

From the RODMView main menu, select 3. Compound Query to perform different

kinds of queries at various levels of detail using multiple criteria. The Compound

Query panel is displayed as shown in Figure 107 on page 516.

The criteria the simple query function uses to display classes and objects are the

class and object names themselves. The compound query function not only enables

you to search for classes and objects in the same manner, but also enables selection

of only those classes or objects that meet other criteria. For example, it is possible

to search for all objects in RODM that have a particular value in a field. It is also

possible to search for all objects that are linked to other objects through a field and

that have a particular value in a field.

From the RODMView main menu, select 3. Compound Query. Four panels are

used to specify the query:

v Use the Compound Query panel EKGVQA1I (shown in Figure 107 on page 516),

to specify where to begin the search by specifying the class and object names.

v Use panel EKGVQA2I (shown in Figure 108 on page 516), to specify criteria that

the classes or objects must meet to be displayed.

v Use panel EKGVQA3I (shown in Figure 109 on page 517), to specify a field that

is followed to query any linked entities. You can also specify criteria that the

entities found on the traversed field must meet to be displayed.

v Use panel EKGVQA4I (shown in Figure 110 on page 517), to specify which fields

(or all fields, if left blank) are displayed of the entities that met all the search

criteria you entered.

Use PF7 and PF8 to navigate among the four Compound Query panels. To clear all

the input fields on all of the panels, press PF4; note that RODMView asks for

verification.

 EKGVQUEO Query Output A01NV OPER2 10/18/97 12:34:56

 Lines 1 to 12 of 12

 ---Matching entity ID:

 MyID (CLASSID)

 6

 ’EKG_User’

 - - - - - - - - - - - - - - - - - - - -

 EKG_LogLevel (INTEGER)

 8

 EKG_MLogLevel (INTEGER)

 8

 ****Report Truncated****

 Returned Lines: 10 Total Lines: 17

 EKGV0000I Request is successful (0/0)

 CMD==>

 F1= Help F2= End F3= Return F5= RptFind F6= Roll

Figure 106. RODMView Excessively Large Query Output

Compound Query Function

Appendix A. RODM Tools 515

EKGVQA1I Compound Query A01NV OPER2 10/18/97 12:34:56

 RODM name _

 User ID . . _

 Initial query criteria (Specify entity or entities to begin the search with):

 SystemView class name _

 Class name _

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 Output options:

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (None, Struct, Data, Hex)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 (Use PF8 to further specify query)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

 F8= Next F12=PrevCmd

Figure 107. RODMView Compound Query Panel 1 — EKGVQA1I

 EKGVQA2I Query Criteria A01NV OPER2 10/18/97 12:34:56

 Entities from the previous panel should meet the following criteria:

 SystemView field name _

 Field name _

 Operator = (=, >, <, <>, <=, >=)

 Value . . _

 Operator between these two criteria AND (And, Or)

 Entities from the previous panel should also meet the following criteria:

 SystemView field name _

 Field name _

 Operator = (=, >, <, <>, <=, >=)

 Value . . _

 (Use PF8 to further specify query)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 108. RODMView Query Criteria Panel 2 — EKGVQA2I

Compound Query Function

516 Resource Object Data Manager and GMFHS Programmer’s Guide

The following sections provide two examples of using the compound query

function. Definitions from the GMFHS sample network are used.

Compound Query Example 1

The first example shows how to use the compound query function to find

aggregate objects with non-satisfactory status. To do this, type

GMFHS_Aggregate_Objects_Class for the Class name, and the pattern-matching

character (*) for the Object name on panel EKGVQA1I, as shown in Figure 111 on

page 518.

 EKGVQA3I Query Traversed Criteria A01NV OPER2 10/18/97 12:34:56

 Find entities linked to the following field (leave blank to ignore):

 Traverse SystemView field name _

 Traverse field name _

 Entities found in the Traverse field should meet the following criteria:

 SystemView field name _

 Field name _

 Operator = (=, >, <, <>, <=, >=)

 Value . . _

 Operator between these two criteria AND (And, Or)

 Entities found in the Traverse field should also meet the following criteria:

 SystemView field name _

 Field name _

 Operator = (=, >, <, <>, <=, >=)

 Value . . _

 (Use PF8 to specify which fields are printed for each entity found)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 109. RODMView Query Traversed Criteria Panel 3 — EKGVQA3I

 EKGVQA4I Query Field Selection A01NV OPER2 10/18/97 12:34:56

 Field(s) to display of entity (or entities) found:

 SystemView field name _

 Field name _

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 110. RODMView Query Field Selection Panel 4 — EKGVQA4I

Compound Query Function

Appendix A. RODM Tools 517

To select those objects that have an unsatisfactory status, press PF8 on the first

compound query panel to scroll to the second compound query panel, EKGVQA2I.

Specify that the DisplayStatus field is to have a value other than 129, as shown in

Figure 112.

 Because there are no values specified for any other input fields, RODMView

ignores these input fields.

You can restrict the fields that are displayed for the entities found that meet the

criteria. For example, to display only the DisplayResourceName of the entities

found, press PF8 twice to display the fourth panel EKGVQA4I, and fill in the input

fields as shown in Figure 113 on page 519.

 EKGVQA1I Compound Query A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Initial query criteria (Specify entity or entities to begin the search with):

 SystemView class name _

 Class name GMFHS_Aggregate_Objects_Class

 Class ID _

 Object name *

 Object ID _ (Hexadecimal value)

 Output options:

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (None, Struct, Data, Hex)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 (Use PF8 to further specify query)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

 F8= Next F12=PrevCmd

Figure 111. Starting a Compound Query on the GMFHS_Aggregate_Objects_Class

 EKGVQA2I Query Criteria A01NV OPER2 10/18/97 12:34:56

 Entities from the previous panel should meet the following criteria:

 SystemView field name _

 Field name DisplayStatus

 Operator <> (=, >, <, <>, <=, >=)

 Value . . 129

 Operator between these two criteria AND (And, Or)

 Entities from the previous panel should also meet the following criteria:

 SystemView field name _

 Field name _

 Operator = (=, >, <, <>, <=, >=)

 Value . . _

 (Use PF8 to further specify query)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 112. Selecting Only Those Entities that Have Nonsatisfactory DisplayStatus

Compound Query Function

518 Resource Object Data Manager and GMFHS Programmer’s Guide

After the compound query specification has been completed, press Enter to run the

query. If all of the GMFHS Sample Network aggregate objects were in

unsatisfactory status, the output is displayed as shown in Figure 114.

 There are 63 lines of output available, but only 17 lines are visible on the output

panel at a time, as shown in Figure 114. Use PF8 to scroll through the output to

display all of the entities that met the criteria.

Compound Query Example 2

The second example shows how to use the compound query function to find all of

the physically connected (through the ComposedOfPhysical link) objects of

aggregates that have a non-satisfactory status, while the aggregate objects have a

satisfactory status. This compound query example uses the following criteria:

v Which objects to start with (all aggregates that have satisfactory status)

 EKGVQA4I Query Field Selection A01NV OPER2 10/18/97 12:34:56

 Field(s) to display of entity (or entities) found:

 SystemView field name _

 Field name DisplayResourceName

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 113. Selecting Only the DisplayResourceName Field to be Displayed

 EKGVQUEO Query Output A01NV OPER2 10/18/97 12:34:56

 Lines 1 to 17 of 63

 ---Matching entity ID:

 MyID (OBJECTID)

 (OBJECTID) 00010012457AE0AA

 ’DEC’

 (CLASSID) 18

 ’GMFHS_Aggregate_Objects_Class’

 - - - - - - - - - - - - - - - - - - - -

 DisplayResourceName (CHARVAR)

 ’DEC’

 ---Matching entity ID:

 MyID (OBJECTID)

 (OBJECTID) 00010012AE51C8AB

 ’BRIDGE01’

 (CLASSID) 18

 ’GMFHS_Aggregate_Objects_Class’

 - - - - - - - - - - - - - - - - - - - -

 DisplayResourceName (CHARVAR)

 EKGV0000I Request is successful (0/0)

 CMD==>

 F1= Help F2= End F3= Return F5= RptFind F6= Roll

Figure 114. Compound Query Example 1 Output

Compound Query Function

Appendix A. RODM Tools 519

v Which field to traverse (the ComposedOfPhysical link)

v The criteria to apply to the objects on the other side of the link (a

non-satisfactory status).

To do this, specify GMFHS_Aggregate_Objects_Class for the Class name and the

pattern matching character (*) for the Object name on panel EKGVQA1I as shown

in Figure 115.

 To select only those objects that have a non-satisfactory status, press PF8 on the

first compound query panel to display the second compound query panel,

EKGVQA2I. Specify that the DisplayStatus field is to have the value 129, as shown

in Figure 116.

 EKGVQA1I Compound Query A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Initial query criteria (Specify entity or entities to begin the search with):

 SystemView class name _

 Class name GMFHS_Aggregate_Objects_Class

 Class ID _

 Object name *

 Object ID _ (Hexadecimal value)

 Output options:

 Level of field detail . . DATA (Struct, Data, Hex)

 Level of subfield detail NONE (None, Struct, Data, Hex)

 Maximum lines returned 5000

 Display field IDs N (Y, N) Display extended field info N (Y, N)

 (Use PF8 to further specify query)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

 F8= Next F12=PrevCmd

Figure 115. Starting a Compound Query on the GMFHS_Aggregate_Objects_Class

 EKGVQA2I Query Criteria A01NV OPER2 10/18/97 12:34:56

 Entities from the previous panel should meet the following criteria:

 SystemView field name _

 Field name DisplayStatus

 Operator = (=, >, <, <>, <=, >=)

 Value . . 129

 Operator between these two criteria AND (And, Or)

 Entities from the previous panel should also meet the following criteria:

 SystemView field name _

 Field name _

 Operator = (=, >, <, <>, <=, >=)

 Value . . _

 (Use PF8 to further specify query)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 116. Selecting Only Those Entities Having a Satisfactory DisplayStatus

Compound Query Function

520 Resource Object Data Manager and GMFHS Programmer’s Guide

To specify that the query follows the ComposedOfPhysical link field and that those

objects found on that link have an unsatisfactory DisplayStatus, press PF8 to scroll

to the third compound query panel, EKGVQA3I. The panel is filled in as shown in

Figure 117.

 You can restrict the output for the entities displayed using the fourth panel,

EKGVQA4I. For example, to display only the DisplayResourceName of the entities

found, the fourth panel is filled in as shown in Figure 118.

 After the compound query specification has been completed, press Enter to run the

query. If some aggregate network objects were in satisfactory status with some of

their descendant objects defined to the ComposedOfPhysical link in

 EKGVQA3I Query Traversed Criteria A01NV OPER2 10/18/97 12:34:56

 Find entities linked to the following field (leave blank to ignore):

 Traverse SystemView field name _

 Traverse field name ComposedOfPhysical

 Entities found in the Traverse field should meet the following criteria:

 SystemView field name _

 Field name DisplayStatus

 Operator <> (=, >, <, <>, <=, >=)

 Value . . 129

 Operator between these two criteria AND (And, Or)

 Entities found in the Traverse field should also meet the following criteria:

 SystemView field name _

 Field name _

 Operator = (=, >, <, <>, <=, >=)

 Value . . _

 (Use PF8 to specify which fields are printed for each entity found)

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 117. Traversing Across the ComposedOfPhysical Link Field and Adding DisplayStatus

Criteria

 EKGVQA4I Query Field Selection A01NV OPER2 10/18/97 12:34:56

 Field(s) to display of entity (or entities) found:

 SystemView field name _

 Field name DisplayResourceName

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F4= Clear F5= PrevOut F6= Roll

Figure 118. Selecting Only the DisplayResourceName Field to be Displayed

Compound Query Function

Appendix A. RODM Tools 521

non-satisfactory status, the output is displayed as shown in Figure 119.

Locate Objects Function

Use the Locate Objects function to search for objects with data defined in indexed

(either CharVar or IndexList) fields:

From the RODMView main menu, select 4. Locate Objects. The Locate Objects

panel is displayed as shown in Figure 120.

 Using the Locate Objects Panel, you can locate objects using the field name and

data value, and you can specify whether you want to display the objects

themselves or just the number of objects with this value that are located.

 EKGVQUEO Query Output A01NV OPER2 10/18/97 12:34:56

 Lines 1 to 17 of 270

 ---Matching entity ID:

 MyID (OBJECTID)

 (OBJECTID) 0001000E8D558A23

 ’NETVIEW.T46A’

 (CLASSID) 14

 ’GMFHS_Managed_Real_Objects_Class’

 - - - - - - - - - - - - - - - - - - - -

 DisplayResourceName (CHARVAR)

 ’T46A’

 ---Matching entity ID:

 MyID (OBJECTID)

 (OBJECTID) 0001000E55D3D385

 ’NETVIEW.T47A’

 (CLASSID) 14

 ’GMFHS_Managed_Real_Objects_Class’

 - - - - - - - - - - - - - - - - - - - -

 DisplayResourceName (CHARVAR)

 EKGV0000I Request is successful (0/0)

 CMD==>

 F1= Help F2= End F3= Return F5= RptFind F6= Roll

Figure 119. Query Output Example 2

 EKGVLOCI Locate Objects A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView field name _

 Field name _

 Field ID _

 Locate datatype CHARVAR (CharVar, INDEXList, INDEXHex)

 Locate value _

 Display located entities in detail Y (Y, N)

 Maximum lines returned 5000

 CMD==>

 F1= Help F2= End F3= Return F5= PrevOut F6= Roll F12=PrevCmd

Figure 120. Locate Objects Panel

Compound Query Function

522 Resource Object Data Manager and GMFHS Programmer’s Guide

The field specified on this panel must have been created as indexed. For example,

both CharVar and IndexList fields can be created as public or public indexed.

Fields must be public indexed to use the indexing and locating capabilities.

To locate objects with a particular value in an indexed CharVar field, type Locate

value as normal characters. To locate data with leading or trailing blanks, enclose

the string in quotation marks.

There are two ways to specify the locate data to locate objects with a particular

value in an IndexList field, If you specify INDEXLIST, you can enter a character

string, and it is automatically converted to AnonymousVar data before it is passed

to RODM. If you specify INDEXHEX as the data type, the data on the Locate

value line must be an even number of hexadecimal digits representing the

AnonymousVar value you want to locate. Character data can contain blanks. To

include leading or trailing blanks, enclose the string in quotation marks.

Note: This data is case sensitive, except on the DisplayResourceName field in the

GMFHS data model.

To locate all the objects that have a value of LANMGR.BRIDGE01 on a field named

DisplayResourceName field, fill in the panel as shown in Figure 121.

 Because CHARVAR is specified as the field datatype, RODMView interprets the

data entered on the Locate value field as character data.

If RODM locates objects with the specified characteristics, panel EKGVQUEO,

Query Output, is displayed as shown in Figure 122 on page 524.

 EKGVLOCI Locate Objects A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView field name _

 Field name DisplayResourceName

 Field ID _

 Locate datatype CHARVAR (CharVar, INDEXList, INDEXHex)

 Locate value LANMGR.BRIDGE01

 Display located entities in detail Y (Y, N)

 Maximum lines returned 5000

 CMD==>

 F1= Help F2= End F3= Return F5= PrevOut F6= Roll F12=PrevCmd

Figure 121. Locating Objects with an Indexed CharVar Field

Locate Objects Function

Appendix A. RODM Tools 523

The next example, shown in Figure 123, shows the same locate function, except

that N is specified in the Display located entities in detail input field to only report

the number of entities that are found with matching data.

 Because N was specified in the Display located entities in detail field, the output

are displayed as shown in Figure 124 on page 525.

 EKGVQUEO Query Output A01NV OPER2 10/18/97 12:34:56

 Lines 1 to 7 of 7

 Number of objects located: 1

 DisplayResourceName (OBJECTIDLIST)

 (OBJECTID) 0001000ED8AD8723

 ’LANMGR.BRIDGE01’

 (CLASSID) 14

 ’GMFHS_Managed_Real_Objects_Class’

 EKGV0000I Request is successful (0/0)

 CMD==>

 F1= Help F2= End F3= Return F5= RptFind F6= Roll

Figure 122. Locate Objects Output

 EKGVLOCI Locate Objects A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView field name _

 Field name DisplayResourceName

 Field ID _

 Locate datatype CHARVAR (CharVar, INDEXList, INDEXHex)

 Locate value LANMGR.BRIDGE01

 Display located entities in detail N (Y, N)

 Maximum lines returned 5000

 CMD==>

 F1= Help F2= End F3= Return F5= PrevOut F6= Roll F12=PrevCmd

Figure 123. Locating Objects with Number of Objects and No Object Detail

Locate Objects Function

524 Resource Object Data Manager and GMFHS Programmer’s Guide

Link/Unlink Function

Use the Link/Unlink function to link or unlink the fields of two objects.

From the RODMView main menu, select 5. Link/Unlink. The Link/Unlink panel is

displayed as shown in Figure 125.

 Using the Link/Unlink panel, you can specify two objects to link or unlink, and

whether you want associated change methods to be run when the link or unlink is

performed.

You must specify enough information to uniquely identify two objects in RODM

and the fields through which they are to be linked. For example, if you have a

class named LinkableStuffClass that has a field called LinkToPeer of type

 EKGVQUEO Query Output A01NV OPER2 10/18/97 12:34:56

 Lines 1 to 1 of 1

 Number of objects located: 1

 EKGV0000I Request is successful (0/0)

 CMD==>

 F1= Help F2= End F3= Return F5= RptFind F6= Roll

Figure 124. Locate Objects Output, No Object Detail

 EKGVLNKI Link/Unlink A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME Link/Unlink . . L (L, U)

 User ID . . RODMUSER Trigger methods Y (Y, N, G)

 Object 1 specification

 Class name _

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 Field name _

 Field ID _

 Object 2 specification

 Class name _

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 Field name _

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 125. RODMView Link Objects Panel — EKGVLNKI

Link/Unlink Function

Appendix A. RODM Tools 525

ObjectLinkList and two objects called Object1 and Object2, you can link them by

entering the link request information as shown in Figure 126.

 You can unlink the two objects by changing the Link/Unlink field from L to U. If

you do not want to involve change methods that are defined to the link fields,

change the Trigger methods from Y to N.

Notes:

1. Objects can only be linked through fields of data types ObjectLink or

ObjectLinkList.

2. Classes cannot be linked or unlinked.

The only output from this function is the return and reason codes displayed on the

message line.

Linking with GMFHS Methods DUIFCLRT and DUIFCUAP

You can use the Link/Unlink function to run the GMFHS methods DUIFCLRT and

DUIFCUAP. Method DUIFCLRT links a GMFHS displayable object to a GMFHS

resource type object. See “DUIFCLRT: Link Resource Type Method” on page 488

for more information about method DUIFCLRT. Method DUIFCUAP creates an

aggregation path from a parent to a child GMFHS displayable object. See

“DUIFCUAP: Update Aggregation Path Method” on page 490 for more information

about method DUIFCUAP. For more information about aggregate objects and

aggregation, see “Defining GMFHS Aggregate Objects” on page 38.

To run these GMFHS methods, enter G in the Trigger methods input field of the

Link/Unlink panel. Also specify whether the method links or unlinks the two

objects by specifying either L or U in the Link/Unlink input field. Specify the class

and object information for the two objects that are to be linked or unlinked.

RODMView determines which method needs to be run. If either of the objects is in

the GMFHS Displayable_Objects_Class class, method DUIFCLRT (link resource

type) is triggered. Otherwise, method DUIFCUAP (update aggregation path)

method is triggered. For example, to link the GMFHS aggregate object NV6000 to

the GMFHS display resource type object DUIXC_RTN_MAN_AGG, the Link/Unlink

 EKGVLNKI Link/Unlink A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME Link/Unlink . . L (L, U)

 User ID . . RODMUSER Trigger methods Y (Y, N, G)

 Object 1 specification

 Class name LinkableStuffClass

 Class ID _

 Object name Object1

 Object ID _ (Hexadecimal value)

 Field name LinkToPeer

 Field ID _

 Object 2 specification

 Class name LinkableStuffClass

 Class ID _

 Object name Object2

 Object ID _ (Hexadecimal value)

 Field name LinkToPeer

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 126. RODMView Linking Two Objects

Link/Unlink Function

526 Resource Object Data Manager and GMFHS Programmer’s Guide

panel is filled in as shown in Figure 127.

 Because one of the objects specified the Displayable_Resource_Type_Class, method

DUIFCLRT is run. The order in which the objects are specified is not significant.

To establish an aggregation path between two objects, the DUIFCUAP is run, with

one object specified as the aggregation parent and the other the aggregation child.

An aggregation child is lower in the aggregation hierarchy than the aggregation

parent. RODMView runs the DUIFCUAP method if the Trigger methods input field

is set to G and the class specifications of both objects are GMFHS displayable

object classes. The first object specification is assumed by RODMView to be the

aggregation child, and the second is assumed to be the aggregation parent.

GMFHS requires that an aggregate parent object is in the

GMFHS_Aggregate_Objects_Class class. For example, to make the GMFHS managed

real object NETVIEW.T46A an aggregation child of the GMFHS aggregate object

NV6000, fill in the Link/Unlink panel as shown in Figure 128 on page 528.

 EKGVLNKI Link/Unlink A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME Link/Unlink . . L (L, U)

 User ID . . RODMUSER Trigger methods G (Y, N, G)

 Object 1 specification

 Class name Display_Resource_Type_Class

 Class ID _

 Object name DUIXC_RTN_MAN_AGG

 Object ID _ (Hexadecimal value)

 Field name _

 Field ID _

 Object 2 specification

 Class name GMFHS_Aggregate_Real_Objects_Class

 Class ID _

 Object name NV6000

 Object ID _ (Hexadecimal value)

 Field name _

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 127. RODMView Linking a GMFHS Aggregate Object To Its Resource Type

Link/Unlink Function

Appendix A. RODM Tools 527

Change Field Function

Use the change field function to change certain types of data stored in fields of

classes or objects.

From the RODMView main menu, select 6. Change field. The Change field panel

is displayed as shown in Figure 129.

 You can change the value of a field of an entity by specifying either its name or ID

along with the name or ID of the field, the field data type, and the new data to

copy. You can also specify whether you want associated change methods to be

triggered before the change takes place. Fields with the following data types can be

changed:

v AnonymousVar

 EKGVLNKI Link/Unlink A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME Link/Unlink . . L (L, U)

 User ID . . RODMUSER Trigger methods G (Y, N, G)

 Object 1 specification

 Class name GMFHS_Managed_Real_Objects_Class

 Class ID _

 Object name NETVIEW.T46A

 Object ID _ (Hexadecimal value)

 Field name _

 Field ID _

 Object 2 specification

 Class name GMFHS_Aggregate_Real_Objects_Class

 Class ID _

 Object name NV6000

 Object ID _ (Hexadecimal value)

 Field name _

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 128. Updating the Aggregation Path Between NETVIEW.T46A and NV6000

 EKGVCHGI Change Field A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME Trigger methods Y (Y, N)

 User ID . . RODMUSER

 SystemView class name _

 Class name _

 Class ID

 Object name _

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name _

 Field ID _

 Field data type _ (Anon, Ber, Char, Float, INDex, INT, Small, Time)

 Field data _

 _

 The following two input fields are used ONLY with the IndexList datatype:

 Update type ADD (Add, Del, Replace) Data is CHARVAR (Anon, CharVar)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 129. RODMView Change Field Panel — EKGVCHGI

Change Field Function

528 Resource Object Data Manager and GMFHS Programmer’s Guide

v BERVar

v CharVar

v Floating

v IndexList

v Integer

v Smallint

v TimeStamp

For example, the display status (the color) of a GMFHS managed object can be

changed by filling in the class, the object and field to change, and the new value to

copy to the field. To change display status of GMFHS managed real object

NETVIEW.T46A to 129, fill in panel EKGVCHGI as shown in Figure 130.

Notes:

1. The Field data input field is limited to a maximum length of 134 characters.

The two lines of input are concatenated together when sending the data to

RODM.

2. The input fields at the bottom of the panel, Update type and Data is, are only

used for IndexList data type fields. These input fields are ignored for all other

data types, even if they are specified.

 EKGVCHGI Change Field A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME Trigger methods Y (Y, N)

 User ID . . RODMUSER

 SystemView class name _

 Class name GMFHS_Managed_Real_Objects_Class

 Class ID

 Object name NETVIEW.T46A

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name DisplayStatus

 Field ID _

 Field data type INTEGER (Anon, Ber, Char, Float, INDex, INT, Small, Time)

 Field data 129

 _

 The following two input fields are used ONLY with the IndexList datatype:

 Update type ADD (Add, Del, Replace) Data is CHARVAR (Anon, CharVar)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 130. RODMView Changing a Field

Change Field Function

Appendix A. RODM Tools 529

Table 225 lists, by data type, the rules for changing fields.

 Table 225. Rules for Changing Specific Data Type

Data Type Rules

AnonymousVar and

BERVar

v The field data entered is interpreted as hexadecimal.

v The field data value is validated to ensure that it contains a hex

string. If it does not contain a hex string, the following message is

displayed:

EKGV8052E The Field data value is not a valid hex value

v When entering hexadecimal data, do not use any special notation

like X’001122’, for example. It is sufficient to enter just the numeric

portion 001122.

v AnonymousVar and BERVar field data types contain a 2-byte

length before the actual data. Do not include the 2-byte length

when you enter a value. RODMView calculates this value after

parsing the data.

CharVar Accepts characters.

Floating Accepts real numbers.

IndexList See “Changing IndexList Fields.”

Integer Accepts integers.

TimeStamp v The string is interpreted as an 8-byte (16 digit) hexadecimal value,

which represents the number of Lillian seconds.

v Query the EKG_Name field on the EKG_System class with the HEX

level of subfield detail to see an example of this value.

Changing IndexList Fields

Use the Change Field function to add elements to or delete elements from an

IndexList field. An example of an IndexList field is the ExceptionViewList field.

Use the Change Field function of RODMView to dynamically change the value of

an ExceptionViewList field. For example, to add views named ’TCPIP ’ and

’LAN27 ’ to the list of exception views for the aggregate object NV6000, fill in

panel EKGVCHGI as shown in Figure 131 on page 531.

Change Field Function

530 Resource Object Data Manager and GMFHS Programmer’s Guide

Notes:

1. The two view names are added to the list, even if the list does not contain

other values.

2. If a value already exists in the list, it is not duplicated.

3. Multiple input values must be separated by spaces, for example, ’TCPIP ’

’LAN27 ’.

4. When values contain spaces, enclose the value in single quotation marks, for

example ’TCPIP ’.

To replace the contents of an index list with the data you specify on the panel,

change the Update type input field to REPLACE.

Subfield Actions Function

Use the Subfield Actions function to specify:

v The type of subfield (Value, Query, Change, Notify, Prev_value, or Timestamp)

v Which action you want to perform (create, delete, or revert to an inherited

value)

v The field that the subfield is associated with

From the RODMView main menu, specify option 7, Subfield Actions. The Subfield

Actions panel is displayed as shown in Figure 132 on page 532.

 EKGVCHGI Change Field A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME Trigger methods Y (Y, N)

 User ID . . RODMUSER

 SystemView class name _

 Class name GMFHS_Aggregate_Objects_Class

 Class ID

 Object name NV6000

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name ExceptionViewList

 Field ID _

 Field data type INDEXLIST (Anon, Ber, Char, Float, INDex, INT, Small, Time)

 Field data ’TCPIP ’ ’LAN27 ’

 _

 The following two input fields are used ONLY with the IndexList datatype:

 Update type ADD (Add, Del, Replace) Data is CHARVAR (Anon, CharVar)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 131. Adding Multiple Values to an IndexList Field in Character Format

Change Field Function

Appendix A. RODM Tools 531

Some actions are not permitted for certain subfields. For example, RODM does not

permit a user to make a Timestamp subfield revert to an inherited value.

Subfields can only be created or deleted on fields of classes. For example, if you

want to create a notify subfield on a field called VeryImportantField which exists

on the ExtrememlyImportantClass class, enter the information in the Subfield

Action panel as shown in Figure 133.

Notes:

1. You cannot use RODMView to change the value of a notify subfield, which is

of the type MethodSpec.

 EKGVSUBI Subfield Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView class name _

 Class name _

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name _

 Field ID _

 Subfield type _ (Value, Query, Change, Notify, Prev_value, Time)

 Action . . . _ (Create, Delete, Revert)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 132. RODMView Subfield Actions Panel — EKGVSUBI

 EKGVSUBI Subfield Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 SystemView class name _

 Class name ExtremelyImportantClass

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 SystemView field name _

 Field name VeryImportantField

 Field ID _

 Subfield type notify (Value, Query, Change, Notify, Prev_value, Time)

 Action . . . create (Create, Delete, Revert)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 133. RODMView Creating a Notify Subfield

Subfield Actions Function

532 Resource Object Data Manager and GMFHS Programmer’s Guide

2. Subfields must be created on the parent class of an object. The existence and

initial contents of the subfield are inherited from the class to the object. For a

Notify subfield, a null value is inherited.

3. Subfields cannot be deleted from class fields when that class has either class or

object children.

4. A subfield must be deleted from the class on which it was defined.

5. The Notify, Prev_value, and Timestamp subfields cannot revert to an inherited

value.

Create Actions Function

Use the Create Actions function to create classes, objects, or fields on classes. In

each case, you must specify which class, called the parent class, you want to work

with.

From the RODMView main menu, select 8. Create Actions. The Create Actions

panel is displayed as shown in Figure 134.

 Table 226 lists the information that must be provided to create a child class, an

object, or a field.

 Table 226. Specifications to Create Entities.

To create this: Fill in only these input fields:

Child Class Class name or Class ID

 Child Class name

Object Class name or Class ID

 Object name

Field Class name or Class ID

 Field name or Field ID

 Field data type

 Field inherits

 EKGVCREI Create Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Parent Class information

 Class name _

 Class ID _

 Child Class to create (optional)

 Child class _

 OR Object to create (optional)

 Object name _

 OR Field to create on the Parent Class (optional)

 Field name _

 Field data type _

 Field inherits _ (PUblic, PRivate, Indexed)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 134. RODMView Create Actions Panel — EKGVCREI

Subfield Actions Function

Appendix A. RODM Tools 533

RODMView requests that RODM create the entity as specified on the panel. If

RODM detects that you are trying to create something that is not possible (for

example, create a field on an object) a message is displayed.

If you want to create an object on the CreatableStuffClass named Object3, enter

the information on the Create Actions panel as shown in Figure 135.

 If you want to create a private field named NewCharVarField on the class

CreatableStuffClass, enter the information in the Create Actions panel as shown

in Figure 136.

Note that no value is specified for the Object name field.

 EKGVCREI Create Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Parent Class information

 Class name CreatableStuffClass

 Class ID _

 Child Class to create (optional)

 Child class _

 OR Object to create (optional)

 Object name Object3

 OR Field to create on the Parent Class (optional)

 Field name _

 Field data type _

 Field inherits _ (PUblic, PRivate, Indexed)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 135. RODMView Creating an Object

 EKGVCREI Create Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Parent Class information

 Class name CreatableStuffClass

 Class ID _

 Child Class to create (optional)

 Child class _

 OR Object to create (optional)

 Object name _

 OR Field to create on the Parent Class (optional)

 Field name NewCharVarField

 Field data type charvar

 Field inherits public (PUblic, PRivate, Indexed)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 136. RODMView Creating a Field

Create Actions Function

534 Resource Object Data Manager and GMFHS Programmer’s Guide

Data in the Field data type and Field inherits input fields are ignored unless a field

name has been specified to create them.

For the example shown in Figure 136 on page 534, the only output from this

request is the return and reason codes displayed on the message line.

Delete Actions Function

Use the Create Actions function to delete classes, objects, or fields on classes.

From the RODMView main menu, select 9. Delete Actions. The Delete Actions

panel is displayed as shown in Figure 134 on page 533.

 Table 227 lists the information that must be provided to delete a child class, an

object, or a field.

 Table 227. Specifications to Delete Entities.

To delete this: Fill in only these input fields:

Class Class name or Class ID

Object Class name, Class ID, or Object

name

Object Object ID

Field Class name, Class ID, Field name,

or Field ID

If you want to delete an object named DeletableObject from the

DeletableStuffClass class, enter the information on the Delete Actions panel as

shown in Figure 138 on page 536.

 EKGVDELI Delete Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Class information

 Class name _

 Class ID _

 Object to delete

 Object name _

 Object ID _ (Hexadecimal value)

 Field to delete from a class

 Field name _

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 137. RODMView Delete Actions Panel — EKGVDELI

Create Actions Function

Appendix A. RODM Tools 535

Before RODMView sends the delete request, you are prompted to verify the delete

request.

Notes:

1. To delete a class, the class must not have class or object children.

2. To delete an object, the object must not contain links to other objects.

3. To delete a field from a class, that class can not have class or object children.

4. A field can not be deleted directly from an object. The field must be deleted

from its parent class.

Method Actions Function

Use the Method Actions function to do the following:

v Trigger a method either as an object-independent or object-specific (named)

method

v Install a method

v Delete a method

v Replace method code

From the RODMView main menu, select 10. Method Actions. The Method Actions

panel is displayed as shown in Figure 139 on page 537.

 EKGVDELI Delete Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Class information

 Class name DeletableStuffClass

 Class ID _

 Object to delete

 Object name DeletableObject

 Object ID _ (Hexadecimal value)

 Field to delete from a class

 Field name _

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 138. RODMView Deleting a Field from a Class

Delete Actions Function

536 Resource Object Data Manager and GMFHS Programmer’s Guide

Using RODMView, object-independent methods are run without short-lived

parameters. Named methods, however, receive the short-lived parameters defined

on the field (of data type MethodSpec) that you specify.

For example, assume there is a field called MethodSpecField of type MethodSpec

defined on the class UsefulClass, and MethodSpecField has a value that includes a

method called USFLMETH. To run the method, enter the information on the

Method Actions panel as shown in Figure 140.

 The method USFLMETH is run with the short-lived parameters defined in the field

MethodSpecField.

 EKGVMETI Method Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Method name _

 Method type _ (Named, Object independent)

 Action . . TRIGGER (Trigger, Install, Delete, Replace)

 Additional information for Named Methods only

 Class name _

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 Field name _

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 139. RODMView Method Actions Panel — EKGVMETI

 EKGVMETI Method Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Method name usflmeth

 Method type named (Named, Object independent)

 Action . . TRIGGER (Trigger, Install, Delete, Replace)

 Additional information for Named Methods only

 Class name UsefulClass

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 Field name MethodSpecField

 Field ID _

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 140. RODMView Triggering a Named Method

Method Actions Function

Appendix A. RODM Tools 537

When the method has finished executing, the return and reason codes that

RODMView displays on the message lines are from the method itself. The result of

the example described is similar to the panel shown in Figure 141.

 In the prior example, the method that was triggered was user-written. Once the

method completes, it issues the return/reason code combination 8/60000. This

combination is not translated into a specific RODMView message; therefore,

RODMView displays the following message:

EKGV8037E RODM return code/reason code is (return_code/reason_code)

Note: The method name in Figure 140 on page 537 was typed in lowercase, but

when the RODMView panel is refreshed in Figure 141, the method name is

converted to uppercase. While it is true that the RODM-defined null method

NullMeth has uppercase and lowercase letters in its name, all methods that

exist as code in RODM must have uppercase names. RODMView

automatically translates method names to uppercase.

RODM Unload Function

The RODM unload function queries the class structure of RODM in a depth-first

manner. For each class, a RODM high-level syntax statement is written to create

the class along with its unique fields. All class-level creation statements are written

to the CLASSES file. If any class field contains a locally defined value, that value is

written to the CLASSVAL file.

The RODM unload function does not unload the values of system-defined fields

on the system classes (UniversalClass and all EKGxxxx classes). If the RODM

unload function finds a user-defined field, it writes a primitive to create the field,

and a primitive to assign the field a value if a non-null value currently exists.

While unloading a class, a check is made to see if it has any object children. Each

object child is in turn examined, and a RODM low-level primitive is written to the

OBJECTS file to create it. All data contained in fields that have local values are

written to the OBJVAL file.

 EKGVMETI Method Actions A01NV OPER2 10/18/97 12:34:56

 RODM name RODMNAME

 User ID . . RODMUSER

 Method name USFLMETH

 Method type NAMED (Named, Object independent)

 Action . . TRIGGER (Trigger, Install, Delete, Replace)

 Additional information for Named Methods only

 Class name UsefulClass

 Class ID _

 Object name _

 Object ID _ (Hexadecimal value)

 Field name MethodSpecField

 Field ID _

 EKGV8037E RODM return code/reason code is (8/60000)

 CMD==>

 F1= Help F2= End F3= Return F6= Roll F12=PrevCmd

Figure 141. RODMView Return and Reason Codes From a Triggered Method

Method Actions Function

538 Resource Object Data Manager and GMFHS Programmer’s Guide

To ensure that unloaded data sets load properly again, they must be concatenated

in the RODM load function EKGIN3 statement in the following order:

1. CLASSES

2. OBJECTS

3. CLASSVAL

4. OBJECTVAL

5. LINKS

This order ensures that no data contained in subfields refers to something that has

not been loaded.

Using the data set scheme as detailed in the sample EKGKUJCL, the EKGIN1 DD

concatenation of the RODM load function that runs JCL shows as follows in

Figure 142.

 Data types FieldID and Anonymous(N) cannot be unloaded using the RODM

unload function.

The RODM unload function operates on the premise that RODM data is static and

unchanging. RODM data might change while the RODM unload function is

running. If this happens, the unloaded data sets might contain data that is

inconsistent with the current RODM data. Therefore, run the RODM unload

function at periods of low RODM activity.

Starting the RODM Unload Function

Submit job EKGKUJCL to start the RODM unload function.

Customizing the RODM Unload Function

This section contains the information that is needed to customize the RODM

unload function.

1. Customize the EKGKUCDS job.

The EKGKUCDS job allocates the output data sets for the RODM unload

function. Edit the NETVIEW.V5R3M0.CNMSAMP (EKGKUCDS) job to indicate

the location for the output data sets.

2. Run EKGKUCDS to allocate the RODM unload function output data set.

3. Modify the EKGKUJCL job.

Modify the parameters as required by your installation. This job is found in the

NETVIEW.V5R3M0.CNMSAMP data set.

The RODM unload function is run with JCL. Input parameters are passed to the

RODM unload function in a file named by the SYSIN DD file of the JCL.

Figure 143 on page 540 contains a section from the sample JCL. For simplicity, the

SYSIN DD file is placed in-line with the JCL.

//EKGIN1 DD DSN=EKG.RODMUNLD.CLASSES,DISP=SHR

// DD DSN=EKG.RODMUNLD.OBJECTS,DISP=SHR

// DD DSN=EKG.RODMUNLD.CLASSVAL,DISP=SHR

// DD DSN=EKG.RODMUNLD.OBJVAL,DISP=SHR

// DD DSN=EKG.RODMUNLD.LINKS,DISP=SHR

Figure 142. Sample JCL for EKGIN1

RODM Unload Function

Appendix A. RODM Tools 539

Table 228 contains a description of the SYSIN DD parameters.

 Table 228. SYSIN DD Parameter Descriptions

Parameter Description

RODM Specifies the name of the RODM to unload. This is usually the

same as the z/OS procedure used to start RODM.

CLASS v Specifies a class from which the unloading process is started.

v If left blank, the UniversalClass is the starting point.

v Multiple classes can be specified by repeating the parameter on

multiple lines, specifying one class per line.

v This parameter is case sensitive.

OBJECT v Specifies a specific object to unload.

v Multiple objects can be specified by repeating the parameter on

multiple lines, specifying one object per line.

v If left blank or omitted, all objects are unloaded.

v This parameter is case sensitive.

DEPTH v Specified as either ALL or ONE.

v If DEPTH=ALL, the classes specified on the CLASS= parameters

and all classes that descend from them are unloaded.

v If DEPTH=ONE, only the individual classes specified on the

CLASS= parameters are unloaded.

REPORTONLY v Can be specified as either YES or NO.

v If REPORTONLY=YES, a summary report of all classes, objects,

fields, and links defined are produced, but no RODM load

function compatible output is actually produced. This is useful

for extracting current capacity information of a RODM.

v If REPORTONLY=NO, the RODM load function compatible

output is produced along with this summary report.

WRITEMODE v Can be specified as either APPEND or OVERWRITE.

v If WRITEMODE=APPEND, all output generated is appended to

the end of the data sets specified in the start JCL.

v If WRITEMODE=OVERWRITE, any data that previously existed

in the data sets is destroyed, and any new output created by the

RODM unload function is written in its place.

 ...

 //SYSIN DD *

 RODM=

 CLASS=

 OBJECT=

 DEPTH=

 REPORTONLY=

 WRITEMODE=

 WHITESPACE=

 ...

Figure 143. Sample SYSIN DD file of the JCL.

Customizing the RODM Unload Function

540 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 228. SYSIN DD Parameter Descriptions (continued)

Parameter Description

WHITESPACE v This specifies the level of whitespace (blank lines) to be mixed in

with the RODM load function compatible output.

v Can be specified as either LOW or HIGH. Specifying

WHITESPACE=HIGH gives the most readable output, but

WHITESPACE=LOW reduces the lines of total output by

approximately half.

v The actual data content of the output is identical with either

LOW or HIGH.

The 5 output data sets are specified in the JCL. The output data sets and content

follow:

CLASSES Contains the class structure creation high-level

syntax

CLASSVAL Contains the class subfield creation and

value-setting primitives

OBJECTS Contains the object-creation primitives

OBJVAL Contains the object subfield value-setting

primitives

LINKS Contains the link primitives

The RODM unload function reads the DCB specifications of the data sets from the

JCL and modifies itself. Use the DCB specifications in the sample as supplied. The

RODM unload function always produces output that is a maximum of 80

characters wide, even if a wider DCB is specified.

Start the RODM unload function by running the EKGKUJCL job.

Running the RODM Unload Function

The RODM unload function can be used to migrate from one version of RODM to

another. This is accomplished by unloading an existing RODM and loading the

newer version of RODM with the output from the RODM unload function. To

perform a complete unload of RODM, change the SYSIN parameters in the

EKGKUJCL job as shown in Figure 144 and run the job. Note that the OBJECT=

parameter has been deleted from the sample JCL.

 To unload all the objects that represent network monitorable (real and aggregate)

resources in the GMFHS data model, the SYSIN parameters to EKGUJCL are

changed as shown in Figure 145 on page 542.

RODM=(rodmname)

CLASS=UniversalClass

DEPTH=All

REPORTONLY=No

WRITEMODE=Overwrite

WHITESPACE=Low

Figure 144. EKGKUJCL SYSIN Parameters to Unload RODM Completely

Customizing the RODM Unload Function

Appendix A. RODM Tools 541

To get the RODM definitions for a particular object, when the class of the object is

not known, change the SYSIN parameters EKGKUJCL job as shown in Figure 146.

 If the class that the object is defined under is known, it saves processing time to

specify that class directly. Set the CLASS=, OBJECT= and the DEPTH= parameters as

shown in Figure 147.

 To get the RODM definitions for all objects in two particular classes only, change

the parameters in the EKGKUJCL job as shown in Figure 148.

FLCARODM

This section describes how to use FLCARODM. The following topics are covered:

v Using stem building routines

v The FLCARODM command

v FLCARODM functions

v The result stem

v The object data stream

Overview

FLCARODM provides a REXX interface to the RODM user application

programming interface (UAPI). FLCARODM performs multiple operations on one

RODM=(rodmname)

CLASS=GMFHS_Monitorable_Objects_Class

DEPTH=All

REPORTONLY=No

WRITEMODE=Overwrite

WHITESPACE=Low

Figure 145. EKGKUJCL SYSIN Parameters to Unload Network Monitorable Objects

RODM=(rodmname)

CLASS=UniversalClass

OBJECT=DesiredObject

DEPTH=All

REPORTONLY=No

WRITEMODE=Overwrite

WHITESPACE=High

Figure 146. EKGKUJCL SYSIN Parameters to Unload an Object When Class is Unknown

RODM=(rodmname)

CLASS=SpecificClass

OBJECT=DesiredObject

DEPTH=One

REPORTONLY=No

WRITEMODE=Overwrite

WHITESPACE=High

Figure 147. EKGKUJCL SYSIN Parameters to Unload an Object When Class is Known

RODM=(rodmname)

CLASS=SpecificClass1

CLASS=SpecificClass2

DEPTH=One

REPORTONLY=No

WRITEMODE=Overwrite

WHITESPACE=Low

Figure 148. EKGKUJCL SYSIN Parameters to Determine Object Definitions for Two Classes

Running the RODM Unload Function

542 Resource Object Data Manager and GMFHS Programmer’s Guide

or more objects in a single invocation and removes many of the complexities of

using the RODM UAPI. Use this high speed interface to create, update, query,

locate, and delete objects in RODM.

There are two ways to use FLCARODM:

v Specify the data and operations using a low-level data stream. See “Object Data

Stream Detail” on page 581 for more information.

v Use the stem building subroutines that are provided by NetView to create a

REXX stem variable.

Stem Building Subroutines

This section describes the subroutines that are provided to create the REXX object

data stream in a REXX stem variable. These subroutines are called stem building

subroutines, and they create the contents of a REXX stem variable that gets passed

to FLCARODM using the FLCARODM command.

The stem building subroutines are provided in sample FLCSSTEM. These

subroutines manipulate REXX stem variables that are used with FLCARODM. The

three stem variables that are manipulated by these subroutines are:

v RodmStem which is used as input to FLCARODM

v RodmResult which is used to hold the output from FLCARODM

v QueryStem which is used to hold queried information extracted from

RodmResult

There is also a variable called Retcode, which is used by all of the subroutines to

indicate if any errors have occurred. A nonzero value in the Retcode variable

indicates that processing stops.

FLCARODM supports class, object, and field IDs in the input stem variable. To

specify a numeric ID instead of a name, prefix the ID with a #. For example, if you

knew an object’s class ID was 12, you can specify an element of the input stem

variable as input.x = ’#12’.

AddAttr Subroutine

Use the AddAttr subroutine to specify a new or existing field on the current object.

Specification:

call AddAttr fieldname fieldtype fieldvalue

Operand Descriptions: Where:

fieldname

The name of the field

fieldtype

The data type of the field

fieldvalue

The new or changed value of the field

Usage Notes:

v Use AddAttr with the BUILD and UPDATE functions.

v AddAttr must be specified before Addlink

Overview

Appendix A. RODM Tools 543

Example: The following code from sample FLCSX7 calls the AddAttr subroutine

that creates a field named DispStat that is of type Integer and that has a value of

InActive:

call AddAttr DispStat Integer InActive

Note: DispStat is a shortened version of DisplayStatus that is defined in sample

FLCSSTEM using the following assignment statement:

DispStat = ’DisplayStatus’

AddAttrForQuery Subroutine

Use the AddAttrForQuery subroutine to specify either the field to be queried using

the QUERY function, or the name of the first field when a function is specified

with the XREF=1STFIELD parameter.

Specification:

call AddAttrForQuery ’fieldname’

Operand Descriptions: Where:

fieldname

The name of the field to query or the name of the field referred to by the

XREF=1STFIELD parameter

Usage Notes:

v Use the AddAttrForQuery subroutine with the QUERY function, or with the

following functions when they are specified with the XREF=1STFIELD

parameter.

– DELINKA

– DELOBJ

– QUERY

– UPDATE

Example: The following code from sample FLCSXS02 calls the AddAttrForQuery

subroutine to specify four fields on the RealAgent object of the RAgeClass that are

queried:

 call StartObject RAgeClass RealAgent

 call AddAttrForQuery MyName

 call AddAttrForQuery DispName

 call AddAttrForQuery RealAgeNam

 call AddAttrForQuery RealSerNam

 call MakeRODMCall ’QUERY’

The following code from sample FLCSX19 calls the AddAttrForQuery subroutine

to specify two fields on the Demo_Lan object of the ALmnClass class that are used

to identify object links that are to be removed:

call StartObject ALnmClass ’Demo_Lan’

call AddAttrForQuery Member

call AddAttrForQuery PhyConn

call MakeRODMCall ’DELINKA’ ’XREF=1STFIELD’

AddAttrForQuery Member specifies that all objects specified by the Member field

are identified and AddAttrForQueryPhyConn specifies that all links specified by the

PhyicalConPP field are removed.

Stem Building Subroutines

544 Resource Object Data Manager and GMFHS Programmer’s Guide

AddLink Subroutine

Use the AddLink subroutine to specify a field to link to. The field must be one of

the following data types:

v ObjectLink

v ObjectLinkList

v ObjectIdList

Specification:

call AddLink ’linkfldname’ ’classofobj’ ’nameofobj’ ’fldofobj’

Operand Descriptions: Where:

linkfldname

The name of the field to be linked to

classofobj

The class of the object to be linked to

nameofobj

The name of the object to be linked to

fldofobj

The field on the object to be linked to

Usage Notes:

v Calls to the AddAttr subroutine must be specified before call to AddLink are

specified

Example: The following code from sample FLCSX11 uses the AddLink subroutine

to specify the PhysicalConnPP field of the Bridge_1 object and the PhysicalConnPP

fields of the Segment_1 and Segment_2 objects. The DELINKAB function removes

the links defined by the PhysicalConnPP fields.

call StartObject ABrgClass ’Bridge_1’

call AddLink PhyConn ASegClass ’Segment_1’ PhyConn

call AddLink PhyConn ASegClass ’Segment_2’ PhyConn

call MakeRODMCall ’DELINKAB’

AddLinkForDelete Subroutine

Use the AddLinkForDelete subroutine to specify a link on the specified object.

Specification:

call AddLinkForDelete fldname

Operand Descriptions: Where:

fldname

The name of the field on the specified object that defines the link that is to be

deleted.

Example: The following code from sample FLCSX10 calls the AddLinkForDelete

subroutine that specifies the PhysicalConnPP on the object of the ABrgClass class

named Bridge_1. The DELINKA function removes the links defined by the

PhysicalConnPP field.

Stem Building Subroutines

Appendix A. RODM Tools 545

call StartObject ABrgClass ’Bridge_1’

 call AddLinkForDelete PhyConn

 call MakeRODMCall ’DELINKA’

CheckChildrenUpdate Subroutine

Use the CheckChildrenUpdate subroutine to remove acceptable return codes from

the RodmResult stem variable when either the UPDATE or DELINKA function is

specified with the CHILDREN=ONLY parameter.

Acceptable return codes indicate one of the following:

v An aggregate object does not exist.

v Child objects do not exist.

v Specified fields do not exist on the child object.

For unacceptable return codes:

v Message FLC070E is issued.

v The return codes are written to the log.

v The Retcode stem variable is set to 16.

Specification:

call CheckChildrenUpdate

v Use this subroutine only when you specify the UPDATE and DELINKA

functions with the CHILDREN=ONLY parameter. Combinations of other

functions and parameters are not supported.

CheckDelinkResponse Subroutine

Use the CheckDeLinkResponse subroutine to remove acceptable return codes from

the RodmResult stem variable when either the DELOBJ or DELINKA function is

specified.

Acceptable return codes indicate one of the following:

v An aggregate object does not exist.

v Child objects do not exist.

v Specified fields do not exist on the child object.

For unacceptable return codes:

v Message FLC070E is issued.

v The return codes are written to the log.

v The Retcode stem variable is set to 16.

Specification:

call CheckDelinkResponse

Usage Notes:

v Use this subroutine only when you specify the DELOBJ and DELINKA

functions. Other functions are not supported.

InitRODMConstants Subroutine

Use the InitRODMConstants subroutine to initialize the constants specified in

sample FLCSSTEM.

Specification:

call InitRODMConstants

Stem Building Subroutines

546 Resource Object Data Manager and GMFHS Programmer’s Guide

Usage Notes:

v You must read the code to see what variables are available for your use.

InitRODMStem Subroutine

Use the InitRODMStem subroutine to initialize the RODMStem variable.

Specification:

call InitRODMStem

Usage Notes:

v Specify InitRODMStem the first time you use FLCSSTEM. Subsequent calls to

InitRODMStem are not required, because the MakeRODMCall subroutine calls

InitRODMStem.

MakeRODMCall Subroutine

Use the MakeRODMCall subroutine to issue the FLCARODM command with the

RODMStem variable as input.

Specification:

call MakeRODMCall function functparm1 functparm2

Operand Descriptions: Where:

function

Specifies the function to be performed. See “FLCARODM Functions” on page

553 for more information.

functparm1

Specifies the first function parameter.

functparm2

Specifies the second function parameter.

Example: The following code from sample FLCSXF1 calls the QUERY subroutine

with the XREF and FILTER parameters.

call MakeRODMCall ’QUERY’ ’XREF=2.9.3.2.7.42’ ’FILTER=1STFIELD’

SetIndexList Subroutine

Use the SetIndexList subroutine to update the value of fields that are of type

IndexList.

Specification:

call SetIndexList fieldvalue fieldname

Operand Descriptions: Where:

fieldvalue

Specifies the value of the field.

fieldname

Specifies the name of the field.

Usage Notes:

v Use SetIndexList to update the value of fields that are only of type IndexList.

Stem Building Subroutines

Appendix A. RODM Tools 547

v Use caution when using the SetIndexList function, because the value of the field

is overwritten and the previous value cannot be recovered.

Example: The following code from sample FLCSX22 calls the SetIndexList

subroutine to modify the ExceptionViewList field on the Demo_Lan object:

call StartObject ALnmClass ’Demo_Lan’

my_String = ’testing’

call SetIndexList my_String ExceptionViewList

call MakeRODMCall ’UPDATE’

StartObject Subroutine

Use the StartObject subroutine to specify a new or existing object. Subsequent

subroutine specifications (for example, AddAttr) apply to the current object until

either another object is specified by StartObject, or the MakeRODMCall subroutine

is specified.

Specification:

call StartObject classname objectname

Operand Descriptions: Where:

classname

The name of the class for the object that is specified.

objectname

The name of the object that is specified.

Usage Notes:

v Classes cannot be created using StartObject.

v Use the StartObject subroutine with all of the FLCARODM functions.

v Object names must be specified between single quotation marks (’ ’).

Example: The following code from sample FLCSX09 calls the StartObject

subroutine which creates an object of the ALnmClass named Demo_Lan:

call StartObject ALnmClass ’Demo_Lan’

Note that if no object named Demo_Lan exists when sample FLCSX09 is run, a

new object is created. If an object named Demo_Lan already exists, the existing

object is used.

About the Examples

The examples used in this appendix are provided by the NetView Product as

sample code. Although the examples use the MultiSystem Manager and GMFHS

data models, FLCARODM supports any data model that is loaded in RODM.

The examples create stem variables that are used as input to the FLCARODM

command. The statement call MakeRODMCall function calls the FLCARODM

command using the function specified. For example, the following statement issues

the FLCARODM command with the BUILD function.

call MakeRODMCall ’BUILD’

Using the Samples

To use the sample code provided by the NetView product , perform the following

tasks:

Stem Building Subroutines

548 Resource Object Data Manager and GMFHS Programmer’s Guide

v Change the value of RODMNAME to the name of the RODM you are using.

v Change the value of

v RODMAPPL to your RODM application ID.

v Append the contents of sample FLCSSTEM to the bottom of the Rexx code that

you are writing. FLCSSTEM provides the subroutines and constant definitions

that are used by the samples.

FLCARODM Command

Use the FLCARODM command to input data into and read data from RODM.

The FLCARODM command must be issued using the NETVIEW stage of the

NetView PIPE command. Therefore, it receives information about the functions to

be performed from two sources: the PIPE data stream and the parameters the

command is issued with. Figure 149 shows an example of issuing the FLCARODM

command:

Where:

object_data

The REXX stem variable that is used as input.

parameters

The parameters of the FLCARODM command

result The REXX stem variable that receives the return codes or data from

FLCARODM.

Use the format shown in Figure 149 when you are specifying data using the object

data stream described in “Object Data Stream Detail” on page 581.

The NetView product also provides another way to use the FLCARODM

command. Instead of specifying the command directly, use the MakeRODMCall

subroutine. See “Stem Building Subroutines” on page 543 for a description of the

MakeRODMCall subroutine and the other subroutines you can use to create a

REXX object data stream.

The following section describes the format of the FLCARODM command. The

description includes the format and description of the operands and usage notes.

FLCARODM

Syntax:

�� FLCARODM RODMNAME=name RODMUSER=user FUNCTION= FLCARodmFunctions �

�
RODMINT=interval

RODMRETRY=number_retries
 ��

PIPE STEM object_data

 | COLLECT

 | NETVIEW FLCARODM parameters

 | stem result

Figure 149. Issuing the FLCARODM Command

About the Examples

Appendix A. RODM Tools 549

FLCARodmFunctions:

 'BUILD'

CHILDREN=NO

'DELINKA'

Xref

CHILDREN=

NO

LOCATE=1STFIELD

ONLY

YES

'DELINKAB'

CHILDREN=NO

'DELOBJ'

Xref

CHILDREN=

NO

LOCATE=1STFIELD

ONLY

YES

'LOCATE'

'PURGE'

PurgeOptions

FIELDID=NO

'QUERY'

Xref

FIELDID=YES

LOCATE=1STFIELD

'QUERYALL'

'QUERYSF'

Xref

LOCATE=1STFIELD

SF=

CHANGE

NOTIFY

PREV_VAL

QUERY

TIMESTAMP

'QUERYSTR'

'REBUILD'

CHILDREN=NO

'UPDATE'

Xref

CHILDREN=ONLY

LOCATE=1STFIELD

Xref:

XREF=

1STFIELD

FILTER=2NDFIELD

objectname

FILTER=1STFIELD

PurgeOptions:

�

 STATUS=ALL TRACE=NO

STATUS=val

TIMESTAMP=val

TRACE=YES

FILTER=1STFIELD

,

EXCLUDE=(

message

)

Operand Descriptions:

CHILDREN

Specifies whether the operation applies to the specified children of the object.

The CHILDREN parameter cannot be specified if the XREF parameter is

specified.

 Use the CHILDREN parameter with the following functions:

v UPDATE

v DELINKA

v DELOBJ

FLCARODM Command

550 Resource Object Data Manager and GMFHS Programmer’s Guide

NO

Indicates that the function is performed on the specified object, but not on

its children.

ONLY

Indicates that the function is performed on the specified children of the

object, but not on the object itself.

YES

Indicates that the function is performed on the object specified and its

children.

Notes:

1. YES is not valid with the UPDATE function.

2. For the UPDATE function, only the first level of children is updated.

EXCLUDE

Used with the PURGE function and can only be specified when TRACE=YES is

specified. The EXCLUDE option indicates which purge messages (FLC040I,

FLC041I, and FLC042I) must not be issued during purge processing. If you

attempt to purge an aggregate object that has many objects beneath it, you

might want to receive the FLC040I and FLC042I successful purge messages and

suppress the FLC041I unsuccessful purge messages (for example,

EXCLUDE=FLC041I). Otherwise, you might receive many unwanted FLC041I

messages. One to three of these purge messages can be specified. No other

messages are permitted.

FIELDID

 Indicates whether the QUERY function returns field identifiers with the field

names.

NO

Indicates that the field identifiers are not returned.

YES

Indicates that the field identifiers are returned.

FILTER

Used with the XREF parameter to filter the list of objects that are operated on.

 Use the FILTER parameter with the following functions:

v DELOBJ

v DELINKA

v PURGE

v QUERY

v QUERYSF

v UPDATE

The XREF parameter must be specified before the FILTER parameter is

specified except for the PURGE function. For the PURGE function, FILTER can

be specified without the XREF parameter.

 The first field on each object specification must be the field name, type, and

value of the filter criteria. The FILTER value is applied only after all other

functions and parameters have been processed. FILTER returns values that are

either exact matches or partial matches. For example, if the field value Segment

is specified and an object exists that has the value Seg, the filter matches and

the object is returned.

FLCARODM Command

Appendix A. RODM Tools 551

FILTER=1STFIELD must be specified unless XREF=1STFILELD is specified. If

XREF=1STFILELD is specified, FILTER=2NDFIELD must be specified. The field

description must specify the following information in the order shown:

1. Field name

2. Field data type

3. Field value

FUNCTION

Specifies the function that is performed. For a description of each function, see

“FLCARODM Functions” on page 553.

LOCATE

Specifies that the first field definition is used as the criteria to create a list of

objects.

 LOCATE=1STFIELD must be specified, and the first field description must specify

the following information in the order listed:

1. Field name

2. Field data type

3. Field value

Use the LOCATE parameter with the following functions:

v DELINKA

v DELOBJ

v QUERY

v QUERYSF

v UPDATE

RODMINT

The amount of time in seconds that FLCARODM waits between retrying

requests when RODM is checkpointing. The default value is five seconds.

RODMRTRY

The number of times FLCARODM retries a request when RODM is

checkpointing. The default value is three. If RODM is still checkpointing after

FLCARODM has retried the request for the number of times specified, an error

is returned to the application.

RODMNAME

The name of the RODM to be used.

RODMUSER

The application name that is used to connect to RODM. The same RODMUSER

value can be used by multiple NetView operators executing REXX programs

that call FLCARODM. However, Access cannot use the same RODMUSER

value as other applications (for example, RODMVIEW) that connect to RODM.

 Create a RODMUSER value by concatenating the NetView domain name with

a three-character identifier. For example, MultiSystem Manager concatenates

the NetView domain name CNMO1 with MultiSystem Manager to create the

RODMUSER value. For example, if the NetView domain name is CNM01,

MultiSystem Manager creates a RODMUSER value of CNM01MSM.

SF Indicates the subfield to be queried. Specify one of the following values:

v CHANGE

v NOTIFY

v PREV_VAL

v QUERY

v TIMESTAMP

FLCARODM Command

552 Resource Object Data Manager and GMFHS Programmer’s Guide

STATUS

The DisplayStatus field value used to determine whether objects are purged by

the PURGE function.

ALL

Indicates that an object are purged regardless of its DisplayStatus value.

The TIMESTMP parameter cannot be specified when STATUS has a value

of ALL.

val The DisplayStatus field value of the objects that are to be deleted. The

default value is 132 (unknown).

TIMESTAMP

The age criteria, specified in seconds, of objects to be purged. The default is

84400, which is the number of seconds in 24 hours.

TRACE

Specifies whether the PURGE function is run in trace mode. In trace mode, a

message is issued for every object that is purged.

NO

Indicates that the PURGE function is not run in trace mode.

YES

Indicates that the PURGE function is run in trace mode.

XREF

Specifies that a function is performed on a list of dynamically acquired objects.

The list of objects is defined by the field that is specified. The field must be

one of the following data types:

v ObjectIdList

v ObjectLink

v ObjectLinkList

Use the XREF parameter with the following functions:

v DELINKA

v DELOBJ

v QUERY

v UPDATE

 The XREF parameter cannot be specified if the CHILDREN parameter is used.

 Because the XREF parameter can contain mixed-case characters, ADDRESS

NETVASIS must be specified.

1STFIELD

Specifies that the first field that is defined on an object is used.

objectname

Indicates the name of the field that is used. For objects that have dotted

decimal notation names, you must use the dotted decimal name. For

example, to specify the member field you must specify 2.9.3.2.7.42.

FLCARODM Functions

This section describes the functions provided by the FUNCTION parameter of the

FLCARODM command.

The following information is provided for each function:

v A description of each function and when to use it.

FLCARODM Command

Appendix A. RODM Tools 553

v An example based on a set of samples that are provide by MultiSystem

Manager.

v The results of the function are described, if applicable.

For information about using the samples described in this section, see “About the

Examples” on page 548.

BUILD Function

Use the BUILD function to perform the following functions:

v Create new objects

v Modify existing objects

v Create fields and assign field values

v Define relationships between objects

The following data types are supported by the BUILD and UPDATE functions:

Date Type Data Type Identifier

CHARVAR 4

INTEGER 10

SELFDEFINING 19

SMALLINT 21

FIELDID 26

ANONYMOUSVAR 30

The following code from sample FLCSX1 demonstrates how to use the BUILD

function to create objects in RODM:

...

/***/

/* Start the first object. This is the top object and is of type */

/* Network_View_Class. Its name is Hometown */

/***/

call StartObject NetClass ’Hometown’

 /* Start creating Hometown object */

call AddAttr Annotate CharVar ’This is the Hometown City View’

 /* Add an Annotation or label */

/***/

/* Add a second object to the list. This object are inside the */

/* Hometown class. It is called Main_Street, is of type */

/* GMFHS_Aggregate_Objects_Class. */

/***/

call StartObject AggClass ’Main_Street’

 /**/

 /* Now add a label which says ’Constructed in 1889 to */

 /* the object. */

 /**/

call AddAttr DispOther CharVar ’Constructed in 1889’

 /**/

 /* Add a link to the object which tells the Display */

 /* ResourceType and Display_Resource_Type_Class are */

 /* linked to the DUIXC_RTN_HOST_AGG */

 /**/

call AddLink DispType DispClass HtAgg_Icon ’Resources’

 /**/

 /* Now add another link to link the object to the */

 /* Hometown view */

 /**/

FLCARODM Functions

554 Resource Object Data Manager and GMFHS Programmer’s Guide

call AddLink ConView NetClass ’Hometown’ ConObjs

call MakeRODMCall ’BUILD’

/***/

/* Start the third object in the group. This one is called */

/* ’1000_Main_Street’ and is contained in the ’Main_Street’ object */

/***/

call InitRODMStem

call StartObject AggClass ’1000_Main_Street’

 /**/

 /* Add some information to the object */

 /**/

call AddAttr DispOther CharVar ’3 Bedroom Ranch’

call AddAttr DispStat Integer Active

 /***/

 /* Now link it to its parent and to its class */

 /***/

call AddLink DispType DispClass HtAgg_Icon ’Resources’

call AddLink PartOf AggClass ’Main_Street’ COMPPHY

call MakeRODMCAll ’BUILD’ /* make the FLCARODM call */ ...

Results of Executing the BUILD Function: The following objects were created in

RODM by the BUILD function:

v A view object that represents a network view named Hometown

v An aggregate object that represents Main_Street

v A real object that represents a house on Main_Street named 1000_Main_Street

UPDATE Function

Use the UPDATE function to change the value of fields on existing objects. The

UPDATE function does not create objects. If you attempt to update a field on an

object that does not exist, an error is returned.

The following code from sample FLCSX2 demonstrates how to use the UPDATE

function to change objects in RODM.

...

call StartObject AggClass ’1000_Main_Street’ /*Which object we are */

 /*referring to. */

call AddAttr DispStat Integer InActive /*Update display status */

call MakeRODMCall ’UPDATE’ /*Call RODM */ ...

Results of Executing the UPDATE Function: The value of the DisplayStatus field

on real object that represents named 1000_Main_Street is changed to 132

(Unsatisfactory).

QUERY Function

Use the QUERY function to determine the value of one or more fields on one or

more objects. If either the field or the object does not exist, an error is returned.

The field type and the field value are returned for every field on each object.

Although the field type is not specified when querying a field, FLCARODM only

returns values for the following data types:

CLASSID 1

CHARVAR 4

FLCARODM Functions

Appendix A. RODM Tools 555

INTEGER 10

OBJECTID 14

OBJECTIDLIST 15

OBJECTLINK 16

OBJECTLINKLIST 17

OBJECTNAME 18

SELFDEFINING 19

SMALLINT 21

SMALLINT 23

FIELDID 26

ANONYMOUSVAR 30

Examples of Using the QUERY Function: This section contains several examples

of using the query function.

The following code from sample FLCSX3 queries the DisplayResourceOtherData

field on the Main_Street object:

...

call StartObject AggClass ’Main_Street’ /*Which object we are */

 /*referring to. */

call AddAttrForQuery DispOther /*Query contents of */

 /*DisplayResourceOtherData*/

call MakeRODMCall ’QUERY’ /*Call RODM */ ...

The result stem from FLCSX3 contains the following information in the order

specified:

v The number of elements in the stem

v The FLCARODM return code followed by the RODM return and reason code

v The value of the field

The following is a partial example of the result stem that is returned when sample

FLCSX3 is run.

3

FLCARODM:0,0,0

4

Constructed In 1889 ...

Table 229 describes the result stem that was returned for sample FLCSX3:

 Table 229.

Element

Number Element Value Explanation

0 3 Indicates that the result stem contains 3 elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code

2 4 Indicates the data type of the field (charvar)

3 Constructed In

1889

The value of the field

Sometimes is it useful to know the value of the field identifier for a specified field.

For example, if you are saving fields in a table, you can save space by saving the

four-byte field ID instead of the larger field name.

FLCARODM Functions

556 Resource Object Data Manager and GMFHS Programmer’s Guide

Specifying the FIELDID parameter with a value of YES causes FLCARODM to

return the field identifier value for fields returned by query functions.

Notes:

1. The field identifiers can change when RODM is cold-started, so any previously

stored information regarding field identifiers are not used.

2. The FIELDID parameter can not be used with the LOCATE, XREF, or

CHILDREN parameter

The following code from sample FLCSX3 has been modified by specifying

FIELDID=YES to return the field ID of the DisplayResourceOtherData field:

...

call StartObject AggClass ’Main_Street’ /*Which object we are */

 /*referring to. */

call AddAttrForQuery DispOther /*Query contents of */

 /*DisplayResourceOtherData*/

call MakeRODMCall ’QUERY’ ’FIELDID=YES’ /*Call RODM */ ...

The following is a partial example of the result stem that is returned when the

modified sample FLCSX3 is run.

4

FLCARODM:0,0,0

4

60

Constructed In 1889 ...

Table 230 describes the result stem that was returned for the modified sample

FLCSX3:

 Table 230.

Element

Number Element Value Explanation

0 3 Indicates that the result stem contains 3 elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code

2 4 Indicates the data type of the field (charvar)

3 60 Indicates the field ID of the field

4 Constructed In

1889

The value of the field

 Run samples FLCSX1, FLCSX2, and FLCSX3 before you run sample FLCSX4.

Sample FLCSX4 provides an example of using two queries to accomplish a task,

and demonstrates how to determine the field values on a class, which is useful for

querying default field values or for acquiring all of the objects of a certain class.

For this example, assume that RODM was empty before sample FLCSX1 was run.

The first part of sample FLCXS4 queries all of GMFHS_Aggegrate_Objects_Class

objects in RODM:

...

call StartObject AggClass ’.’ /*Which object we are */

 /*referring to. */

FLCARODM Functions

Appendix A. RODM Tools 557

call AddAttrForQuery ’MyObjectChildren’

Say ’’

Say ’Result from MyObjectChildren query:’

call MakeRodmCall ’QUERY’

’PIPE STEM RodmResult. | CONSOLE’

 ...

The result stem from the first part of sample FLCSX4 contains the following

information in the order specified:

v The number of elements in the stem

v The FLCARODM return code followed by the RODM return and reason code

v The data type of the field

v The number of object IDs in the list

v The object ID of the object

The following is an example of the result stem that is returned by the first part of

sample FLCSX4

4

FLCARODM:0,0,0

15

1

00010012E05C2A1E

Table 231 describes the result stem that was returned for the first part of sample

FLCSX4:

 Table 231.

Element

Number Element Value Explanation

0 4 Indicates that the result stem contains 4 elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM

return and reason code

2 15 Indicates the data type of the field (objectidlist)

3 1 The number of object IDs in the list

4 00010012E05C2A1E The hexadecimal object ID of the object

The second part of sample FLCSX4 queries the name and status of the object ID

that was returned from the first query:

...

/***/

/* Query the name and status of the object. */

/***/

call InitRODMStem /*Get ready for next set of operations*/

call StartObject AggClass ’.’ /*Use Object ID from previous call*/

call AddAttrForQuery ’MyName’

call AddAttrForQuery ’DisplayStatus’

Say ’’

Say ’Result from MyName and DisplayStatus query:’

FLCARODM Functions

558 Resource Object Data Manager and GMFHS Programmer’s Guide

call MakeRodmCall ’QUERY’ ...

The following is an example of the result stem that is returned by the second part

of sample FLCSX4.

6

FLCARODM:0,0,0

18

Main_Street

FLCARODM:0,0,0

10

132

Table 232 describes the result stem that was returned for the second part of sample

FLCSX4:

 Table 232.

Element

Number Element Value Explanation

0 6 Indicates that the result stem contains 6 elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code for the first field that was queried

2 18 Indicates the data type of the field

3 Main_Street The number of object IDs in the list

4 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code for the second field that was queried

5 10 The data type of the field (integer)

6 132 The value of the field

Note: The query functions in FLCSX4 were performed by two calls to

FLCARODM using the MakeRODMCall subroutine. Both functions can be

performed using one call to FLCARODM by using the XREF parameter. See

“FLCARODM Command” on page 549 for more information.

DELOBJ Function

Use the DELOBJ to delete one or more objects. When an object is deleted, its links

to all other objects are deleted. Note that fields and links cannot be specified with

the DELOBJ function.

Use care when using the DELOBJ function, because objects that other applications

or users require might be deleted. Consider using the PURGE function instead. It

provides a way to remove objects that enables you to protect objects associated

with other applications from being deleted.

The following code from sample FLCSX5 uses the DELOBJ to delete the 1000 Main

Street object.

...

call StartObject AggClass ’1000_Main_Street’ /*Which object we are */

 /*referring to. */

call MakeRODMCall ’DELOBJ’ /*Call RODM */ ...

Results of Executing the DELOBJ Function: After running this program, the

1000_Main_Street object, its links to Main_Street and, the object, are removed.

FLCARODM Functions

Appendix A. RODM Tools 559

DELINKA Function

Use the DELINKA function to delete all links to specified fields on an object. You

do not have to specify the links, because the DELINKA function will determine

which links exist and remove all of them.

For an example of using the DELINKA function, see “Delinking Objects” on page

570.

DELINKAB Function

Use the DELINKAB function to delete the specified links between objects.

For most objects linked using fields of type ObjectLink, it is not necessary to

remove a link between objects before defining a new link. Instead, use the

UPDATE function, which will first remove the old link and then define the new

link. However, for fields that require a method to perform the link removal, (for

example, DisplayResourceType), you must use the DELINKAB function.

For links that are defined by fields of type ObjectLinkList (for example, Resources),

you must use the DELINKAB function, because the UPDATE function only adds

the new link, but it does not delete previously defined links.

For an example of using the DELINKAB function, see “Delinking Objects” on page

570.

PURGE Function

Use the PURGE function to remove objects from RODM. Consider using the

RemvObjs command to remove objects from RODM instead of the PURGE

function. Refer to the IBM Tivoli NetView for z/OS MultiSystem Manager User’s Guide

for more information about the RemvObjs command.

LOCATE Function

Use the LOCATE function to search all fields of type CharVar or IndexList which

have been created as public_indexed for a specified string. An example of a

publicly indexed field is DisplayResourceName.

The LOCATE function returns the object ID of objects that contain a value that

matches the specified string. Note that the search is not case sensitive.

The following code from sample FLCSXL01 finds all of the objects in RODM

whose DisplayResourceName field has a value of CPU_UTILIZATION.

...
call StartObject ’’ ’’ /*Can not specify a class or an object for */

 /*This function */

call AddAttr DispName CharVar ’CPU_utilization’ */

call MakeRODMCall ’LOCATE’ /*Call RODM */ ...

Note that you cannot specify a class or object for the LOCATE function. Therefore,

StartObject ’’ ’’ is specified, which means search all objects on all classes.

The result stem from FLCSXL01 contains a list of the object IDs of the objects

whose DisplayResourceName matches the comparison string NOT_LOGGED_IN.

For example, if one object matched this criteria, the following result stem is

returned:

FLCARODM Functions

560 Resource Object Data Manager and GMFHS Programmer’s Guide

4

FLCARODM:0,0,0

15

1

000100012E05C2A1E

Table 233 describes the result stem that was returned for sample FLCSXL01 if one

object met the search criteria.

 Table 233.

Element

Number Element Value Explanation

0 4 Indicates that the result stem contains 4 elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM

return and reason code

2 15 Indicates the data type of the return data

(objectidlist)

3 1 The number of matches found

4 000100012E05C2A1E The object ID of the object that matched the

search criteria

If there were no objects in RODM with a field that matched the comparison

criteria, FLCARODM returns an Object ID List with zero elements as follows.

3

FLCARODM:0,0,0

15

0

Table 234 describes the result stem that is returned for sample FLCSXL01 if no

objects met the search criteria.

 Table 234.

Element

Number Element Value Explanation

0 3 Indicates that the result stem contains 3 elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code

2 15 Indicates the data type of the return data (objectidlist)

3 0 Indicates that no matches were found

RodmResult.0 3

RodmResult.1 FLCARODM:0,0,0

RodmResult.2 15

RodmResult.3 0

QUERYALL Function

The QUERYALL function returns the field name, field type, and value for all of the

fields defined on the specified object. For example, the following example queries

the fields on the Main_Street object.

...
call StartObject AggClass ’MainStreet’

FLCARODM Functions

Appendix A. RODM Tools 561

call MakeRODMCall ’QUERYALL’ ...

Results of Executing the QUERYALL Function: The result stem from FLCSXQ2

contains the following information in the order specified:

v The number of elements in the stem.

v The FLCARODM return code followed by the RODM return and reason code.

v The number of fields defined on the object.

v A sequence of field specifications. For each field, the field specification contains

the following information in the order specified:

– Return Code

– Name

– Identifier

– Value

The field specification information is repeated for each field.

The result stem from FLCSXQ2 contains the number of elements in the stem, the

return code, the number of fields defined on the object, and a sequence of field

specifications. Each field specification contains the following information:

The following is a partial example of the result stem that is returned when sample

FLCSXQ2 is run.

212

FLCARODM:0,0,0

51

FLCARODM:0,0,0

IsPartOf

17

0

FLCARODM:0,0,0

IsBusNode

17

0 ...

Table 235 describes the result stem that was returned for sample FLCSXQ2.

 Table 235.

Element

Number Element Value Explanation

0 212 Indicates that the result stem contains 212 elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code

2 51 Indicates the number of fields defined on the object

3 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code

4 IsPartOf The name of the first field defined on the object.

5 17 The data type of the IsPartOf field. (objectlinklist)

6 0 The value of the IsPartOf field

7 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code

8 IsBusNode The name of the second field defined on the object

9 17 The data type of the IsBusNode field. (objectlink)

FLCARODM Functions

562 Resource Object Data Manager and GMFHS Programmer’s Guide

Table 235. (continued)

Element

Number Element Value Explanation

10 0 The value of the IsBusNode field

The previous example describes the first two fields in the result stem. Elements 11

through 212 describe the remaining fields using the same format.

QUERYSTR Function

Use the QUERYSTR function to determine the structure of object classes. For each

class, the field names, the field identifier type, and inheritance status bitmap for

each field defined on the class is returned. For example, the following sample

queries the structure of the GMFHS_Aggregate_Objects_Class class.

...
call StartObject AggClass ’’

call MakeRODMCall ’QUERYSTR’ ...

Results of Executing the QUERYSTR Function: The result stem from FLCSXQ1

contains the following information in the order specified:

v The number of elements in the stem

v The FLCARODM return code followed by the RODM return and reason code

v The number of fields defined on the object

v A sequence of field specifications. For each field, the field specification contains

the following information in the order specified:

– Name

– Identifier

– Type

– Inheritance Status Bitmap

The field specification information is repeated for each field.

The following is a partial example of the result stem that is returned when sample

FLCSXQ1 is run.

214

FLCARODM:0,0,0

53

AggrgationChild

121

17

00

UpdateAggregationCounters

122

13

00 ...

Table 236 describes the result stem that was returned for sample FLCSXQ1.

 Table 236.

Element

Number Element Value Explanation

0 214 Indicates that the result stem contains 214

elements

FLCARODM Functions

Appendix A. RODM Tools 563

Table 236. (continued)

Element

Number Element Value Explanation

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM

return and reason code.

2 53 Indicates the number of fields defined on the

object

3 AggregationChild The name of the first field defined on the

object.

4 121 The field identifier

5 17 The data type of the field (objectlinklist)

6 00 The inheritance status bitmap

7 UpdateAggregationCounters The name of the second field defined on the

object

8 122 The field identifier

9 13 The data type of the field (methodspec)

10 00 The inheritance status bitmap

The previous example describes the first two fields in the result stem. Elements 11

through 214 describe the remaining fields using the same format.

QUERYSF Function

Use QUERYSF to query the value of the specified subfield for a field on the

specified objects. The following subfields can be queried:

v VALUE

v QUERY

v CHANGE

v NOTIFY

v TIMESTAMP

v PREV_VAL

The following code from sample FLCSXQ3 returns the value of the previous value

subfield of the DisplayStatus field of the 1000 Main Street object:

...

call StartObject AggClass ’1000_Main_Street’ /*Which object we are */

 /*referring to. */

call AddAttrForQuery DispStat /*Query this field */

call MakeRODMCall ’QUERYSF’ ’SF=PREV_VAL’ /*Call RODM */ ...

Results of Executing the QUERYSF Function: The result stem from FLCSXQ3

contains the following information in the order specified:

v The number of elements in the stem

v The FLCARODM return code followed by the RODM return and reason code

v The data type of the subfield

v The subfield value

Note: Run samples FLCSX1 and FLCSX2 before you run sample FLCSXQ3.

The following is an example of the result stem that is returned when sample

FLCSXQ3 is run.

FLCARODM Functions

564 Resource Object Data Manager and GMFHS Programmer’s Guide

3

FLCARODM:0,0,0

10

129

Table 237 describes the result stem that was returned for sample FLCSXQ3.

 Table 237.

Element

Number Element Value Explanation

0 3 Indicates that the result stem contains three elements

1 FLCARODM:0,0,0 The FLCARODM return code and the RODM return and

reason code

2 10 The data type of the subfield (integer)

3 129 The previous value of the field

Note: FLCSX1 set the value to 129 and then FLCSX2 changed the value to 130, so

the previous value was 129.

REBUILD Function

Use the REBUILD function to change objects when the links between objects have

changed. For every object specified on the REBUILD function, all specified fields

are updated, all specified links are defined, and all previously defined links are

removed, with the following exceptions:

v LayoutParmList

v DetailLayoutParmList

v 2.9.3.2.7.42 (member)

v 1.3.18.0.0.2217 (memberArcs)

v ComposedOfPhysical

v ComposedOfLogical

v AggregationChild

The relationships listed above are not removed to avoid having objects in RODM

that have no parent objects defined.

Putting It All Together

This section describes sample files that provide examples of using functions and

parameters.

For a description of the subroutines used in the samples, see “Stem Building

Subroutines” on page 543.

Building Objects

The following sample uses the StartObject and AddLink routines to create and link

the following objects:

v An aggregate object named Demo_Lan

v Two objects that represent LAN segments

v An object that represents a bridge that connects the segments

FLCARODM Functions

Appendix A. RODM Tools 565

Updating Objects

The following samples provide examples of changing objects using the UPDATE

function.

Using the UPDATE Function With the CHILDREN Parameter: Figure 151 uses

the UPDATE function to change the display status of the Demo_Lan aggregate

object. Note that because CHILDREN=ONLY is specified, all of the Demo_Lan children

are updated. However, the CHILDREN parameter only updates the first level of

children.

...

call StartObject NetClass ’Advanced’ /*Which object? */

/***/

/* Start creating LAN object in the Advanced Operations View */

/***/

call StartObject ALnmClass ’Demo_Lan’

call AddLink DispType DispClass ’DUIXC_RTN_LAN_AGG’ ’Resources’

call AddLink ConView NetClass ’Advanced’ ConObjs

/***/

/* Create the Segment_1 object */

/***/

call StartObject RSegClass ’Segment_1’

call AddLink DispType DispClass ’DUIXC_RTN_TR_SEGMENT’ ’Resources’

call AddLink MemberOf ALnmClass ’Demo_Lan’ Member

/***/

/* Add a Bridge called Bridge_1 */

/* Add a link to hook it to Segment_1. */

/***/

Call StartObject ABrgClass ’Bridge_1’

Call AddLink DispType DispClass ’DUIXC_RTN_BRIDGE_APPL’ ’Resources’

Call AddLink MemberOf ALnmClass ’Demo_Lan’ Member

Call AddLink PhyConn RSegClass ’Segment_1’ Phyconn

/***/

/* Create the second segment, called Segment_2 */

/* Add a link to connect it to Bridge_1 */

/***/

call StartObject RSegClass ’Segment_2’

call AddLink DispType DispClass ’DUIXC_RTN_TR_SEGMENT’ ’Resources’

call AddLink MemberOf ALnmClass ’Demo_Lan’ Member

call AddLink PhyConn ABrgClass ’Bridge_1’ Phyconn

call MakeRODMCall ’BUILD’ /*Call RODM */ ...

Figure 150. Sample FLCSX6

...

call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

call AddAttr DispStat Integer InActive /*Update display status */

call MakeRODMCall ’UPDATE’ ’CHILDREN=ONLY’ /*Call RODM */

 /*Update only the children*/ ...

Figure 151. Sample FLCSX7

Putting It All Together

566 Resource Object Data Manager and GMFHS Programmer’s Guide

Using the UPDATE Function With the XREF Parameter: The XREF parameter

can be used to specify fields of the following types:

v ObjectLink

v ObjectLinkList

v ObjectIdList

The following samples demonstrate using fields of these types to locate and update

objects.

Figure 152 uses the UPDATE function to accomplish the same task as Figure 151 on

page 566; however, instead of specifying the CHILDREN parameter, the XREF

parameter is used to specify the links defined by field 2.9.3.2.7.42 (member).

Figure 153 uses the UPDATE function with the XREF parameter to specify that the

links defined by the ComposedOfPhysical field are used to determine the list of

objects to be updated.

Figure 154 on page 568 performs the same functions as samples FLCSX14 and

FLCSX15, which demonstrates that you can perform multiple functions with a

single function call. Sample FLCSX16 uses the UPDATE function with the XREF

parameter to specify that the links defined by the first field specified are used to

determine the list of objects to be updated. For example, sample FLCSX16 specifies

the following:

call StartObject ALnmClass ’Demo_Lan’

call AddLink Member DispStat Integer InActive

Because the first field that is defined on the Demo_Lan object is the Member field,

the links it defines are used to determine which objects are updated.

...

call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

call AddAttr DispStat Integer InActive /*Update display status */

call MakeRODMCall ’UPDATE’ ’XREF=2.9.3.2.7.42’ /*Call RODM */ ...

Figure 152. Sample FLCSX14

...

call StartObject AggClass ’Main_Street’ /*Which object we are */

 /*referring to. */

call AddAttr DispStat Integer Active /*Update display status */

call MakeRODMCall ’UPDATE’ ’XREF=ComposedOfPhysical’ /* Call RODM */ ...

Figure 153. Sample FLCSX15

Putting It All Together

Appendix A. RODM Tools 567

Figure 155 demonstrates how to update all of the child objects of a class by using

the MyObjectChildren field, which is of type ObjectIdList and contains a list of

object IDs of a class.

Querying Objects

This section describes using the QUERY function. For each sample, the query

specification is described and a sample result stem is provided. See “Result Stem”

on page 571 for more information about result stems.

Figure 156 queries the names of all of the Demo_Lan objects. The names are

contained in the MyName field and the list of objects to be queried is defined by

field 2.9.3.2.7.42 (member).

The following result stem was returned:

RodmResult.0 11

RodmResult.1 FLCARODM:0,0,0

RodmResult.2 3

RodmResult.3 FLCARODM:0,0,0

RodmResult.4 18

...

call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

call AddLink Member DispStat Integer InActive /*Update display status*/

 /*Cross Reference Member*/

 /*Field. Anything that */

 /*has is a Member of the*/

 /*Demo_Lan gets changed */

call StartObject AggClass ’Main_Street’ /*Which object we are */

 /*referring to. */

call AddLink COMPPHY DispStat Integer InActive/*Update display status*/

 /*Cross Reference the COMPPHY field */

 /*in the Main_street to find out */

 /*which objects have their Display */

 /*status changed. */

call MakeRODMCall ’UPDATE’ ’XREF=1STFIELD’ /*Call RODM */ ...

Figure 154. Sample FLCSX16

...

call StartObject RealClass ’’ /*Which object we are */

 /*referring to. */

call AddAttr DispStat Integer InActive /*Update display status */

call MakeRODMCall ’UPDATE’ ’XREF=MyObjectChildren’ /*Call RODM */ ...

Figure 155. Sample FLCSX17

...

call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

call AddAttrForQuery MyName /*Update display status */

call MakeRODMCall ’QUERY’ ’XREF=2.9.3.2.7.42’ /*Call RODM */ ...

Figure 156. Sample FLCSX18

Putting It All Together

568 Resource Object Data Manager and GMFHS Programmer’s Guide

RodmResult.5 Segment_1

RodmResult.6 FLCARODM:0,0,0

RodmResult.7 18

RodmResult.8 Bridge_1

RodmResult.9 FLCARODM:0,0,0

RodmResult.10 18

RodmResult.11 Segment_2

FLCARODM:0,0,0 indicates that querying the cross reference field 2.9.3.2.7.42 was

successful.

Figure 157 queries all objects in RODM to determine which objects have a display

name of LNM_NETWORKS. Note that call StartObject ’’ ’’ means all objects

in RODM.

The following result stem was returned:

RodmResult.0 5

RodmResult.1 FLCARODM:0,0,0

RodmResult.2 1

RodmResult.3 FLCARODM:0,0,0

RodmResult.4 18

RodmResult.5 2.9.3.2.7.4=LNM_Networks

The second stem variable indicates that there was one object that matched the

criteria. The fifth stem variable provides the name of the object.

Figure 158 queries the display names of all Demo_Lan objects that contain the

word Segment. Note that the FILTER parameter is used with the XREF parameter

to refine the query.

The following result stem was returned:

RodmResult.0 8

RodmResult.1 FLCARODM:0,0,0

RodmResult.2 2

RodmResult.3 FLCARODM:0,0,0

RodmResult.4 18

RodmResult.5 Segment_1

...

call StartObject ’’ ’’ /*Which object we are */

 /*referring to. */

call AddAttr DispName CharVar ’LNM_Networks’ /*Look at all objects, */

call AddAttrForQuery ’MyName’ /*Return all with MyName= */

 /*LNM_Networks */

call MakeRODMCall ’QUERY’ ’LOCATE=1STFIELD’ /*Call RODM */

Figure 157. Sample FLCSXL02

...
call StartObject ALNMClass ’Demo_Lan’

call AddAttr MyName ObjectName ’Segment’

call AddAttrForQuery MyName

call MakeRODMCall ’QUERY’ ’XREF=2.9.3.2.7.42’ ’FILTER=1STFIELD’ ...

Figure 158. Sample FLCSXF1

Putting It All Together

Appendix A. RODM Tools 569

RodmResult.6 FLCARODM:0,0,0

RodmResult.7 18

RodmResult.8 Segment_2

The second stem variable indicates that there were two resources that matched the

XREF and FILTER criteria. The names are contained in RodmResult.5 and

RodmResult.8.

Note: If the XREF value is specified using 1STFIELD, then the filter criteria must

be FILTER=2NDFIELD

Delinking Objects

This section describes how to use the DELINKA and DELINKAB functions to

remove links between objects.

Figure 159 also uses the DELINKA function to delete all of the links defined by the

PhysicalConnPP field of the Bridge_1 object.

 Like Figure 159, Figure 160 uses the DELINKA function to delete all of the links

defined by the PhysicalConnPP field of the Bridge_1 object. However, the

CHILDREN=ONLY parameter is used to determine which links are deleted.

 Figure 162 on page 571 uses the DELINKAB function to remove specific links to

the Bridge_1 object.

...

call StartObject ABrgClass ’Bridge_1’ /*Which object we are */

 /*referring to. */

call AddLinkForDelete PhyConn /*Add the link to Delete*/

call MakeRODMCall ’DELINKA’ /*Call RODM */ ...

Figure 159. Sample FLCSX10

...

call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

call AddLinkForDelete PhyConn

call MakeRODMCall ’DELINKA’ ’CHILDREN=ONLY’ /*Call RODM */

 /*Only do the CHILDREN */ ...

Figure 160. Sample FLCSX9

...

call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

call AddAttrForQuery Member

call AddAttrForQuery PhyConn

call MakeRODMCall ’DELINKA’ ’XREF=1STFIELD’ /*Call RODM */ ...

Figure 161. Sample FLCSX19

Putting It All Together

570 Resource Object Data Manager and GMFHS Programmer’s Guide

Deleting Objects

Figure 163 uses the DELOBJ function to delete the Demo_Lan object. The

CHILDREN parameter specifies that the child objects of the Demo_Lan object are

also deleted.

Working with IndexList Fields

Use the SetIndexList subroutine to change IndexList fields.

Figure 164. provides an example of changing an IndexList type field. The

ExceptionViewList field of the Demo_Lan object is updated with the value test.

Note: Use caution when updating IndexList type fields, because this function

overwrites the previous value of the field and the previous value is lost.

Result Stem

A result stem is returned each time the FLCARODM command is run. The format

of the result stem depends on the operation that is performed and whether the

operation completed successfully.

The first two elements (0 and 1) of any result stem always contain the same

information. The 0 element (RodmResult.0) contains the total number of elements

in the stem. The 1 element contains the following information in the order

specified:

1. FLCARODM return code

...

call StartObject ABrgClass ’Bridge_1’ /*Which object we are */

 /*referring to. */

call AddLink PhyConn ASegClass ’Segment_1’ PhyConn

call AddLink PhyConn ASegClass ’Segment_2’ PhyConn

 /* Remove PhyConn links between the*/

 /* Bridge and the 2 Segments */

call MakeRODMCall ’DELINKAB’ /*Call RODM */ ...

Figure 162. Sample FLCSX11

...

call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

call MakeRODMCall ’DELOBJ’ ’CHILDREN=YES’ /*Call RODM */ ...

Figure 163. Sample FLCSX8

...
call StartObject ALnmClass ’Demo_Lan’ /*Which object we are */

 /*referring to. */

my_String = ’testing’

call SetIndexList my_String ExceptionViewList

call MakeRODMCall ’UPDATE’ /*Call RODM */ ...

Figure 164. Sample FLCSX22

Putting It All Together

Appendix A. RODM Tools 571

2. RODM return code

3. RODM reason code

For example, assume that the FLCARODM command was issued with the BUILD

function specified and the command completed successfully with no errors. The

following result stem is returned:

1

FLCARODM:0,0,0

1 indicates the result stem contains one element and FLCARODM:0,0,0 indicates that

the FLCARODM command completed with no FLCARODM or RODM errors.

For a description of the FLCARODM return codes, see “Return Codes” on page

579. For a description of the RODM return and reason codes, see “RODM Return

and Reason Codes” on page 451.

The following sections describe result stems based on the success or failure of an

operation.

Result Stems for Operations That Complete Successfully

This section describes operations that complete without errors. See “ERROR

CONDITIONS” on page 575 for information about error conditions.

Result Stems for Successful BUILD, UPDATE, DELETE, and PURGE

Operations: For the BUILD, UPDATE, DELETE, and PURGE operations without

error. the format of the result stem is:

Element Element Value

RodmResult.0 1

RodmResult.1 FLCARODM:0,0,0

1 indicates the result stem contains one element and FLCARODM:0,0,0 indicates that

the FLCARODM command completed with no FLCARODM or RODM errors.

Result Stems for Successful Query Operations: The structure of the result stem

for successful query operations depends on the data type of the field that is

queried and whether the XREF parameter was specified.

If no error occurs while executing the QUERY function, and the XREF parameter

was not specified then the format of the result stem is:

 Table 238.

Element Element Value Explanation

RodmResult.0 x The number of elements in the result stem

RodmResult.1 FLCARODM:0,0,0 The FLCARODM return code and the RODM

return and reason code

RodnResult.1 10 The data contained in the field

If no error occurs while running the Query function, and the XREF parameter was

specified, then the format of the result stem is slightly different. For each object

there is an additional return code to indicate the success or failure of the cross

reference field query, followed by the number of objects that were cross referenced.

Where:

Result Stem

572 Resource Object Data Manager and GMFHS Programmer’s Guide

elements

The total number of elements in the result stem.

xref_field_info

The structure containing the return code data for the cross referenced field,

the number of cross referenced objects, and the query results for each

object. The format of the req_field_info structure is:

�� Stem.x=xref_return_code_data Stem.x+1=number_of_cross_referenced_objects �

�

�

field_info

��

Where:

xref_return_code_data

The return code data regarding the query of the cross reference field.

number_of_cross_referenced_objects

The number indicating the number of objects that resulted from querying

the cross reference field.

field_info

The structure containing the return code data, field ID, and field value for

each field queried on each cross referenced object. The format of the

field_info structure depends on the field type of the fields that were

queried. This field type can always be found in the second element of the

field_info structure.

For numeric, and character data types, the field_info format is:

Numeric & Character:

�� Stem.f=return_code_data Stem.f+1=field_type Stem.f+2=field_value ��

Where

return_code_data

Data indicating that no errors occurred

field_type

Decimal value indicating either a numeric type, such as INTEGER (10) or a

character type, such as CHARVAR (4)

field_value

The numeric or character data contained in the field

 For example, querying the other data field of an object can result in:

FLCARODM:0,0,0

4

Constructed In 1889

OBJECTLINK: For fields of OBJECTLINK data types, the format of the result stem

is:

Result Stem

Appendix A. RODM Tools 573

�� Stem.f=return_code_data Stem.f+1=field_type Stem.f+2=object_ID �

� Stem.f+3=field_ID ��

Where:

return_code_data

Data indicating that no errors occurred.

field_type

Decimal value (16) indicating that the data type is OBJECTLINK.

object_ID

The object identifier, in hexadecimal, of the object to which the field is

linked.

field_ID

The field identifier, in decimal, of the field to which the queried field is

linked.

For example, querying an objectlink field of an object can result in:

FLCARODM:0,0,0

16

00010012E05C2A1E

5

OBJECTLINKLIST: For fields of OBJECTLINKLIST data types, the format of the

result stem is:

�� Stem.f=return_code_data Stem.f+1=field_type Stem.f+2=relations �

� Stem.f+3=relation_definition ��

Where:

return_code_data

Data indicating that no errors occurred

field_type

Decimal value (17) indicating that the data type is OBJECTLINKLIST

relations

The number of relations to the field that was queried

relation definition

Information regarding which objects are linked to the object, using the field

that was queried

The format is:

�� Stem.l=object_ID Stem.l+1=field_ID ��

The object ID and field ID, can repeat until the number of relations indicated have

been presented.

Where:

Result Stem

574 Resource Object Data Manager and GMFHS Programmer’s Guide

object_ID

The object identifier, in hexadecimal, of the object to which the field is

related.

field_ID

The field identifier, in decimal, of the field to which the queried field is

related.

For example, querying an ObjectLinkList field of an object can result in:

FLCARODM:0,0,0

17

2

00010012E05C2A1E

5

00010012E05C2A1F

6

ERROR CONDITIONS: For error conditions, the format of the result stem

depends on the operation that was performed, and where the error occurred.

Regardless of the error situation, the following five pieces of information are

always be returned.

�� Stem.r=return_code_data Stem.r+1=operation_code Stem.r+2=object_ID �

� Stem.r+3=object_class Stem.r+4=object_name ��

Where:

return_code_data

In the format:

FLCARODM FLCARODM_return_code RODM_return_code RODM_reason_code

FLCARODM_return_code is the return code from the FLCARODM

command processor. A value of 2000 indicates the error occurred in

RODM, and the RODM_return_code and RODM_reason_code must be

inspected. See “Return Codes” on page 579 for other return code value

definitions.. Refer to the IBM Tivoli NetView for z/OS Resource Object Data

Manager and GMFHS Programmer’s Guide for more information.

operation_code

The operation that FLCARODM was attempting to perform when the error

occurred. FLCARODM might perform several different operations, per

function requested. The FLCARODM operations are discussed later.

object_ID

The RODM object identifier, in hexadecimal, of the object that the

FLCARODM operation failed for. If it is not known it is null.

object_class

The RODM object class of the object for which the FLCARODM operation

failed. If it is not known it is null.

object_name

The RODM object name of the object for which the FLCARODM operation

failed. If it is not known it is null.

Locate: The format of the result stem for Locate is identical to that of the Query

function for an Object ID List. Error conditions for Locate are the same as Query

except that the Object Class and Object Name will have null values.

Result Stem

Appendix A. RODM Tools 575

MultiSystem Manager Operations

The operations that FLCARODM performs are:

Operation Id Operation

------------ ---

 000 No Operation Determined

 100 Create An Object

 101 Delete An Object

 102 Delete An Object And Its Children

 103 Delete An Object’s Children

 104 Execute Purge Against An Object

 200 Change A Field, Creating The Object If Necessary

 201 Change A Field, Only If The Object Exists

 202 Query A Field On An Object

 203 Change A Field On A Child Object

 300 Define A Relation, Creating The Object If Necessary

 301 Define A Relation, Only If The Object Exists

 302 Delete A Relation

 303 Delete All Relations To A Field On Children Objects

 304 Delete All Relations To A Field On An Object

 401 Locate

For operation ids 000,100,101,102,103, and 104 no additional information other than

what was previously discussed is present. For example, the following attempts to

Build a single object in an object class that doesn’t exist (FLCSX12).

...

call StartObject ’NoClass’ ’Dave’ /*Which object we are */

 /*referring to. */

call MakeRODMCall ’BUILD’ /*Call RODM */ ...

The following error stem is returned:

FLCARODM:2000,8,52

100

0000000000000000

No_Class

Dave

The information returned indicates that an error occurred (2000,8,52) while

attempting to create (100) an object named (Dave) in the (No_Class) class. The

return code 2000 indicates that the error was a RODM error. The description for

the RODM return code/reason code (8/52) states that the referenced object class

No_Class does not exist. Thus, a complete description of the error that occurred is

returned. For this simple example. this might seem to be more information than is

needed, but since FLCARODM supports multiple operations on multiple objects,

with multiple fields and relations, this level of detail becomes necessary for more

complex invocations.

For operation ids 200, 201, and 203, details regarding the field that was operated

on is also returned. The format of the field information is:

�� Stem.f=field_name Stem.f+1=field_type Stem.f+2=field_value ��

Where:

field_name

The field name or field identifier where the operation is performed

Result Stem

576 Resource Object Data Manager and GMFHS Programmer’s Guide

field_type

The data type for the field where the operation is performed

field_value

The specified field value for the field where the operation is performed

An example error can be:

FLCARODM:1048,0,0

200

0000000000000000

GMFHS_Managed_Real_Objects_Class

1000_Main_Street

DisplayStatus

Integer

129

The information returned indicates that an error occurred (1048,0 0) while

attempting to change (200) the field (DisplayStatus) which is of type (Integer) to a

value of (129) on an object named (1000_Main_Street) in the

(GMFHS_Managed_Real_Objects_Class) class. The return code 1048 indicates that

the field type specified is not valid. The field type must be a decimal value

representing the data type and the word Integer was specified, which is incorrect.

Use the decimal value 10.

For operation ids 202, 303, and 304, the field that was being operated on is also

returned. The only additional data is the field name or field ID, the field type and

field value are not present, because they do not apply to these operations. The

following is what can be returned when you try to query a field that does not

exist.

FLCARODM:2000,4,56

202

0000000000000000

GMFHS_Managed_Real_Objects_Class

1000_Main_Street

My_New_Field

The information returned indicates that an error occurred (2000,4 56) while

attempting to query (202) the field (My_New_Field) on an object named

(1000_Main_Street) in the (GMFHS_Managed_Real_Objects_Class) class. A RODM

error occurred, because the field is not defined to the

GMFHS_Managed_Real_Objects_Class class.

For operation ids 300, 301, and 302, the relation that was being operated on is also

returned. The format of the relation data is:

�� Stem.r=field_name Stem.r+1=object_ID Stem.r+2=object_class �

� Stem.r+3=object_name Stem.r+4=linked_field_name ��

Where:

field_name

The field name or field identifier that is being used to relate to another

object

object_ID

The object identifier of the object that is related to the previous object

Result Stem

Appendix A. RODM Tools 577

object_class

The class of the object that is related to the previous object

object_name

The name of the object that is related to the previous object

linked_field_name

The name of the field on the object that is being used to relate to the

previous object

The following can be returned if an attempt was made to relate an object to

another object that did not exist.

FLCARODM:2000,?,??

301

00010012E05C2A1E

GMFHS_Managed_Real_Objects_Class

1000_Main_Street

PhysicalConnPP

0000000000000000

GMFHS_Managed_Real_Objects_Class

Not_Defined_Yet

PhysicalConnPP

The information returned indicates that an error occurred (2000,?,??) while

attempting to link (301) two real objects (1000_Main_Street) and (Not_Defined_Yet),

defining a physical relation (PhysicalConnPP).

As stated before, the reason that the error information is so detailed is that

FLCARODM proceeds when it encounters RODM errors (FLCARODM return

codes between 2000 and 2999). It does not proceed if FLCARODM itself determines

that the input data is corrupt, or an internal error occurs. So the following error

output can result from one FLCARODM invocation:

FLCARODM:2000,8,52

100

0000000000000000

No_Class

Dave

FLCARODM:2000,4,56

202

0000000000000000

GMFHS_Managed_Real_Objects_Class

1000_Main_Street

My_New_Field

FLCARODM:2000,?,??

301

00010012E05C2A1E

GMFHS_Managed_Real_Objects_Class

1000_Main_Street

PhysicalConnPP

0000000000000000

GMFHS_Managed_Real_Objects_Class

Not_Defined_Yet

PhysicalConnPP

This can indicate that three errors occurred while processing the FLCARODM

request. The calling application is able to decode this information because the

FLCARODM operation code defines the format of the data that follows.

When no errors occur, FLCARODM only sends one return code FLCARODM:0,0,0

as stated before, for all operations except for Query. For Query, an individual

return code is sent for every field queried, either indicating success and containing

Result Stem

578 Resource Object Data Manager and GMFHS Programmer’s Guide

the data, or indicating failure with the cause of the failure. This enables the calling

application to determine which fields where queried successfully and which ones

failed. The application can then extract the information for the successful queries,

and handle the unsuccessful queries as appropriate. For example:

FLCARODM:0,0,0

4

Constructed In 1889

FLCARODM:0,0,0

16

00010012E05C2A1E

5

FLCARODM:2000,4,56

202

0000000000000000

GMFHS_Managed_Real_Objects_Class

1000_Main_Street

My_New_Field

FLCARODM:0,0,0

17

2

00010012E05C2A1E

5

00010012E05C2A1F

6

This indicates that the first field was successfully queried, and that it has a

character field with a value of Constructed In 1889. The second field queried was

an object link, and the object ID and field ID are returned. The third field queried

resulted in an error (2000,4,56), and the error information is returned. The fourth

field queried was an object link list, and the information regarding the objects is

returned. Note that even though querying the third field resulted in an error,

FLCARODM continued on and sent back the data regarding the fourth field.

Return Codes

The FLCARODM return codes are documented below.

1000 No object data was found. Either the command was not issued using the

NetView PIPE command, or nothing was found in the PIPE data stream.

1004 An incorrect function was requested. Valid functions are

v BUILD

v DELINKA

v DELINKAB

v DELOBJ

v PURGE

v QUERY

v UPDATE

1012 The RODM name specified was either null, or its length was greater than

eight characters.

1016 The application name specified was either null, or its length was greater

than eight characters.

1020 The class specified was not valid, possible reasons are:

v For class names, the length was greater than 64 characters, or the length

was zero and an object ID was not specified.

v For class ids, the value following the #, was either non numeric, or the

value was too large to be stored in four bytes.

1024 The object specified was not valid, possible reasons are:

Result Stem

Appendix A. RODM Tools 579

v For object names, the length was greater than 254 characters, or was

zero, and no object class was specified.

v For object ids, the value of the data following the #, was not 16 EBCDIC

characters representing a hexadecimal value.

1028 The number of objects specified was either an incorrect number, or was too

large.

1032 The number of fields specified was either an incorrect number, or was too

large.

1036 The number of relations specified was either an incorrect number or was

too large.

1044 The field specified was not valid, possible reasons are:

v For field names, the length was greater than 64 characters, or was zero.

v For field ids, the value following the #, was either non numeric, or the

value was too large to be stored in four bytes.

1048 The field type specified was either an incorrect number, or was too large.

1052 The field value specified was not valid. If the field type indicates that the

field value is numeric, then the field value was either an incorrect number,

or was too large. If the field type indicates that the field value is character

data, then the field value is greater than 254 characters in length.

1056 The value of fields and relations were both zero on an Update or Query

operation. Update requires at least one field or link to update, and Query

requires exactly one field to query.

1060 The specified field name to link to was either null, or its length was greater

than 64 characters.

1064 The specified class name to link to was either null, or its length was

greater than 64 characters.

1068 The specified object name to link to was either null, or its length was

greater than 254 characters.

1072 The specified field name to link to was either null, or its length was greater

than 64 characters.

1076 For the function specified, no fields are allowed.

1080 For the function specified, no relations are allowed.

1084 The data type returned for the field that was queried is not supported by

FLCARODM.

1088 The value supplied for the RODMRTRY parameter is not valid.

1092 The value supplied for the RODMINT parameter is not valid.

1096 The value supplied for the CHILDREN parameter is not valid.

1100 The value supplied for the STATUS parameter is not valid.

1104 The value supplied for the TIME parameter is not valid.

1108 The value supplied for the TRACE parameter is not valid.

1112 A parameter specified is not valid or unauthorized for the function

specified.

1116 The number of object definitions found was less than the number of objects

specified.

Return Codes

580 Resource Object Data Manager and GMFHS Programmer’s Guide

1120 All expected data has been processed, but more data still exists.

1124 The object definition was not complete.

1128 The number of field definitions found was less than the number of fields

specified.

1132 The field definition was not complete.

1136 The number of relations found was less than the number specified.

1140 The relation definition was incomplete.

1144 The number of fields specified was incorrect for the XREF function.

1148 The value supplied for the LOCATE parameter is not valid.

1152 The value supplied for the SF parameter is not valid.

1156 The value supplied for the FIELDID parameter is not valid.

1160 The value supplied for the FILTER parameter is not valid.

1164 Too many field definitions were specified for the function specified.

19XX All error codes from 1900 to 1999 indicates that an internal error occurred

in FLCARODM while processing the object data. Please report this return

code to the appropriate service representative, along with the associated

error information.

2000 An error occurred in RODM while processing a request. The RODM return

code and reason code provide more detailed information.

2004 There were no children on the object specified. For a function with the

XREF option, this return code means that there were no relationships to

traverse.

2008 The field indicated to be changed on an object’s children does not exist on

a child object. For a function with the XREF option, this return code means

the field did not exist on any of the objects that were cross-referenced.

4000 An internal error has occurred in FLCARODM while attempting to

perform the indicated operations. Please report this return code to the

appropriate service representative, along with the associated error

information.

4004 FLCARODM is unable to get necessary storage.

4008 FLCARODM has detected a condition that must not occur. Please report

this return code to the appropriate service representative, along with the

associated error information.

4012 An attempt was made to delete a link, but the data type of the specified

field was not of type ObjectLink or ObjectLinkList.

4016 There is no Member or MemberArcs field defined on the specified object,

so the function can not be performed on the object’s children.

4020 Filter error.

Object Data Stream Detail

The data stream is a low-level means of specifying data to RODM for creation and

update of objects. Developers that use the Stem Building Routines do not need to

specify the Data Stream at this low level.

Return Codes

Appendix A. RODM Tools 581

Data Stream Explanation

The format of the data stream consists of the total number of records in the REXX

stem (X.0), followed by the number of objects to be defined, followed by each

object definition.

 Format of the Data Stream

 ─────────────────────────

┌────────────────────────┐

│ Number Of Stem Records │

├────────────────────────┤

│ Number Of Objects │

├────────────────────────┤

│ Object Definition # 1 │

├────────────────────────┤

│ Object Definition # 2 │

└────────────────────────┘

 .

 .

 .

┌────────────────────────┐

│ Object Definition # N │

└────────────────────────┘

Each object definition consists of the name of the object class, the object name, the

number of fields and relations to be defined, followed by the field and relation

definitions.

 Format Of Each Object Definition

 ────────────────────────────────

┌────────────────────────┐

│ Object Class │

├────────────────────────┤

│ Object Name │

├────────────────────────┤

│ Number Of Fields │

├────────────────────────┤

│ Number Of Relations │

├────────────────────────┤

│ Field Definition #1 │

├────────────────────────┤

│ Field Definition #2 │

└────────────────────────┘

 .

 .

 .

┌────────────────────────┐

│ Field Definition #M │

├────────────────────────┤

│ Relation Definition #1 │

├────────────────────────┤

│ Relation Definition #2 │

└────────────────────────┘

 .

 .

 .

┌────────────────────────┐

│ Relation Definition #P │

└────────────────────────┘

Each field definition consists of the name of the field, the data type of the field

value, and the field value.

Object Data Stream Detail

582 Resource Object Data Manager and GMFHS Programmer’s Guide

Format Of Each Field Definition

 ───────────────────────────────

┌────────────────────────┐

│ Field Name │

├────────────────────────┤

│ Field Value Data Type │

├────────────────────────┤

│ Field Value │

└────────────────────────┘

Each relation definition consists of the name of the field present on this object that

is related to another object, the class and object name the field is related to,

followed by the field on the related object.

 Format Of Each Relation Definition

 ──────────────────────────────────

┌────────────────────────┐

│ Field Used For Relation│

├────────────────────────┤

│ Class Of Related Object│

├────────────────────────┤

│ Name Of Related Object │

├────────────────────────┤

│ Field On Related Object│

└────────────────────────┘

A data stream consists of individual data stems.

Data Stem Detail

This section details the format of the REXX object data stem. It is structured in the

following format:

��

Stem.0=elements

Stem.1=objects

�

object_definition

��

Where:

elements

The total number of elements defined for the stem variable.

objects

The number of objects where the operation is performed. This value must

be at least one.

object_definition

Defines the objects to be modified. The object definitions can be repeated,

and the number of object definitions must be equal to the number

indicated by objects.

Object Definition: The format of object_definition follows. Note: The letter ’o’ is

used in the stem variable since the actual stem value varies.

�� Stem.o=object_class Stem.o+1=object Stem.o+2=fields Stem.o+3=relations �

Object Data Stream Detail

Appendix A. RODM Tools 583

�

�

field_definition

�

relation_definition

��

Where:

object_class

The object class on which to be operated. This must be blank if an object

ID is specified. This must be null if the Locate function is specified.

object The name or object ID of the object on which to be operated. The object ID

is specified by prefixing it with the #, followed by the hexadecimal object

ID value. If the first character is not a #, then the data is interpreted as an

object name. If an object ID is specified then the object class is ignored. If a

null is specified ’’, then the operation is performed on the class. This is

only valid for Query operations. This must be null if the Locate function is

specified.

fields The number of fields on the object to be modified or queried.

relations

The number of relations on the object to be created or removed.

field_definition

Defines the fields to be modified or queried. The field definitions can be

repeated, and the number of field definitions must be equal to the number

indicated by fields.

relation_definition

Defines the relations to be created/deleted between objects. The relation

definitions can be repeated, and the number of definitions must be equal to

the number indicated by relations.

Field Definition: The format of field_definition follows. Note: The letter f is used

in the stem variable since the actual stem value varies.

�� Stem.f=field

Stem.f+1=field_type

Stem.f+2=field_value
 ��

Where:

field The name or field ID of the field to be modified or queried. The field ID is

specified by prefixing it with the #, followed by the decimal numeric field

ID value. If the first character is not a #, then the data is interpreted as a

field name.

field_type

A decimal integer value corresponding to the data type identifier of the

field. The following data types are supported for Build and Update.

 Data Type Data Type Identifier

-------------- --------------------

CHARVAR 4

INTEGER 10

SELFDEFINING 19

SMALLINT 21

FIELDID 26

ANONYMOUSVAR 30

For a list of data types supported by the BUILD and UPDATE functions,

see“BUILD Function” on page 554.

Object Data Stream Detail

584 Resource Object Data Manager and GMFHS Programmer’s Guide

For a list of data types supported by the QUERY function, see “QUERY

Function” on page 555.

field_value

The value that is assigned to a field.

 Field type and field value are required components of a field definition for

the Build, Update and Locate functions. They must not be specified for the

other functions. When the XREF parameter is specified (Build and Update

functions only) with a value of 1STFIELD, the field type and field value

must not be specified for the first field on each object. For the Locate

function, field_value is the comparison string.

Relation Definition: The format of relation_definition follows. Note: The letter r

is used in the stem variable since the actual stem value varies.

�� Stem.r=field_to_link Stem.r+1=object_class_to_link_to �

� Stem.r+2=object_to_link_to Stem.r+3=field_to_link_to ��

Where:

field_to_link

The name or field ID on object to be related to another field. The field ID is

specified by prefixing it with the #, followed by the decimal numeric field

ID value. If the first character is not a #, then the data is interpreted as a

field name.

object_class_to_link_to

The name of the object class of the object to be related to the object being

defined.

object_to_link_to

The name or object ID of the object to be related to the object being

defined. The object ID is specified by prefixing it with the #, followed by

the hexadecimal object ID value. If the first character is not a #, then the

data is interpreted as an object name. If an object ID is specified then the

object_class_to_link_to is ignored.

field_to_link_to

The name or field ID on object_to_link_to to be related to field_to_link on

object The field ID is specified by prefixing it with the #, followed by the

decimal numeric field ID value. If the first character is not a #, then the

data is interpreted as a field name.

BLDVIEWS

BLDVIEWS is a REXX exec that enables you to create aggregate objects and

customized views. Use BLDVIEWS to create the following types of views:

v Configuration backbone

v Configuration logical

v Configuration physical

v Configuration peer

v Exception

v More detail logical

v More detail physical

v Network

Object Data Stream Detail

Appendix A. RODM Tools 585

BLDVIEWS uses control statements to specify the names of the views and

aggregates you want to create and the resources that you want the views and

aggregates to contain. Control statements use keywords and values to specify the

parameters. When specifying resources, you do not need to know the RODM

classes or formats of the RODM names. To specify a resource, type the name of the

resource that is displayed (the value of the RODM DisplayResourceName field).

You can also specify ALL or a wild card name.

Use BLDVIEWS to link existing resources (objects) in RODM to views and

aggregate objects, or to modify a subset of the more commonly used fields on

existing resources. You can create new views and aggregates or update existing

views and aggregates. BLDVIEWS supports RODM objects created by MultiSystem

Manager and SNA topology manager. However, BLDVIEWS does not create objects

on those classes. Use BLDVIEWS to create resources on GMFHS classes.

The control statements are passed to BLDVIEWS using one of the following

methods:

v DSIPARM member (for example, BLDVIEWS MYMEMBER)

v A fully qualified cataloged sequential data set (for example, BLDVIEWS

ESP.GAF.DATA(MYDEFS)

v A stem array, collected and passed using the PIPE command (for example,

MyStem.0=2; MyStem.1=VIEW ; MyStem.2=BRIDGE ...; ’PIPE STEM MyStem.

| COLLECT | NETV BLDVIEWS | CONSOLE’)

BLDVIEWS also provides a REXX exec called DELVIEWS that enables you to

delete views or groups of views with a specified prefix.

Before You Begin

You can use Visual BLDVIEWS (VBV) to generate the BLDVIEWS control

statements. VBV is an application that simplifies the management of RODM views

and information. VBV provides a graphical, drag-and-drop interface to BLDVIEWS

and RODMView. Note that your existing BLDVIEWS files can be imported into

VBV. For more information about VBV, See the VBV online help.

Sample BLDVIEWS control statements are contained in member FLCVBLDS which

resides in the CNMSAMP data set. FLCVBLDS has examples of coding control

statements using various parameters.

BLDVIEWS Processing

BLDVIEWS queries RODM for specified objects and then links these objects to the

views or aggregate objects that you specify. BLDVIEWS can modify certain fields

on objects in any class in RODM, and can create objects on GMFHS classes.

Any processing performed by BLDVIEWS is static. Only the resources that were in

RODM at the time you run BLDVIEWS are processed. If resources are later added

or deleted from RODM, rerun BLDVIEWS to incorporate the changes into your

views.

The RODM Collection Manager provides fully dynamic view creation and

maintenance, and it is compatiable with the BLDVIEWS control statements. Refer

to the NetView Command online help for FLCV2RCM and the NetView

management console online help for more information about the RODM Collection

Manager.

All combinations of classes are supported.

BLDVIEWS

586 Resource Object Data Manager and GMFHS Programmer’s Guide

Views

BLDVIEWS supports the following types of views:

v Network

v Configuration Peer

v Configuration Backbone

v Configuration Connectivity

v More Detail

BLDVIEWS enables you to specify any supported view layout type, but only uses

the following view layout types:

v Hierarchical

v Ellipse

v Grid

Aggregate Objects

Use the AGGregate control statement and AGGChild control statements to create

your own aggregate resources and specify which objects you want linked to the

aggregate. BLDVIEWS links the AGGChild resources to the AGGregate resource by

linking both the AggregationParent and AggregationChild field and the

ComposedOfLogical and IsPartOf fields.

BLDVIEWS Control Statements

The following control statements are supported:

ADaPter Specifies LNM adapter resources.

AGENT Specifies MultiSystem Manager agent that has

created objects in RODM.

AGG Specifies the aggregate resources (GMFHS

aggregate objects). The aggregate resources you

specify can be existing resources, or you can create

an aggregate and link the resources on the

AGGChild control statements that follow to the

aggregate resource.

AGGCHILD Specifies the aggregation children that you want

linked to the aggregate resource that was

previously defined.

BBVIEW Defines a configuration backbone view, which

contains the resources on the control statements

that follow it.

BRidge Specifies LNM bridge real or aggregate resources.

CAU Specifies LNM CAU real or aggregate resources.

CDRM Specifies VTAM CDRM resources.

CDRSC Specifies VTAM CDRSC resources.

CIRCUIT Specifies the APPN transmission group circuits,

and subarea circuits.

CLASS Specifies the global RODM class which contains the

resources on the OTHER control statements that

follow it. This control statement is only used for

the OTHER control statement and enables you to

specify the RODM class globally without having to

specify it on each OTHER control statement.

BLDVIEWS Processing

Appendix A. RODM Tools 587

CLUSTER Specifies the MultiSystem Manager or APPNTAM

cluster aggregate resource.

DOMAIN Specifies APPN domains.

ENODE Specifies APPN end nodes.

EVIEW Defines an exception view.

Note: Objects specified after the EVIEW statement

only participate in the exception view if

CREATE=Y or CREATE=B is specified on the

EVIEW statement. If CREATE=N is

specified, these objects are ignored, and do

not participate in the exception view.

GW_NCP Specifies NCP gateway resources.

HOST_NODE Specifies the host PUs (PU Type 5 nodes).

IC_NODE Specifies APPN interchange nodes.

INTERFACE Specifies TCP/IP adapter resources.

IP_BRIDGE Specifies TCP/IP bridge aggregate resources.

IP_HOST Specifies TCP/IP host aggregate resources.

IP_HUB Specifies TCP/IP hub aggregate resources.

IP_LINK Specifies TCP/IP interface link resources.

IP_LOCATION Specifies TCP/IP location aggregate resources.

IP_ROUTER Specifies TCP/IP router aggregate resources.

IP_SEGMENT Specifies TCP/IP segment aggregate resources.

IP_SUBNET Specifies TCP/IP subnetwork aggregate resources.

IPSPname Specifies the VTAM PU, LU, or CP name for the

NetView for AIX service point which manages the

resources on the control statements that follow it.

LAN_PORT Specifies LNM Port. This is for LNM V2.

LANSPname Specifies the VTAM PU, LU, or CP name for the

LNM service point which manages the resources

on the control statements that follow it.

LCVIEW Defines a configuration logical connectivity view,

which contains the resources on the control

statements that follow it.

LINE Specifies VTAM lines.

LLINK Specifies logical links.

LNODE Specifies APPN len nodes.

LU Specifies VTAM logical units.

LU_GROUP Specifies VTAM logical unit groups.

MAJNODE Specifies VTAM major nodes.

MDLVIEW Defines a more detailed logical view, which

contains the resources on the control statements

that follow it.

BLDVIEWS Control Statements

588 Resource Object Data Manager and GMFHS Programmer’s Guide

MDPVIEW Defines a more detailed physical view, which

contains the resources on the control statements

that follow it.

MIG_DATA_HOST Specifies Migration Data Hosts.

NCP Specifies NCP resources.

NETWORK Specifies the MultiSystem Manager or APPNTAM

network aggregate resource.

NNODE Specifies APPN network nodes.

NONSNA Specifies Non-SNA (GMFHS managed real)

resources.

OTHER Specifies a resource from a user-created or

MultiSystem Manager open class.

PCVIEW Defines a configuration physical connectivity view,

which contains the resources on the control

statements that follow it.

PU Specifies VTAM physical units.

PVIEW Defines a configuration peer view, which contains

the resources on the control statements that follow

it.

SEGment Specifies the LNM segment real or aggregate

resources.

SNA Specifies VTAM SNA shadow resources.

SNA_DOMAIN Specifies the global VTAM domain which owns the

resources on the control statements that follow it.

SNA_PORT Specifies the SNA port.

SNALOCALTOPO Specifies the APPN SNA local topology resources.

SYSTEM Specifies system aggregate resources.

TG Specifies APPN transmission groups.

TME_MONITOR Specifies TME® Monitor resources.

TME_POLICYREGION Specifies TME Policy Region resources.

TME_TMR Specifies the TME Managed Region resources that

you to process.

TMESPname Specifies the IP name or address for the TME

service point which manages the resources on the

control statements that follow it.

VIEW Defines a network view, which contains the

resources on the control statements that follow it.

VRN Specifies APPN virtual routing nodes.

WILDCARD Defines wildcard characters to use when coding

wild card names on the control statements.

BLDVIEWS Control Statements

Appendix A. RODM Tools 589

Control Statement Syntax

BLDVIEWS control statements have a free-form syntax which uses keywords and

values. You can start coding in any column. Leading and trailing blanks are

ignored. A specific control statement can span 1 or more lines. There are two types

of continuation available:

v A control statement separated into multiple statements with the break occurring

after a keyword=value. This is done by coding a comma after the keyword=value

and continuing with the remaining parameters on the next statements. For

example:

 BRIDGE=ALL,

 TYPE=AGG,AGGTHRESH=(20%,60%,80%),

 SP=A19SRVCP

v A control statement separated into multiple statements with the break occurring

anywhere in the coding. (This type of continuation is required when an entire

keyword=value cannot be coded on one statement). The break can occur in the

middle of a keyword or value by coding the following characters: ||,. For

example:

 BRIDGE=ALL,

 TYPE=||,

 AGG,

 AGG||,

 THRESH=(20%,||,

 60%,80%),

 SP=A19||,

 SRVCP

The statements are concatenated and the characters are removed.

Note: The RODM Collection Manager interpreter supports the use of double equal

signs (==) to distinguish between using MyName-based names or

DisplayResourceName-based names as they appear on a view. For example,

the following control statement creates a view and adds an object based on

its DisplayResourceName:

VIEW=NewView,CREATE=Yes

GENERIC==CommonName,CLASS=My_Object_Class

Control statements can be coded in a:

v NetView DSIPARM member

v Fully qualified cataloged data set

v A REXX stem array, which is collected in a MLWTO and passed to BLDVIEWS

using the NetView PIPE command

Note: You can use z/OS system symbolics in control statements processed by

BLDVIEWS.

Keywords can be specified in any case (upper, lower or mixed) and they can be

abbreviated. The abbreviated syntax is denoted in uppercase letters defined on

each control statement.

If the control statements are coded in a NetView DSIPARM member or a fully

qualified data set, the maximum length of each record is 80 characters. Columns

73-80 are ignored. If the control statements are passed to BLDVIEWS using the

NetView PIPE command, there is no limit to the size of the records and no

columns are ignored

BLDVIEWS Control Statements

590 Resource Object Data Manager and GMFHS Programmer’s Guide

The following resource names will always be translated to upper case:

v ADaPter

v AGGCHILD (All resources except for NONSNA, AGG, CLUSTER, and

MultiSystem Manager TCP/IP resources)

v All APPNTAM resources except for nnDomainNetworkCluster

v All SNA topology manager resources

v BRidge

v CAU

v IPSPname

v LANSPname

v TMESPname

v SEGment

v SNA

v SNA_DOMAIN

For all other resource names, code them in the same case, because that is how they

are displayed by NMC or by the various element managers.

Keyword values can be coded in mixed case. In some instances the values are

respected and in other instances the values are translated to upper case. The values

for the following keywords are not translated to upper case:

v CONSOLE

v CORRELATER (NetView V1R3 and above)

v DISPLAY_NAME

v DOMAIN

v Generic Commands (ACTIVATE, DEACTIVATE, RECYCLE, DISPLAY)

v OTHER_DATA

v USER_DATA

Comments can be used, but only on separate statements. Code a comment

statement by coding an * in column 1.

* NETA NCPs

NCP=NETA*

When you want to link resources to a view, code a VIEW statement followed by

the resource statements that you want linked to the view.

VIEW=NEWVIEW,CREATE=YES

IP_ROUTER=rtr1.company.com

IP_ROUTER=rtr2.company.com

When you want to link resources to an aggregate, code an AGGregate statement

followed by the AGGChild resource statements that you want linked to the

aggregate.

AGGREGATE=NEWAGG,CREATE=YES

AGGCHILD=rtr1.company.com,type=IP_ROUTER

AGGCHILD=rtr2.company.com,type=IP_ROUTER

Common Control statement Parameters

The following parameters are common to many of the BLDVIEWS control

statements and are documented here and referenced later in the documentation by

the control statements that support them:

v AGGPRI

v AGGTHRESH

v COLUMN

v CONSOLE

v CORRELATER

BLDVIEWS Control Statements

Appendix A. RODM Tools 591

v DISPLAY_NAME

v DISPLAY_STATUS

v OTHER_DATA

v ROW

v TYPE

v UNLINK

v USER_DATA

v User Status

– MARK

– AUTO_IN_PROGRESS

– SUSPEND

– SUSPEND_WITH_AUTO_CLEAR
v Generic Commands:

– ACTIVATE

– DEACTIVATE

– DISPLAY

– RECYCLE

AGGPRI:

Description: The AGGPRI keyword is used to set or change the aggregation

priority for real resources. The aggregation priority is the number of levels of

aggregate resources whose status immediately changes to degraded when the real

resource becomes unsatisfactory (regardless of aggregation threshold values). This

enables you to give higher priority to critical resources.

Syntax:

AGGPRI=x

-2 Use the DisplayResourceType default value

-1 Do not aggregate

0 Aggregate, but immediately degrade 0 levels

1 Immediately degrade 1 level

2 Immediately degrade 2 levels

3 Immediately degrade 3 levels

4 Immediately degrade 4 levels

5 Immediately degrade 5 levels

6 Immediately degrade 6 levels

7 Immediately degrade 7 levels

8 Immediately degrade 8 levels

9 Immediately degrade 9 levels

Example: AGGPRI=2

AGGTHRESH:

Description: The AGGTHRESH keyword is used to set the aggregation thresholds

for aggregate resources. The aggregation thresholds are used to determine when

the status of aggregates are changed to reflect the status of the underlying

resources. There are three aggregation thresholds:

v ThresholdDegraded (status color is yellow)

v ThresholdSeverelyDegraded (status color is pink)

v ThresholdUnsatisfactory (status color is red)

Thresholds are specified on aggregate resources and are the minimum number of

unsatisfactory, real resources underneath the aggregate which cause the aggregate

to change status.

BLDVIEWS Control Statements

592 Resource Object Data Manager and GMFHS Programmer’s Guide

If you specify percentages, BLDVIEWS queries the aggregate’s

TotalRealResourceCount field and will then multiplies it by the specified

percentages to calculate the new values for the thresholds.

Syntax:

AGGTHRESH=(xxx,yyy,zzz)

xxx 1-3 digit ThresholdDegraded

yyy 1-3 digit ThresholdSeverelyDegraded

zzz 1-3 digit ThresholdUnsatisfactory

Example: AGGTHRESH=(10#,25%,75%)

Usage Notes:

v To specify a threshold value as a percentage, prefix or suffix the number with a

%. BLDVIEWS will multiply it by the total number of real resources linked to

the aggregate to come up with the threshold.

To specify a threshold value as an actual number, prefix or suffix the number

with a #. If the specified threshold is larger than the total number of real

resources beneath the aggregate, then the threshold is set to the total number of

real resources beneath the aggregate.

You can mix actual values and percentages in the AGGTHRESH keyword.

v If resources are added or deleted from an aggregate object after BLDVIEWS is

run, it is necessary to rerun BLDVIEWS to readjust the thresholds.

COLUMN:

Description: When building a grid view (layout type of 9), you can specify the

specific column on the screen where you want a resource to be placed. The

COLUMN keyword is used to specify the column.

Syntax: COLUMN=column_on_screen

Example: COLUMN=3

Usage Notes:

v The COLUMN keyword is only supported if specified on a resource control

statement that follows a view control statement with a layout type of 9 (grid).

v ROW must be specified if COLUMN is specified.

CONSOLE:

Description: You can exploit remote console support, which enables you to click on

a resource and then issue a command, such as TELNET, or to remotely logon to a

resource. Although this is referred to as remote console support, any command can

be specified. The command runs on the NMC console workstation. BLDVIEWS

envelopes the specified command with RemoteConsole = # and # and then sets the

DisplayResourceUserData field. The user only has to specify the command.

You can set the remote console field for any resource in RODM that has the

DisplayResourceUserData field defined. See the IBM Tivoli NetView for

z/OS NetView Management Console User’s Guide for more information.

Syntax:

CONSOLE=’command’

BLDVIEWS Control Statements

Appendix A. RODM Tools 593

Example:

CONSOLE=’TELNET.EXE %name%’

Usage Notes:

v You can set Remote Console support for any object which has the

DisplayResourceUserData field defined.

v BLDVIEWS envelopes the specified command with the appropriate control

information that is required for the command to be run correctly. The command

must be specified either with a fully qualified name (drive and path) or the

PATH must be set so the command can be located.

v CONSOLE is mutually exclusive with USER_DATA

v BLDVIEWS provides control variables that can be coded anywhere in the

command text. The variables are:

%NAME% Is substituted with the name of the resource.

This variable is supported for all resources.

%RANDOM% Is substituted with a 1-5 digit random number.

This variable is supported for all resources.

%SEGMENT% Is substituted with the segment number where

the resource resides.

 This variable is only supported for the following

resources identified by the following control

statements:

– ADAPTER

– CAU

– IP_HOST

– INTERFACE

%IPADDRESS% Is substituted with the internet address of the

resource.
v BLDVIEWS enables the following NetView variables to be coded anywhere in

the command text:

netid() VTAM network identifier

domain() Current NetView domain

opid() NetView operator or task ID

cursys() Current operating system name

ecvtpseq() Level of operating system

vtam() VTAM version and release

netview() NetView version and release

mvslevel() z/OS version and release

opsystem() Type of operating system

sysplex() Name of the MVS sysplex
v Single quotation marks (’) or double quotation marks (″) can be used as a

delimiter.

Correlater:

Description: The CORRELATER keyword is used to set the Correlater field for an

object.

BLDVIEWS enables the following NetView variables to be coded anywhere in the

correlater text:

netid() VTAM network identifier

domain() Current NetView domain

BLDVIEWS Control Statements

594 Resource Object Data Manager and GMFHS Programmer’s Guide

opid() NetView operator or task ID

cursys() Current operating system name

ecvtpseq() Level of operating system

vtam() VTAM version and release

netview() NetView version and release

mvslevel() MVS version and release

opsystem() Type of operating system

sysplex() Name of the MVS sysplex

Syntax: CORRELATER=’USA VA RICHMOND’

CORRELATER=’text’

Usage Notes: Single quotation marks (’) or double quotation marks (″) can be used

as a delimiter.

DISPLAY_NAME:

Description: Set the DisplayResourceName field for resources coded on SNA,

NONSNA and AGGREGATE statements. The DisplayResourceName field is used

to define a more descriptive and useful name to the resources.

DisplayResourceName, if defined for a resource, is displayed on the workstation

instead of the actual RODM name (MyName) of the resource.

Use the BLDVIEWS substitution variable %NAME% as part of the new

DisplayResourceName value. The %NAME% variable is substituted with the name

of the resource. This enables you to reformat the names of multiple resources at

once with one control statement. You can prefix or suffix the names with additional

text.

Syntax:

DISPLAY_NAME=xxx

Example:

DISPLAY_NAME=NCP_1

DISPLAY_STATUS:

Description: The DISPLAY_STATUS keyword is used to set the status of an object.

Syntax:

DISPLAY_STATUS=xxx

129 Satisfactory

144 Medium satisfactory

145 Low satisfactory

130 Unsatisfactory

160 Medium unsatisfactory

161 Low unsatisfactory

131 Intermediate

132 Unknown

133 Degraded

134 Severely degraded

136–143 User status

152–159 User status

Example:

DISPLAY_STATUS=130

BLDVIEWS Control Statements

Appendix A. RODM Tools 595

Usage Notes: Display status value 131 is not supported for aggregate objects.

Display status values 133 and 134 are not supported for real objects.

OTHER_DATA:

Description: The OTHER_DATA keyword is used to set the RODM

DisplayResourceOtherData field for an object. The DisplayResourceOtherData field

can be set to any value. The value in this field is displayed in the NMC Data1

field.

Syntax:

OTHER_DATA=’other_data’

Example:

OTHER_DATA=’Call 1-800-IBM-HELP for support’

Usage Notes: BLDVIEWS enables the following NetView variables to be coded

anywhere in the other data text. The variables are:

netid() VTAM network identifier

domain() Current NetView domain

opid() NetView operator or task ID

cursys() Current operating system name

vtam() VTAM version and release

netview() NetView version and release

mvslevel() MVS version and release

opsystem() Ttype of operating system

sysplex() Name of the MVS sysplex

Single quotation marks (’) or double quotation marks (″) can be used as a

delimiter.

ROW:

Description: When building a hierarchical view (layout type of 6) or a grid view

(layout type of 9), you can specify the specific row on the screen where you want a

resource to be placed. Use the ROW keyword to specify the row on a screen where

you want a resource to be positioned.

The ROW keyword is only supported if specified on a resource control statement

that follows a view control statement with a layout type of 6 (hierarchical) or 9

(grid).

Syntax:

ROW=row_on_screen

Example:

ROW=2

UNLINK:

Description: Use the UNLINK keyword to remove a resource from a view or from

an aggregate object without having to delete the view or aggregate and rebuild

them.

Syntax:

BLDVIEWS Control Statements

596 Resource Object Data Manager and GMFHS Programmer’s Guide

Syntax: UNLINK

Example:

View=myview

Agg=myagg,unlink

USER_DATA:

Description: The USER_DATA keyword is used to set the

DisplayResourceUserData field for an object. The contents of this field is displayed

in the NMC Data2 field. You can set the User Data field for any resource which

has the DisplayResourceUserData field defined, and you can set the

DisplayResourceUserData field to any value.

BLDVIEWS enables the following NetView variables to be coded anywhere in the

user data text. The variables are:

netid() VTAM network identifier

domain() Current NetView domain

opid() NetView operator ID or task ID

cursys() Current operating system name

vtam() VTAM version and release

netview() NetView version and release

mvslevel() MVS version and release

opsystem() Type of operating system

sysplex() Name of the MVS sysplex

Syntax:

Syntax: USER_DATA=’user_data’

Example:

USER_DATA=Call x45108 for support

Usage Notes:

v Single quotation marks (’) or double quotation marks (″) can be used as a

delimiter.

v This function cannot be used if Remote Console support is used, because they

occupy the DisplayResourceUserData field in RODM.

User Statuses:

Description: Use the following user status keywords to set the corresponding bits

in the UserStatus field:

v Mark

v Automation in progress

v Suspend

The MARK keyword is used to set or clear the mark bit in the UserStatus field for

any resource which has the UserStatus field defined. The resource must already

exist in RODM. If you want to create an object, you must first code the control

statements to create the resource and then code the control statements to update

the resource.

The AUTO_IN_PROGRESS keyword is used to set or clear the Automation in

Progress bit in the UserStatus field for any resource in RODM that has the

UserStatus field defined. The resource must already exist in RODM. If you want to

BLDVIEWS Control Statements

Appendix A. RODM Tools 597

create an object, you must first code the control statements to create the resource

and then code the control statements to update the resource.

The SUSPEND and SUSPEND_WITH_AUTO_CLEAR keywords enable you to set

the Suspend bit in the UserStatus field for any resource in RODM that has the

UserStatus field defined. The resource must already exist in RODM. If you want to

create an object, you must first code the control statements to create the resource

and then code the control statements to update the resource.

Setting the suspend User status flag disables the resource from aggregation and

participation in exception views. If you set the Suspend bit in the UserStatus field

with the SUSPEND_WITH_AUTO_CLEAR keyword, GMFHS automatically clears

the Suspend bit when the resource returns to a satisfactory state. If you set the

Suspend bit in the UserStatus field with the SUSPEND keyword, you must

manually clear the Suspend bit from the NMC console or use BLDVIEWS.

The state of the UserStatus bits can be displayed in the Resource Information

pop-up window.

Generic Commands:

Description: BLDVIEWS enables you to set generic commands for objects. The

NMC generic commands function enables an NMC operator to select a resource

and issue one of the following generic commands:

v Current Status (DisplayStatusCommandText)

v Activate (ActivateCommandText)

v Inactivate (DeactivateCommandText)

v Recycle (RecycleCommandText)

The actual command to be issued is retrieved from fields on the object. For

example, the command text for the Activate command is retrieved from the

ActivateCommandText field.

Syntax:

ACTivate=’activate_command’

DEACTivate’=deactivate_command’

RECYcle=’recycle_command’

DISPlay=’display_command’

Example:

ACTIVATE=’BRG LINK NAME=%NAME%’

DISPLAY=BRG QUERY NAME=%NAME%

Usage Notes:

v For MultiSystem Manager token ring resources, BLDVIEWS appends the

commands with an operator ID of FLCVBLDV and a unique correlator value.

v BLDVIEWS provides the following control variables that can be coded anywhere

in the command text:

%NAME% Substituted with the name of the resource. This

variable is supported for all resources.

%RANDOM% Substituted with a 1-5 digit random number.

This variable is supported for all resources.

%SEGMENT% Substituted with the segment number where the

resource resides. This variable is only supported

BLDVIEWS Control Statements

598 Resource Object Data Manager and GMFHS Programmer’s Guide

for the following resources identified by the

following control statements:

– ADAPTER

– CAU

– IP_HOST

– INTERFACE

%IPADDRESS% Substituted with the internet address of the

resource. This variable is only supported for the

NWSERVER control statement.
v BLDVIEWS enables the following NetView variables to be coded anywhere in

the command text:

netid() VTAM network identifier

domain() Current NetView domain

opid() NetView operator or task ID

cursys() Current operating system name

vtam() VTAM version and release

netview() NetView version and release

mvslevel() MVS version and release

opsystem() Type of operating system

sysplex() Name of the MVS sysplex
v Single quotation marks (’) or double quotation marks (″) can be used as a

delimiter.

Defining Wildcard Characters

Use the WILDCARD control statement to define wildcard characters.

WILDCARD Control Statement:

Description: The WILDCARD control statement defines wildcard characters to use

when coding a wild card pattern matching name on a RESOURCE control

statement.

wildcard_single_character and wildcard_string are special characters used to define a

wild card pattern matching name.

THe default value of wildcard_single_character and wildcard_string is an *

WildCard

��

�

 ,

WildCard=(wildcard_single_character

)

wildcard_string

��

Parameters:

wildcard single_character and wildcard_string

Special characters used to define a wild card pattern matching name.

 Any character can be specified, except for a comma ’,’ or an equal sign ’=’. The

default character for both wildcard_single_character and wildcard_string an

asterisk (*).

wildcard_single_character

BLDVIEWS Control Statements

Appendix A. RODM Tools 599

Used when you wish to perform a wild card match on 1 character. The

wildcard_single_character coded in a position in the wild card pattern matching

name will always match the character in the corresponding position in the

resource name.

 If wildcard_string is specified in a wild card pattern matching name in any

position but the last position of the wild card pattern matching name, then it

will be treated as a wildcard_single_character (perform a wild card match on 1

character in the position specified).

wildcard_string

 Used when you wish to perform a wild card match on a remaining string of

characters at the end of a resource name. The wildcard_string coded at the end

of a wild card pattern matching name will always match the string of

characters at the corresponding position in the resource name.

 If wildcard_string is specified in a wild card pattern matching name in any

position except the last position of the wild card pattern matching name, it is

treated as a wildcard_single_character (perform a wild card match on 1 character

in the position specified).

Examples: Assume WILDCARD=(?,*) for the following pattern matching examples:

Pattern Match Example Matches Found

BRIDGE=A001B* Matches all bridge resources whose names begin

with A001B.

BRIDGE=????B001 Matches all bridge resources whose names are

eight characters in length and end with B001).

SEGMENT=?C?0 Matches all segment resources whose names have a

C in position 2 and a 0 in position 4).

ADP=??SERV* Matches all adapter resources whose names are 6

or more characters in length, and have SERV in

positions 3 through 6).

ADP=??PRINTER0? Matches all adapter resources whose names are 10

or 11 characters in length, and have PRINTER0 in

positions 3 through 10).

Assume WILDCARD = *,* (the default), for the following pattern matching

examples:

Pattern Match Example Matches Found

BRIDGE=A001B* Matches all bridge resources whose names begin

with A001B.

BRIDGE=****B001 Matches all bridge resources whose names are

eight characters in length and end with B001.

SEGMENT=*C*0 Matches all segment resources whose names have a

C in position 2 and a 0 in position 4.

ADP=**SERV* Matches all adapter resources whose names are 6

or more characters in length, and have SERV in

positions 3 through 6.

ADP=**PRINTER0* Matches all adapter resources whose names are 10

or more characters in length, and have PRINTER0

in positions 3 through 10.

Defining Wildcard Characters

600 Resource Object Data Manager and GMFHS Programmer’s Guide

Selective Control Statements

The following selective control statements enable you to be more selective in

specifying resources to be processed by BLDVIEWS, or enables you to specify

common information to be used to locate certain resources in RODM. Wildcard is

not valid for these types of control statements.

Service Point Control Statement:

Description: The service point control statement specifies the service point that

manages the resources on the control statements following the service point control

statement. The service point control statement enables you to be more selective in

specifying resources to be processed by BLDVIEWS. This service point name can

be overridden on individual control statements using the SPname keyword.

The following service point control statements are enabled:

v LANSPname

v TMESPname

v IPSPname

Syntax:

ATMSPname

��
 ALL

ATMSPname=

service_point

��

Parameters:

service_point

The 1-8 character VTAM PU, LU, CP name, or the IP host name.

All

Include resources from ALL service points. All is the default

Usage Notes:

v If you code control statements with a name of ALL or a resource name, the

resources that get processed depend on whether a service point control

statement was previously specified.

v If no prior service point statement was specified and a resource control

statement was coded with ALL for a resource name, all resources are processed.

v If no prior service point statement was specified and a resource control

statement was coded with a wild card resource name, all resources that match

the wild card name are processed.

v If a prior service point statement was specified and a resource control statement

was coded with ALL for a resource name, all resources managed by that service

point are processed.

v If a prior service point statement was specified and a resource control statement

was coded with a wild card resource name, all resources that match the wild

card name, and are managed by that service point, are processed.

SNA_DOMAIN Control Statement:

Description: The SNA_DOMAIN control statement specifies the SNA domain that

owns the SNA topology manager resources on the control statements following the

SNA_DOMAIN control statement. The SNA domain is used to locate the SNA

topology manager resources in RODM. The default is ALL. This value can be

overridden on individual control statements using the SNA_DOMAIN keyword.

Selective Control Statements

Appendix A. RODM Tools 601

Syntax:

SNA_DOMAIN

�� SNA_DOMAIN=sna_domain_name ��

Parameters:

sna_domain_name

The 1–17 character SNA domain name in the format of network.host_pu_name.

network

VTAM network name 1–8 characters (NETID parameter in VTAM start

list ATCSTRxx)

host_pu_name

VTAM host PU name 1–8 characters (HOSTPU parameter in VTAM

start list ATCSTRxx)

If sna_domain_name is not specified, then the local SNA domain is used

(domain where BLDVIEWS is run).

 The following SNA Topology Resources require an SNA Domain:

v VTAM Major Node (MAJNODE control statement)

v CDRMs (CDRM control statement)

v CDRSCs (CDRSC control statement)

v Logical Units (LU control statement)

v Logical Unit Groups (LU_GROUP control statement)

 The SNA Domain Name can also be specified on those control statements

using the SNA_DOMAIN keyword in which case it overrides the

SNA_DOMAIN control statement.

View Control Statements

The following view control statements define the types of views to be created.

VIEW Control Statement:

Description: The VIEW control statement defines a network view which contains

the resources on the control statements that follow it.

Syntax:

VIEW

�� VIEW=view_name

,ANNOTATION=annotation

,LAYOUT=layout_type
 �

�

,LAYOUT_WIDTH=layout_width

 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

Selective Control Statements

602 Resource Object Data Manager and GMFHS Programmer’s Guide

view_name

The 1–32 character name of the view. It is the MyName of the network view

object.

annotation

The 1–32 character view annotation.

layout

The 1 digit layout type specification which determines the layout algorithm to

use when building the view. BLDVIEWS supports layout types; however, only

the following values are used:

v 6 - hierarchical (default for CREATE=YES)

v 7 - ellipse

v 9 - grid

layout_width

An integer which specifies how many resource objects appear horizontally on

one line in the view. The default value is 0, which results in a grid closely

resembling a square. This is only applicable for layout type 9.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Update the existing object. If

the object does not exist, an error occurs.

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

EVIEW Control Statement:

Description: The EVIEW control statement defines an exception view.

Syntax:

EVIEW

�� EVIEW=view_name

,ANNOTATION=annotation
 �

�
,LAYOUT_WIDTH=layout_width

,EVIEW_NAME=exceptionviewname
 �

�
,DSF=

IGNORE

NOXCPT

,MF=

IGNORE

OFF

ON

,SAPF=

IGNORE

OFF

ON

 �

View Control Statements

Appendix A. RODM Tools 603

�

,TIF=

IGNORE

OFF

ON

,AIPF=

IGNORE

OFF

ON

 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

view_name

The 1–32 character name of the view. It is the MyName of the Exception View

object.

annotation

The 1–32 character view annotation.

layout_width

An integer which specifies how many resource objects appear horizontally on

one line in the view. The default value is 0 which results in a grid closely

resembling a square. This is only applicable for layout type 9.

exceptionviewname

The 1–8 character name associated with the exception view. Resource objects

that have this name in their ExceptionViewList field are considered candidates

for display in the associated exception view. This field must be unique for all

exception views. If not specified, BLDVIEWS creates a unique

exceptionviewname.

DSF

Specifies the DisplayStatus filter options for the exception view.

IGNORE

No filtering is done and the DisplayStatus is ignored. Objects with a

mapped display status of XCPT or NOXCPT are candidates for this

view.

NOXCPT

Filter out all objects that do not map to an exception status.

MF

Specifies the UserStatus Mark filter options for the exception view.

IGNORE

No filtering. UserStatus Mark is ignored.

ON Filters out objects that have the UserStatus bit for Mark ON. If an

object has this UserStatus bit on, it is not in the view.

OFF Filters out objects that have the UserStatus bit for Mark OFF. If an

object has this UserStatus bit off, it is not in the view.

SAPF

Specifies the UserStatus SNA Alert Pending filter options for the exception

view.

IGNORE

No filtering. UserStatus SNA Alert Pending is ignored.

ON Filters out objects that have the UserStatus bit for SNA Alert Pending

ON. If an object has this UserStatus bit on, it is not in the view.

OFF Filters out objects that have the UserStatus bit for SNA Alert Pending

OFF. If an object has this UserStatus bit off, it is not in the view.

View Control Statements

604 Resource Object Data Manager and GMFHS Programmer’s Guide

TIF

Specifies the UserStatus Threshold Inconsistency filter options for the

Exception View.

IGNORE

No filtering. UserStatus Threshold Inconsistency is ignored.

ON Filters out objects that have the UserStatus bit for Threshold

Inconsistency ON. If an object has this UserStatus bit on, it is not in the

view.

OFF Filters out objects that have the UserStatus bit Threshold Inconsistency

OFF. If an object has this UserStatus bit off, it is not in the view.

AIPF

Specifies the UserStatus Automation In Progress filter options for the Exception

View.

IGNORE

No filtering. UserStatus Automation In Progress is ignored.

ON Filters out objects that have the UserStatus bit for Automation In

Progress ON. If an object has this UserStatus bit on, it is not in the

view.

OFF Filters out objects that have the UserStatus bit Automation In Progress

OFF. If an object has this UserStatus bit off, it is not in the view.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Uupdate the existing object. If

the object does not exist, an error occurs.

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

PVIEW Control Statement:

Description: The PVIEW control statement defines a configuration peer view,

which contains the resources on the control statements that follow it.

Syntax:

PVIEW

�� PVIEW=view_name

,LAYOUT=layout_type

,LAYOUT_WIDTH=layout_width
 �

�
 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

View Control Statements

Appendix A. RODM Tools 605

view_name

The 1–32 character name of the view. It is the MyName of the configuration

peer view object.

layout

The 1 digit layout type specification which determines the layout algorithm to

use when building the view. BLDVIEWS supports all layout types; however,

only the following values are used:

v 6 - hierarchical (default for CREATE=YES)

v 7 - ellipse

v 9 - grid

layout_width

An integer which specifies how many resource objects appear horizontally on

one line in the view. The default value is 0 which results in a grid closely

resembling a square. This is only applicable for layout type 9.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Update the existing object. If

the object does not exist, an error occurs.

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

BBVIEW Control Statement:

Description: The BBVIEW control statement defines a configuration backbone view,

which contains the resources on the control statements that follow it.

Syntax:

BBVIEW

�� BBVIEW=view_name

,ANNOTATION=annotation

,LAYOUT=layout_type
 �

�

,LAYOUT_WIDTH=layout_width

 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

view_name

The 1–32 character name of the view. It is the MyName of the configuration

backbone view object.

annotation

The 1–32 character view annotation.

View Control Statements

606 Resource Object Data Manager and GMFHS Programmer’s Guide

layout

The 1 digit layout type specification which determines the layout algorithm to

use when building the view. BLDVIEWS supports all layout types; however,

only the following values are used:

v 1 - Radial Layout by link type (default for CREATE=YES)

v 6 - hierarchical

v 7 - ellipse

v 9 - grid

layout_width

An integer which specifies how many resources appear horizontally on one

line in the view. The default value is 0, which will result in a grid closely

resembling a square. This is only applicable for layout type 9.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Update the existing object. If

the object does not exist, an error occurs.

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

LCVIEW Control Statement:

Description: The LCVIEW control statement defines a Configuration Logical

Connectvity View which contains the resources on the control statements that

follow it.

Syntax:

LCVIEW

�� LCVIEW=view_name

,LAYOUT=layout_type

,LAYOUT_WIDTH=layout_width
 �

�
 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

view_name

The 1–32 character name of the view. It is the MyName of the configuration

logical connectivity view object.

layout

The 1 digit layout type specification which determines the layout algorithm to

use when building the view. BLDVIEWS supports all layout types; however,

only the following values are used:

v 1 - Radial Layout by link type (default for CREATE=YES)

v 6 - hierarchical

View Control Statements

Appendix A. RODM Tools 607

v 7 - ellipse

v 9 - grid

layout_width

An integer which specifies how many resources appear horizontally on one

line in the view. The value is 0, which will result in a grid closely resembling a

square. This is only applicable for layout type 9.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Update the existing object. If

the object does not exist, an error occurs.

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

PCVIEW Control Statement:

Description: The PCVIEW control statement defines a configuration physical

connectivity view, which contains the resources on the control statements that

follow it.

Syntax:

PCVIEW

�� PCVIEW=view_name

,LAYOUT=layout_type

,LAYOUT_WIDTH=layout_width
 �

�
 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

view_name

The 1–32 character name of the view. It is the MyName of the configuration

physical connectivity view object.

layout

The 1 digit layout type specification which determines the layout algorithm to

use when building the view. BLDVIEWS supports all layout types; however,

only the following values are used:

v 1 - Radial Layout by link type (default for CREATE=YES)

v 6 - hierarchical

v 7 - ellipse

v 9 - grid

layout_width

An integer which specifies how many resources appear horizontally on one

line in the view. The value is 0, which will result in a grid closely resembling a

square. This is only applicable for layout type 9.

View Control Statements

608 Resource Object Data Manager and GMFHS Programmer’s Guide

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Update the existing object. If

the object does not exist, an error will occur.

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

MDLVIEW Control Statement:

Description: The MDLVIEW control statement defines a more detail logical view,

which contains the resources on the control statements that follow it.

Syntax:

MDLVIEW

�� MDLVIEW=view_name

,LAYOUT=layout_type

,LAYOUT_WIDTH=layout_width
 �

�
 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

view_name

The 1–32 character name of the view. It is the MyName of the more detail

logical view object.

layout

The 1 digit layout type specification which determines the layout algorithm to

use when building the view. BLDVIEWS supports all layout types; however,

only the following values are used:

v 1 - Radial Layout by link type (default for CREATE=YES)

v 6 - hierarchical

v 7 - ellipse

v 9 - grid

layout_width

An integer which specifies how many resources appear horizontally on one

line in the view. The value is 0, which results in a grid closely resembling a

square. This is only applicable for layout type 9.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Update the existing object. If

the object does not exist, an error occurs.

View Control Statements

Appendix A. RODM Tools 609

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

MDPVIEW Control Statement:

Description: The MDPVIEW control statement defines a more detail physical view,

which contains the resources on the control statements that follow it.

Syntax:

MDPVIEW

�� MDPVIEW=view_name

,LAYOUT=layout_type

,LAYOUT_WIDTH=layout_width
 �

�
 ,CREATE=YES

,CREATE=

BUILD

NO

YES

��

Parameters:

view_name

The 1–32 character name of the view. It is the MyName of the more detail

physical view object.

layout

The 1 digit layout type specification which determines the layout algorithm to

use when building the view. BLDVIEWS supports all layout types; however,

only the following values are used:

v 1 - Radial Layout by link type (default for CREATE=YES)

v 6 - hierarchical

v 7 - ellipse

v 9 - grid

layout_width

An integer which specifies how many resources appear horizontally on one

line in the view. The value is 0, which results in a grid closely resembling a

square. This is only applicable for layout type 9.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this view. The old object is deleted, if it exists.

 YES is the default.

NO Do not create a new object for this view. Update the existing object. If

the object does not exist, an error occurs.

BUILD

Create a new object for this view if it does not exist. If it does exist,

update the object.

Resource Control Statements

The following resource control statements specify resources to be processed by

BLDVIEWS.

View Control Statements

610 Resource Object Data Manager and GMFHS Programmer’s Guide

ADAPter Control Statement:

Description: The ADAPter control statement specifies the MultiSystem Manager

LNM adapter resource to be processed. For LNM ports (supported in Lan Network

Manager V2), see the LAN_PORT control statement.

Syntax:

ADAPter

��

ADAPter=

adapter_name

ALL

 ,TYPE=STATION

,TYPE=

BRIDGE

CAU

LAN

STATION

�

�

,SPname=

ALL

service_point

 ,SEGMENT=ALL

,SEGMENT=segment

�

�
,AGGPRI=aggregation_priority

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

adapter_name

STATION, BRIDGE, CAU or LAN

v 1–12 character adapter mac address or the

Resource Control Statements

Appendix A. RODM Tools 611

v 1–16 character adapter mac name

ALL or a wild card name can be specified.

TYPE

Specifies the type of adapter resource. The values are:

v STATION - adapter is a station adapter (default)

v BRIDGE - adapter is a bridge adapter

v CAU - adapter is a Controlled Access Unit adapter

v LAN - adapter is a LNM adapter (can be a STATION, BRIDGE or CAU)

segment_name

STATION, BRIDGE, CAU or LAN, segment number (3–4 characters) or

segment name (for example, SEGxxxx).

 ALL can be specified and is the default.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

AGENT Control Statement:

Description: The AGENT control statement specifies the MultiSystem Manager

agent resource to be processed.

Syntax:

AGENT

��

AGENT=

application

ALL

,TYPE=

IP

LAN

TME

 ,SPname=ALL

,SPname=service_point

�

�
,AGGPRI=aggregation_priority

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

Resource Control Statements

612 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

application

The 1–8 character service point application name.

v The Lan Network Manager agent application name is LANMGR.

v The agent application name for NetView for AIX is the name registered to

AIX NetView Service Point.

v The TME agent application name is MSMTME.

v ALL or a wild card name can be specified.

TYPE

Specifies the type of agent. TYPE is ignored if the agent name specified is ALL

or a wild card name.

LAN Lan Network Manager IBM agent

IP NetView for AIX IBM agent

TME TME IBM agent

service_point

The VTAM PU, LU, or CP name for the agent.

 ALL is the default.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

BRidge Control Statement:

Description: The BRidge control statement specifies the MultiSystem Manager

LNM bridge resource to be processed.

Syntax:

BRidge

�� BRidge= bridge_name

ALL

,TYPE=

AGG

REAL

 �

�
,SPname=

ALL

service_point

,AGGPRI=aggregation_priority
 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

Resource Control Statements

Appendix A. RODM Tools 613

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

bridge_name

The 1–8 character bridge name. ALL or a wild card name can be specified.

TYPE

Specifies the type of bridge resource. The values are:

REAL real bridge resource

AGG aggregate bridge resource

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

CAU Control Statement:

Description: The CAU control statement specifies the MultiSystem Manager LNM

Controlled Access Unit resource to be processed.

Syntax:

CAU

�� CAU= cau_name

ALL

,TYPE=

AGG

REAL

,SPname=

ALL

service_point

 �

�
 ,SEGMENT=ALL

,SEGMENT=segment

,AGGPRI=aggregation_priority

�

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

Resource Control Statements

614 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

cau_name

The 1–8 character Controlled Access Unit name. ALL or a wild card name can

be specified.

TYPE

Specifies the type of CAU resource. The values are :

REAL real CAU resource

AGG aggregate CAU resource

segment_name

The segment number (3–4 characters) or segment name (for example,

SEGxxxx). ALL can be specified and is the default.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

CDRM Control Statement:

Description: The CDRM control statement specifies the VTAM CDRM resource to

be processed.

Syntax:

CDRM

�� CDRM= name

ALL

,SNA_DOMAIN=sna_domain_name
 �

Resource Control Statements

Appendix A. RODM Tools 615

�
,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character VTAM CDRM name in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

sna_domain_name

specifies the VTAM SNA domain that owns the CDRM resource. This overrides

the value specified on the SNA_DOMAIN control statement. The format of the

name is network.domain.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

CDRSC Control Statement:

Description: The CDRSC control statement specifies the VTAM CDRSC resource to

be processed.

Syntax:

CDRSC

�� CDRSC= name

ALL

,SNA_DOMAIN=sna_domain_name
 �

�
,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

Resource Control Statements

616 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character VTAM CDRSC name in the format of

snaNetID.snaNodeName. The network portion of the CDRSC name might be

omitted for those CDRSCS which were not defined with a NETID parameter.

ALL or a wild card name can be specified.

sna_domain_name

Specifies the VTAM SNA domain that owns the CDRM resource. This

overrides the value specified on the SNA_DOMAIN control statement. The

format of the name is network.domain.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

CIRCUIT Control Statement:

Description: The CIRCUIT control statement specifies the Circuit resource to be

processed. This includes APPN Transmission Group circuits connected to Type 2.1

nodes, APPN Transmission Group circuits connected to Composite Nodes, APPN

Transmission Group circuits connected to NTRI-like nodes, APPN Transmission

Group interdomain circuits, APPN Transmission Group intersubnetwork circuits,

and Subarea Transmission Group Circuits.

Syntax:

CIRCUIT

�� CIRCUIT= name

ALL

,TYPE=

APPN_TG

CN

INTER_DOMAIN

INTER_SUBNET

NTRI

SUBAREA_TG

 �

�
,AGGPRI=aggregation_priority

,AGGTHRESH=(xxx,yyy,zzz)

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

Resource Control Statements

Appendix A. RODM Tools 617

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The SNA Circuit name in the format of snaNetID.circuitID. The name is in the

same format that is displayed on the NMC for the resource

(DisplayResourceName). ALL or a wild card name can be specified.

TYPE

Specifies the type of circuit.

APPN_TG

circuit connected to Type 2.1 nodes

CN circuit connected to Composite Nodes

NTRI circuit connected to NTRI-like Nodes

INTER_SUBNET

intersubnetwork circuits

INTER_DOMAIN

interdomain circuits

SUBAREA_TG

subarea transmission group circuits

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

CLUSTER Control Statement:

Description: The CLUSTER control statement specifies the MultiSystem Manager

or APPN Cluster aggregate resource to be processed. This aggregate can contain 1

or more network aggregates.

Syntax:

CLUSTER

�� CLUSTER= cluster_name

ALL

,TYPE=

APPN

IP

LAN

TME

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

Resource Control Statements

618 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

cluster_name

The name of the CLUSTER aggregate resource.

 For TYPE=LAN, TYPE=IP, or TYPE=TME, the name is the value specified for

the NETWORK_AGG_OBJECT on the GETTOPO command or statement.

 For TYPE=APPN, the name is in the format of snaNetid.systemId which is the

network identifier of the NetView domain where the topology manager is

located.

 ALL or a wild card name can be specified.

TYPE

Specifies the type of CLUSTER aggregate resource. The values are :

LAN Lan Network Manager (LNM)

IP TCP/IP

APPN APPN

TME Tivoli Managed Enterprise

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

DOMAIN Control Statement:

Description: The DOMAIN control statement specifies the APPN Domain resource

to be processed.

Syntax:

DOMAIN

�� DOMAIN= name

ALL

,AGGTHRESH=(xxx,yyy,zzz)

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

Resource Control Statements

Appendix A. RODM Tools 619

|
|

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character APPN network node domain name in the format:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

ENODE Control Statement:

Description: The ENODE control statement specifies the APPN End Node resource

to be processed.

Syntax:

ENODE

�� ENODE= name

ALL

,AGGPRI=aggregration_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA end node resource name in the format:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

GENERIC Control Statement:

Resource Control Statements

620 Resource Object Data Manager and GMFHS Programmer’s Guide

Description: The GENERIC control statement specifies a Real or Aggregate

resource from a user-defined class to be processed.

Note: The BLDVIEWS interpreter (FLCVBLDV) and the RODM Collection

Manager interpreter (FLCV2RCM) treat the name parameter slightly

differently. See the following description of the name parameter.

Syntax:

GENERIC

�� GENERIC=name

,CLASS=classname

,AGGPRI=aggregation_priority
 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The BLDVIEWS interpreter (FLCVBLDV) searches both the RODM MyName

and the DisplayResourceName attributes for matching object names. The

RODM Collection Manager interpreter (FLCV2RCM) will only search the

RODM DisplayResourceName attribute for matching names.

classname

The name of the RODM class containing the object.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

GW_NCP Control Statement:

Description: The GW_NCP control statement specifies the SNA Communication

Controller node resource functioning as gateways to be processed.

Syntax:

Resource Control Statements

Appendix A. RODM Tools 621

GW_NCP

�� GW_NCP= name

ALL

,AGGPRI=aggregration_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA Communication Controller node in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

HOST_NODE Control Statement:

Description: The HOST_NODE control statement specifies the SNA Type 5 Node

resource to be processed. A Type 5 node is a subarea node containing an SSCP and

having hierarchical control of Type 4 nodes and peripheral nodes.

Syntax:

HOST_NODE

�� HOST_NODE= name

ALL

,AGGPRI=aggregration_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

Resource Control Statements

622 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA Host Node name in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IC_NODE Control Statement:

Description: The IC_NODE control statement specifies the SNA Interchange Node

resources to be processed.

Syntax:

IC_NODE

��

IC_NODE=

name

ALL

 ,TYPE=ALL

,TYPE=

ALL

CDS

EBN

GWS

ICN

IRS

PBN

,AGGPRI=aggregration_priority

�

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

Resource Control Statements

Appendix A. RODM Tools 623

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA Interchange Node name in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

TYPE

specifies the type of network node resource. The values are :

GWS Nodes with gateway services

CDS Nodes with central directory services

IRS Nodes with intermediate routing services

PBN Nodes which are peripheral border nodes

EBN Nodes which are extended border nodes

ALL all IC_NODE types (default)

TYPE

Is ignored when you specify an exact resource name. It is only supported for a

name of ALL or a wild card name.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

INTERFACE Control Statement:

Description: The INTERFACE control statement specifies the MultiSystem Manager

TCP/IP adapter resource to be processed.

Syntax:

INTERFACE

�� INTERFACE= adapter_name

ALL

,SPname=

ALL

service_point

 �

�
 ,SEGMENT=ALL

,SEGMENT=segment

,AGGPRI=aggregation_priority

�

�
,ACTivate=activate_command

,DEACTivate=deactivate_command
 �

�
,RECYcle=recycle_command

,DISPlay=display_command
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

Resource Control Statements

624 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

adapter_name

The TCP/IP interface adapter name.

 ALL or a wild card name can be specified.

segment_name

The segment name.

 ALL can be specified and is the default.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IP_BRIDGE Control Statement:

Description: The IP_BRIDGE control statement specifies the MultiSystem Manager

TCP/IP bridge aggregate resource to be processed.

Syntax:

IP_BRIDGE

�� IP_BRIDGE= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

Resource Control Statements

Appendix A. RODM Tools 625

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP bridge name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IP_HOST Control Statement:

Description: The IP_HOST control statement specifies the MultiSystem Manager

TCP/IP host aggregate resource to be processed.

Syntax:

IP_HOST

�� IP_HOST= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

Resource Control Statements

626 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP host name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IP_HUB Control Statement:

Description: The IP_HUB control statement specifies the MultiSystem Manager

TCP/IP hub aggregate resource to be processed.

Syntax:

IP_HUB

�� IP_HUB= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP hub name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

Resource Control Statements

Appendix A. RODM Tools 627

IP_LINK Control Statement:

Description: The IP_LINK control statement specifies the MultiSystem Manager

TCP/IP interface link aggregate resource to be processed.

Syntax:

IP_LINK

�� IP_LINK= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP Link name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IP_LOCATION Control Statement:

Description: The IP_LOCATION control statement specifies the MultiSystem

Manager TCP/IP location resource to be processed.

Syntax:

IP_LOCATION

�� IP_LOCATION= name

ALL

,SPname=

ALL

service_point

 �

Resource Control Statements

628 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,AGGTHRESH=(xxx,yyy,zzz)

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP location name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IP_ROUTER Control Statement:

Description: The IP_ROUTER control statement specifies the MultiSystem Manager

TCP/IP router aggregate resource to be processed.

Syntax:

IP_ROUTER

�� IP_ROUTER= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

Resource Control Statements

Appendix A. RODM Tools 629

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP router name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IP_SEGMENT Control Statement:

Description: The IP_SEGMENT control statement specifies the MultiSystem

Manager TCP/IP Segment aggregate resource to be processed.

Syntax:

IP_SEGMENT

�� IP_SEGMENT= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP segment name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

IP_SUBNET Control Statement:

Resource Control Statements

630 Resource Object Data Manager and GMFHS Programmer’s Guide

Description: The IP_SUBNET control statement specifies the MultiSystem Manager

TCP/IP Subnetwork aggregate resource to be processed.

Syntax:

IP_SUBNET

�� IP_SUBNET= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TCP/IP Subnetwork name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

LAN_PORT Control Statement:

Description: The LAN_PORT control statement specifies the LAN resource to be

processed. It is for LNM V2.

Syntax:

LAN_PORT

�� LAN_PORT= name

ALL

,SPname=

ALL

service_point

 �

�
,SEGMENT=segment|ALL

,AGGPRI=aggregation_priority
 �

�
,ACTivate=activate_command

,DEACTivate=deactivate_command
 �

Resource Control Statements

Appendix A. RODM Tools 631

�
,RECYcle=recycle_command

,DISPlay=display_command
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The LNM Port resource name as determined by LAN Network Manager V2

(and displayed on the NMC for the resource using DisplayResourceName).

ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

LINE Control Statement:

Description: The LINE control statement specifies the SNA Line resource to be

processed.

Syntax:

LINE

�� LINE= name

ALL

,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

Resource Control Statements

632 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA line name in the format of: snaNetID.snaNodeName.

ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

LLINK Control Statement:

Description: The LLINK control statement specifies the Logical Link resource to be

processed.

Syntax:

LLINK

�� LLINK= name

ALL

,TYPE=

ALL

ENODE

LNODE

NNODE

UNKNOWN

,AGGPRI=aggregation_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The SNA Logical Link resource name in the format: network.resource.link. ALL

or a wild card name can be specified.

TYPE

Specifies the type of Logical LInk. TYPE is ignored when you specify an exact

resource name. It is only supported for a name of ALL or a wild card name.

The values are :

Resource Control Statements

Appendix A. RODM Tools 633

NNODE Network Node

ENODE End Node

LNODE Len Node

UNKNOWN Logical Link type is unknown

ALL All logical links

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

LNODE Control Statement:

Description: The LNODE control statement specifies the APPN Len Node resource

to be processed.

Syntax:

LNODE

�� LNODE= name

ALL

,AGGPRI=aggregation_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA LEN node resource name in the format:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

LU Control Statement:

Description: The LU control statement specifies the SNA Logical Unit resource to

be processed.

Syntax:

Resource Control Statements

634 Resource Object Data Manager and GMFHS Programmer’s Guide

LU

�� LU= name

ALL

,SNA_DOMAIN=sna_domain_name
 �

�
,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA logical unit name in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

sna_domain_name

Specifies the VTAM SNA domain that owns the Logical Unit resource. This

overrides the value specified on the SNA_DOMAIN control statement. The

format of the name is network.domain.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

LU_GROUP Control Statement:

Description: The LU_GROUP control statement specifies the SNA Logical Unit

group resources to be processed.

Syntax:

LU_GROUP

�� LU_GROUP= name

ALL

,SNA_DOMAIN=sna_domain_name
 �

�
,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

Resource Control Statements

Appendix A. RODM Tools 635

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA logical unit group name the format of: luGroupName.

ALL or a wild card name can be specified.

sna_domain_name

Specifies the VTAM SNA domain that owns the Logical Unit Group resource.

This overrides the value specified on the SNA_DOMAIN control statement.

The format of the name is network.domain.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

MAJNODE Control Statement:

Description: The MAJNODE control statement specifies the VTAM Major Node

resource to be processed.

Syntax:

MAJNODE

��

MAJNODE=

name

ALL

 ,TYPE=ALL

,TYPE=node_type

,SNA_DOMAIN=sna_domain_name

�

�
,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

Resource Control Statements

636 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–8 character VTAM Major node name in the format of: snaNodeName.

ALL or a wild card name can be specified.

sna_domain_name

specifies the VTAM SNA domain that owns the Major Node resource. This

overrides the value specified on the SNA_DOMAIN control statement. The

format of the name is network.domain.

TYPE

Specifies the type of VTAM Major Node. The values are :

APPL Application Major Node

CA Channel Major Node

CDRM CDRM Major Node

CDRSC CDRSC Major Node

LAN Local Area Network Major Node

LCLNONSNA Local Non SNA Major Node

LOCALSNA Local SNA Major Node

LUGROUP LU Group Major Node

NCP NCP Major Node

PACKET Packet Major Node

SWITCHED Switched Major Node

TRL Token Ring Lan Major Node

XCA XCA Major Node

ALL All Major Node types (default)

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

MIG_DATA_HOST Control Statement:

Description: The MIG_DATA_HOST control statement specifies the SNA Migration

Data Host node resource to be processed.

Syntax:

MIG_DATA_HOST

�� MIG_DATA_HOST= name

ALL

,AGGPRI=aggregation_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

Resource Control Statements

Appendix A. RODM Tools 637

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA Migration Data Host node in the form of

network.name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

NCP Control Statement:

Description: The NCP control statement specifies the SNA Communication

Controller node resource to be processed.

Syntax:

NCP

�� NCP= name

ALL

,TYPE=

GW

NON_GW

,AGGPRI=aggregation_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA Communication Controller node in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

Resource Control Statements

638 Resource Object Data Manager and GMFHS Programmer’s Guide

TYPE

Specifies the type of SNA Communication Controller. TYPE is a required

keyword. The values are :

GW Gateway Communications Controller

NON_GW Non-Gateway Communications Controller

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

NETWORK Control Statement:

Description: The NETWORK control statement specifies the MultiSystem Manager

or APPN Network aggregate resource to be processed. This aggregate represents

the network managed by one service point.

Syntax:

NETWORK

��

NETWORK=network_name
 ,SPname=ALL

,SPname=

ALL

service_point

,TYPE=

APPN

IP

LAN

LMU

TME

�

�
,AGGTHRESH=(xxx,yyy,zzz)

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

network_name

The name of the network aggregate resource.

 For TYPE=LAN, TYPE=IP, or TYPE=LMU, network_name is the 1–8 character

service point application name.

v The Lan Network Manager application name is LANMGR.

Resource Control Statements

Appendix A. RODM Tools 639

v The agent application name for NetView for AIX is the name registered to

AIX NetView Service Point.

v The LMU application name is REMOTEOP.LMU.

For TYPE=APPN the name is in the format of snaNetid.n where n is a numeric

increment. ALL or a wild card name can be specified.

service_point

The VTAM PU, LU, or CP name for the LAN, IP, or LMU agent. It is not

supported for TYPE=APPN and is ignored.

 ALL is the default.

TYPE

Specifies the type of NETWORK aggregate resource. The values are :

LAN LAN Network Manager (LNM)

IP TCP/IP

APPN APPN

TME TME

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

NNODE Control Statement:

Description: The NNODE control statement specifies the APPN Network Node

resource to be processed.

Syntax:

NNODE

�� NNODE= name

ALL

,TYPE=

CDS

EBN

GWS

ICN

IRS

PBN

,AGGPRI=aggregation_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Resource Control Statements

640 Resource Object Data Manager and GMFHS Programmer’s Guide

Parameters:

name

The 1–17 character SNA network node resource name in the format:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

TYPE

Specifies the type of network node resource. TYPE is ignored when you specify

an exact resource name. It is only supported for a name of ALL or a wild card

name. The values are :

GWS Nodes with gateway services

CDS Nodes with central directory services

IRS Nodes with intermediate routing services

PBN Nodes which are peripheral border nodes

ICN Nodes which are interchange nodes

EBN Nodes which are extended border nodes

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

NONSNA Control Statement:

Description: The NONSNA control statement specifies the Non-SNA (GMFHS

Managed Real) resource to be processed. You can set the Non-SNA Domain for any

resource coded on a NONSNA statement. This links the non-SNA resource to that

Non-SNA Domain. The Non-SNA Domain object must exist before the link is

created.

Syntax:

NONSNA

�� NONSNA= nonsna_resource_name

ALL

,AGGPRI=aggregation_priority
 �

�
,ACTivate=activate_command

,DEACTivate=deactivate_command
 �

�
,RECYcle=recycle_command

,DISPlay=display_command
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text

,OTHER_DATA=other_data
 �

�
,DISPLAY_STATUS=status_integer

,DISPLAY_NAME=display_resource_name
 �

�

,TYPE=display_resource_type

 ,QUERYFIELD=DRN

,QUERYFIELD=

DRN

MYNAME

�

Resource Control Statements

Appendix A. RODM Tools 641

�

,DOMAIN=nonsna_domain

 ,CREATE=NO

,CREATE=

BUILD

NO

YES

,UNLINK

�

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

nonsna_resource_name

The Non SNA resource name. ALL or a wild card name can be specified for

CREATE=NO

DISPLAY_NAME

Specifies the RODM DisplayResourceName for the object. This value is

displayed on the NMC workstation for the resource instead of the RODM

resource_name.

Note: BLDVIEWS provides the %NAME% substitution variable that can be

coded anywhere in the value. This can be used to reformat the

DisplayResourceName for multiple resources with one control statement.

TYPE

Specifies the type of non-SNA resource. TYPE is required for CREATE=YES

and ignored for other values. The TYPE value determines what

DisplayResourceType value to set in RODM for the non-SNA object. You can

specify any valid non-SNA DisplayResourceType value documented in the

RODM Programming Guide.

QUERYFIELD

Specifies the field to use for RODM object queries from the NONSNA resource

class(GMFHS_Managed_Real_Objects_Class). Specifying QUERYFIELD=DRN

retrieves objects using the DisplayResourceName field. Specifying

QUERYFIELD=MYNAME retrieves objects using the MyName field. DRN is

the default if QUERYFIELD is not specified on the NONSNA control

statement.

DOMAIN

Specifies the name of the non-SNA Domain resource that you want to link to

this resource. The non-SNA Domain resource must exist in RODM.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this resource. The old

object is deleted, if it exists.

Resource Control Statements

642 Resource Object Data Manager and GMFHS Programmer’s Guide

NO Do not create a new object for this resource.

Instead, update the object. If the object does

not exist, an error occurs. NO is the default.

BUILD Create a new object for this resource if it does

not exist. If it does exist, update the object.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

OTHER Control Statement:

Description: The OTHER control statement specifies a Real or Aggregate resource

from a user-defined class to be processed.

Note: The BLDVIEWS interpreter (FLCVBLDV) and the RODM Collection

Manager interpreter (FLCV2RCM) treat the name parameter slightly

differently. See the following description of the name parameter.

Syntax:

OTHER

�� OTHER=name

,CLASS=classname

,AGGPRI=aggregation_priority
 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The BLDVIEWS interpreter (FLCVBLDV) searches both the RODM MyName

and the DisplayResourceName attributes for matching object names. The

RODM Collection Manager interpreter (FLCV2RCM) searches the RODM

MyName attribute only for matching names.

Resource Control Statements

Appendix A. RODM Tools 643

classname

The name of the RODM class containing the object.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

PU Control Statement:

Description: The PU control statement specifies the SNA Physical Unit resource to

be processed.

Syntax:

PU

��

PU=

name

ALL

 ,TYPE=ALL

,TYPE=

ALL

UNKNOWN

pu_type

,AGGPRI=aggregation_priority

�

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA physical unit name in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

TYPE

Specifies the type of SNA Physical Unit. The values are :

1 PU Type 1

2 PU Type 2

2.1 PU Type 2.1

4 PU Type 4

5 PU Type 5

UNKNOWN PU type is unknown

Resource Control Statements

644 Resource Object Data Manager and GMFHS Programmer’s Guide

ALL all PU types (default)

TYPE

Ignored when you specify an exact resource name. It is only supported for a

name of ALL or a wild card name.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

SEGment Control Statement:

Description: The SEGment control statement specifies the MultiSystem Manager

LNM segment resource to be processed.

Syntax:

SEGMENT

�� SEGMENT= segment_name

ALL

,TYPE=

AGG

REAL

 �

�
,SPname=

ALL

service_point

,AGGPRI=aggregation_priority
 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

segment_name

The segment number (3–4 characters) or segment name (for example,

SEGxxxx). ALL or a wild card name can be specified.

TYPE

Specifies the type of segment resource. The values are :

REAL Real segment resource

Resource Control Statements

Appendix A. RODM Tools 645

AGG Aggregate segment resource

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

SNA Control Statement:

Description: The SNA control statement specifies the SNA (GMFHS Shadow)

resource to be processed.

Syntax:

SNA

�� SNA= sna_resource_name

ALL

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,OTHER_DATA=other_data

,TYPE=

sna_resource_type

display_resource_type

 �

�

,DISPLAY_NAME=display_resource_name

 ,CREATE=NO

,CREATE=

BUILD

NO

YES

,UNLINK

�

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

sna_resource_name

The 1–17 character SNA resource name in the format: network.resource. ALL or

a wild card name can be specified for CREATE=NO

TYPE

Specifies the type of SNA resource. TYPE is required for CREATE=YES and

ignored for other values. The TYPE value determines what

DisplayResourceType value to set in RODM for the SNA object. You can

specify one of the following values or specify any valid DisplayResourceType

value documented in the RODM Programming Guide.

HOST DUIXC_RTS_HOST

GATEWAY_NCP DUIXC_RTS_GATEWAY_NCP

Resource Control Statements

646 Resource Object Data Manager and GMFHS Programmer’s Guide

NCP DUIXC_RTS_PU4

PU4 DUIXC_RTS_PU4

APPL DUIXC_RTS_APPL

CDRM DUIXC_RTS_CDRM

CDRSC DUIXC_RTS_CDRSC

LINK DUIXC_LTS_GENERIC_LINK

PU21 DUIXC_RTS_PU21

PU20 DUIXC_RTS_PU20

PU1 DUIXC_RTS_PU1

PU DUIXC_RTS_GENERIC_PU

LU DUIXC_RTS_LU

DISPLAY_NAME

Specifies the RODM DisplayResourceName for the object. This value is

displayed on the NMC workstation for the resource instead of the

sna_resource_name.

Note: BLDVIEWS provides the %NAME% substitution variable which can be

coded anywhere in the value. This can be used to reformat the

DisplayResourceName for multiple resources with one control statement.

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this resource. The

object is deleted first if it exists.

NO Do not create a new object for this resource.

Instead, update the object. If the object does

not exist, an error occurs. NO is the default.

BUILD Create a new object for this resource if it does

not exist. If it does exist, update the object.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

SNA_PORT Control Statement:

Description: The SNA_PORT control statement specifies the SNA resource to be

processed.

Syntax:

SNA_PORT

�� SNA_PORT= name

ALL

,AGGPRI=aggregation_priority
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

Resource Control Statements

Appendix A. RODM Tools 647

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The SNA Port resource name in the format: snaNetID.portId. ALL or a wild

card name can be specified.

SNALOCALTOPO Control Statement:

Description: The SNALOCALTOPO control statement specifies the APPN SNA

Local Topology resource to be processed.

Syntax:

SNALOCALTOPO

�� SNALOCALTOPO= name

ALL

,AGGTHRESH=(xxx,yyy,zzz)
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

Is the APPN SNA Local Topology resource name in the format of:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

Resource Control Statements

648 Resource Object Data Manager and GMFHS Programmer’s Guide

SYSTEM Control Statement:

Description: The SYSTEM control statement specifies the workstation System

aggregate resource to be processed.

Syntax:

SYSTEM

�� SYSTEM= name

ALL

,AGGTHRESH=(xxx,yyy,zzz)
 �

�
,ACTivate=activate_command

,DEACTivate=deactivate_command
 �

�
,RECYcle=recycle_command

,DISPlay=display_command
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The name of the System. The name can be one of the following depending

upon the type of workstation:

v Nickname

v Computer name (physical name found in IBMLAN.INI file)

v Mac address

v IPX address

ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

TG Control Statement:

Description: The TG control statement specifies the APPN Transmission Group

resource to be processed.

Syntax:

Resource Control Statements

Appendix A. RODM Tools 649

TG

�� TG= name

ALL

,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

Is the APPN Transmission Group resource name in one of the following

formats:

v snaNetID.snaNodeName.tgn{.adj_snaNetID}.adj_snaNodeName

v snaNetID.vrnNodeName.tgn{.adj_snaNetID}.adj_snaNodeName

v snaNetID.snaNodeName.tgn{.adj_snaNetID}.adj_vrnNodeName

The name is in the same format as displayed from the NMC for the resource

(DisplayResourceName). ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

TME_MONITOR Control Statement:

Description: The TME_MONITOR control statement specifies the MultiSystem

Manager TME Monitor resource to be processed.

Syntax:

TME_MONITOR

�� TME_MONITOR= name

ALL

,SPname=

ALL

service_point

 �

�
 ,MANNODEname=ALL

,MANNODEname=managed_node_name

,AGGTHRESH=(xxx,yyy,zzz)

�

�
,ACTivate=activate_command

,DEACTivate=deactivate_command
 �

Resource Control Statements

650 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,RECYcle=recycle_command

,DISPlay=display_command
 �

�
,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TME Monitor resource name.

 ALL or a wild card name can be specified.

managed_node_name

The name defined to the TMR as a managed node.

 ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

TME_POLICYREGION Control Statement:

Description: The TME_POLICYREGION control statement specifies the

MultiSystem Manager TME Policy Region resource to be processed.

Syntax:

TME_POLICYREGION

�� TME_POLICYREGION= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

Resource Control Statements

Appendix A. RODM Tools 651

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TME Policy Region name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

TME_TMR Control Statement:

Description: The TME_TMR control statement specifies the MultiSystem Manager

TME Managed Region resource to be processed.

Syntax:

TME_TMR

�� TME_TMR= name

ALL

,SPname=

ALL

service_point

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,DISPLAY_STATUS=status_integer

,UNLINK

,ROW=row_on_view
 �

Resource Control Statements

652 Resource Object Data Manager and GMFHS Programmer’s Guide

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The TME Managed Region name. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of

the other supported keywords.

VRN Control Statement:

Description: The VRN control statement specifies the APPN Virtual Routing Node

resource to be processed.

Syntax:

VRN

�� VRN= name

ALL

,AGGPRI=aggregation_priority

,CONSOLE=command

,USER_DATA=user_data

 �

�
,CORRELATER=text

,DISPLAY_STATUS=status_integer

,UNLINK
 �

�
,ROW=row_on_view

,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�
,AUTO_IN_PROGRESS=

OFF

ON

,SUSPEND=

OFF

ON

 �

�
,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

name

The 1–17 character SNA Virtual Routing Node resource name in the format:

snaNetID.snaNodeName. ALL or a wild card name can be specified.

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

Resource Control Statements

Appendix A. RODM Tools 653

Aggregation Control Statements

The following control statements specify the aggregate resources to be created or

updated and the resources that compose the aggregate resource.

AGGregate Control Statement:

Description: The AGGregate control statement specifies the Aggregate (GMFHS

Aggregate) resource to be processed.

Syntax:

AGGregate

�� AGGregate= aggregate_name

ALL

,TYPE=

aggregate_resource_type

display_resource_type

 �

�
,AGGTHRESH=(xxx,yyy,zzz)

,ACTivate=activate_command
 �

�
,DEACTivate=deactivate_command

,RECYcle=recycle_command
 �

�
,DISPlay=display_command

,CONSOLE=command

,USER_DATA=user_data

,CORRELATER=text
 �

�
,OTHER_DATA=other_data

,DISPLAY_STATUS=status_integer
 �

�
,DISPLAY_NAME=display_resource_name

,UNLINK

,ROW=row_on_view
 �

�
,COLUMN=column_on_view

,MARK=

OFF

ON

 �

�

,AUTO_IN_PROGRESS=

OFF

ON

 ,CREATE=NO

,CREATE=

BUILD

NO

YES

�

�
,SUSPEND=

OFF

ON

,SUSPEND_WITH_AUTO_CLEAR=

OFF

ON

 ��

Parameters:

aggregate_name

The aggregate resource name.

Aggregation Control Statements

654 Resource Object Data Manager and GMFHS Programmer’s Guide

ALL or a wild card name can be specified for CREATE=NO

TYPE

Specifies the type of aggregate resource. TYPE is required for CREATE=YES

and ignored for other values. The TYPE value determines what

DisplayResourceType value to set in RODM for the aggregate object. You can

specify one of the following values or specify any valid DisplayResourceType

value documented in the RODM Programming Guide.

LAN_CLUSTER

DUIXC_RTN_LAN_NETWORK_AGG

LAN_NETWORK

DUIXC_RTN_LAN_AGG

TME_TMR DUIXC_RTN_MANAGED_REGION_AGG

TME_POLICYREGION

DUIXC_RTN_POLICY_REGION_AGG

TME_MONITOR

DUIXC_RTN_MONITOR

SEGMENT DUIXC_RTN_TR_SEGMENT_AGG

BRIDGE DUIXC_RTN_BRIDGE_AGG

CAU DUIXC_RTN_LAN_CONCENT_AGG

IP_CLUSTER DUIXC_RTN_INTERNET_CLUSTER

IP_NETWORK

DUIXC_RTN_INTERNET_MGMT_DOMAIN_AGG

IP_SUBNET DUIXC_RTN_INTERNET_SUBNET_AGG

IP_SEGMENT

DUIXC_RTN_INTERNET_SEGMENT_AGG’

IP_LOCATION

DUIXC_RTN_INTERNET_LOCATION_AGG

IP_ROUTER DUIXC_RTN_INTERNET_ROUTER_AGG

IP_HUB - DUIXC_RTN_INTERNET_HUB_AGG

IP_BRIDGE - DUIXC_RTN_INTERNET_BRIDGE_AGG

IP_HOST DUIXC_RTN_INTERNET_HOST_AGG

IP_LINK DUIXC_RTN_LTN_IP_LINK_AGG

SYSTEM DUIXC_RTN_OPEN_SYSTEM_AGG

APPN_DOMAIN

DUIXC_RTN_NN_DOMAIN_AGG

APPN_NETWORK

DUIXC_RTN_NN_DOMAIN_NETWORK

APPN_CLUSTER

DUIXC_RTN_NN_DOM_NET_CLUSTER

SNALOCALTOPO

DUIXC_RTN_NN_LOCAL_TOP_AGG

USER DUIXC_RTN_NODE_AGG_USER1

CREATE

Specifies which action to perform on the resource specified.

YES Create a new object for this resource. The old

object is deleted, if it exists.

NO Do not create a new object for this resource.

Instead update the object. If the object does not

exist, an error occurs. NO is the default.

BUILD Create a new object for this resource if it does

not exist. If it does exist, update the object.

Aggregation Control Statements

Appendix A. RODM Tools 655

See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

Note: The AGGregate control statement creates new aggregates or references

existing aggregates which belong to the GMFHS_Aggregate_Objects_Class

class.

If any AGGChild control statements follow the AGGregate control statement, the

resources specified on the AGGChild control statements are linked to the aggregate

specified on the AGGregate control statement, unless the AGGCHILD control

statements specify UNLINK=YES.

AGGChild Control Statement:

Description: The AGGChild control statement specifies the aggregation children

resource that you want linked or unlinked to the aggregate resource on the

AGGregate statement that precedes the AGGChild control statements.

Syntax:

AGGChild

�� AGGChild= child_name

ALL

,TYPE=

resource

OTHER,CLASS=classname

 �

�
 ,DETAIL_LINK=LOGICAL

,DETAIL_LINK=

LOGICAL

PHYSICAL

 ,SEGMENT=ALL

,SEGMENT=

ALL

segment

�

�
 ,QUERYFIELD=DRN

,QUERYFIELD=

DRN

MYNAME

 ,PARENT_CHILD_LINK=NO

,PARENT_CHILD_LINK=

NO

YES

�

�
,SYStem=

ALL

system_name

,SNA_DOMAIN=sna_domain_name

,UNLINK
 ��

Parameters:

name

The name of the resource. The name formats and lengths depend upon the

type of resource.

 ALL or a wild card name can be specified.

TYPE

Specifies the type of resource. The types correspond to the specific resource

control statements.

v LAN_CLUSTER

v LAN_NETWORK

v LAN_AGENT

v TME_CLUSTER

Aggregation Control Statements

656 Resource Object Data Manager and GMFHS Programmer’s Guide

v TME_NETWORK

v TME_AGENT

v BRIDGE

v BRIDGE_AGG

v SEGMENT

v SEGMENT_AGG

v CAU

v CAU_AGG

v ADAPTER | ADP

v STATION_ADAPTER

v BRIDGE_ADAPTER

v CAU_ADAPTER

v LAN_ADAPTER

v TME_TMR

v TME_POLICYREGION

v TME_MONITOR

v IP_CLUSTER

v IP_NETWORK

v IP_AGENT

v IP_SUBNET

v IP_LOCATION

v IP_SEGMENT

v IP_ROUTER

v IP_HUB

v IP_BRIDGE

v IP_HOST

v IP_LINK

v INTERFACE

v SYSTEM

v NONSNA

v APPN_CLUSTER

v APPN_NETWORK

v SNALOCALTOPO

v NNODE

v ENODE

v LNODE

v LINE

v SNA_PORT

v LAN_PORT

v DOMAIN

v LLINK

v TG

v APPN_VRN

v APPN_TG_CIRCUIT

v INTER_DOMAIN_CIRCUIT

Aggregation Control Statements

Appendix A. RODM Tools 657

v INTER_SUBNETWORK_CIRCUIT

v CN_CIRCUIT

v NTRI_CIRCUIT

v SUBAREA_TG_CIRCUIT

v AGG

v APPL_MAJNODE

v CDRSC_MAJNODE

v CDRM_MAJNODE

v LAN_MAJNODE

v LCLNONSNA_MAJNODE

v LOCALSNA_MAJNODE

v LUGROUP_MAJNODE

v NCP_MAJNODE

v PACKET_MAJNODE

v SWITCHED_MAJNODE

v TRL_MAJNODE

v XCA_MAJNODE

v HOST_NODE

v IC_NODE

v MIG_DATA_HOST

v GW_NCP

v NCP_GW

v NCP_NON_GW

v CDRM

v CDRSC

v PU

v LU

v LU_GROUP

v CA_MAJNODE

DETAIL_LINK

Specifies which type of connection to establish between the aggregation child

and the aggregate.

LOGICAL Link the aggregation child to the aggregate

with a logical connection (DEFAULT).

PHYSICAL Link the aggregation child to the aggregate

with a physical connection.

segment_name

(STATION_ADAPTER, BRIDGE_ADAPTER, CAU_ADAPTER, or

LAN_ADAPTER) segment number (3–4 characters) or segment name (for

example, SEGxxxx). ALL can be specified and is the default.

segment_name

(INTERFACE) segment name (1–64 characters) ALL can be specified and is the

default.

Aggregation Control Statements

658 Resource Object Data Manager and GMFHS Programmer’s Guide

sna_domain_name

Specifies the VTAM SNA domain that owns the Major Node resource. This

overrides the value specified on the SNA_DOMAIN control statement. The

format of the name is network.domain.

QUERYFIELD

Specifies the field to use for RODM object queries from the NONSNA resource

class(GMFHS_Managed_Real_Objects_Class). Specifying QUERYFIELD=DRN

retrieves objects using the DisplayResourceName field. Specifying

QUERYFIELD=MYNAME retrieves objects using the MyName field. DRN is

the default if QUERYFIELD is not specified on the NONSNA control

statement.

PARENT_CHILD_LINK

Enables the option of linking aggregate children to an aggregate parent using

null links. The parameter is coded as follows:

 PARENT_CHILD_LINK=YES (NO is the default)

 See “Common Control statement Parameters” on page 591 for a description of the

other supported keywords.

Running BLDVIEWS

Code the BLDVIEWS control statements which direct BLDVIEWS to build the

views and aggregates you specify. The control statements can be coded in a

NetView DSIPARM member, a fully qualified cataloged sequential data set

(includes PDS specified with a member), or in a REXX stem array and passed to

BLDVIEWS using the NetView PIPE command.

Coding Control Statements in a NetView DSIPARM Member

If the control statements are coded in a DSIPARM member, the syntax is:

 BLDVIEWS dsiparm_member {RODM=rodmname}

 {TEST=YES|NO}

 {ECHO=YES|NO}

 {QUIET=YES|NO}

 {OPTIMIZE=CPU|STORage}

dsiparm_member

The NetView DSIPARM member name which contains the BLDVIEWS control

statements.

rodmname

The name of the RODM with which you want to connect. rodmname is

optional. If it is not specified, the MultiSystem Manager common global

FLC_RODMNAME is used.

TEST=YES

Results in BLDVIEWS only syntax checking the control statements. No actions

are performed. RODM does not need to be active. The default is TEST=NO.

ECHO=YES

Results in BLDVIEWS displaying the control statements one at a time as they

are read, and before they are processed. The default is ECHO=NO.

QUIET=YES

Results in BLDVIEWS suppressing all messages except for error messages. The

default is QUIET=NO.

OPTIMIZE

CPU Results in BLDVIEWS saving the results of querying entire

Aggregation Control Statements

Appendix A. RODM Tools 659

classes, in REXX arrays in storage. This is done to reduce

cycles that are required to query the classes multiple times

during a BLDVIEWS execution. This saves cycles at the

expense of using additional storage to keep the data in storage.

This is the default. If your storage is constrained, you might

have to specify OPTIMIZE=STORage.

STORage Results in BLDVIEWS NOT saving the results of querying

entire classes, in REXX arrays in storage. This saves storage at

the expense of using more CPU if the resources in those classes

are again needed later during the same BLDVIEWS execution.

Coding Control Statements in a fully Qualified Data set

If the control statements are coded in a cataloged data set then the syntax is:

 BLDVIEWS data_set {RODM=rodmname}

 {TEST=YES|NO}

 {ECHO=YES|NO}

 {QUIET=YES|NO}

 {OPTIMIZE=CPU|STORage}

data_set

The name of a fully qualified cataloged data set which contains the BLDVIEWS

control statements. The data set can be a sequential file or a partitioned data

set specified with a member.

rodmname

The name of the RODM with which you want to connect. It is optional, if not

specified the MultiSystem Manager common global FLC_RODMNAME are

used.

TEST=YES

Results in BLDVIEWS only syntax checking the control statements. No actions

are performed. RODM does not need to be active. The default is TEST=NO.

ECHO=YES

Results in BLDVIEWS displaying the control statements one at a time as they

are read, and before they are processed. The default is ECHO=NO.

QUIET=YES

Results in BLDVIEWS suppressing all messages except for error messages. The

default is QUIET=NO.

OPTIMIZE

CPU Results in BLDVIEWS saving the results of querying entire

classes, in REXX arrays in storage. This is done to reduce

cycles that are required to query the classes multiple times

during a BLDVIEWS execution. This will save cycles at the

expense of using additional storage to keep the data in storage.

This is the default. If you are storage constrained you might

have to specify OPTIMIZE=STORage.

STORage Results in BLDVIEWS NOT saving the results of querying

entire classes, in REXX arrays in storage. This saves storage at

the expense of using more cpu if the resources in those classes

are again needed later during the same BLDVIEWS execution.

 Examples:

 BLDVIEWS ESP.NV24.BLDVIEWS(MYVIEWS)

 BLDVIEWS ESP.NV24.BLDVIEWS.DATA1

BLDVIEWS Command Syntax

660 Resource Object Data Manager and GMFHS Programmer’s Guide

Coding Control Statements in REXX Stem Arrays

If the control statements are coded in a REXX stem array, the syntax is:

 ’PIPE STEM stem_array. | COLLECT | NETV BLDVIEWS’,

 ’{RODM=rodmname}’,

 ’{TEST=YES|NO}’,

 ’{ECHO=YES|NO}’,

 ’{QUIET=YES|NO}’,

 ’{OPTIMIZE=CPU|STORage} |’

stem_array

The name of the REXX stem array variable that contains the BLDVIEWS

control statements. stem.array.0 must contain the number of entries in the array.

rodmname

The name of the RODM you with which want to connect. It is optional. If not

specified, the MultiSystem Manager common global FLC_RODMNAME is

used for the rodmname and the common global FLC_RODMAPPL is used for

the RODM userid.

 If rodmname is specified, then the NetView operator ID of the task running

BLDVIEWS is used as the RODM user ID. This user ID must have the

appropriate SAF access to RODM.

TEST=YES

Results in BLDVIEWS only syntax checking the control statements. No actions

are performed. RODM does not need to be active. The default is TEST=NO.

ECHO=YES

Results in BLDVIEWS displaying the control statements one at a time as they

are read, and before they are processed. The default is ECHO=NO.

QUIET=YES

Results in BLDVIEWS suppressing all messages except for error messages. The

default is QUIET=NO.

OPTIMIZE

CPU Results in BLDVIEWS saving the results of querying entire

classes, in REXX arrays in storage. This is done to reduce

cycles that are required to query the classes multiple times

during a BLDVIEWS execution. This saves cycles at the

expense of using additional storage to keep the data in storage.

This is the default. If you are storage constrained you might

have to specify OPTIMIZE=STORage.

STORage Results in BLDVIEWS NOT saving the results of querying

entire classes, in REXX arrays in storage. This saves storage at

the expense of using more CPU if the resources in those classes

are again needed later during the same BLDVIEWS execution.

 Example:

/* REXX */

statement.1="VIEW=My_View,ANNOTATION=’This is my View’,",

statement=2=’ CREATE=YES’

statement.3=’NONSNA=’resource’,CREATE=YES,’,

 ||’TYPE=DUIXC_RTN_HOST’

statement.0=3

BLDVIEWS Command Syntax

Appendix A. RODM Tools 661

’PIPE STEM statement. | COLLECT | NETV FLCVBLDV | CONSOLE’

exit

BLDVIEWS Control Statement Examples

This section contains examples of coding BLDVIEWS control statements. Use the

descriptions in Table 239 to determine which example best matches your

requirements.

 Table 239. BLDVIEWS Control Statement Examples

Example Description Page Location

1 Change the aggregation thresholds for MultiSystem

Manager objects.

662

2 Set the generic commands in RODM for MultiSystem

Manager objects.

662

3 Set the generic commands in RODM for MultiSystem

Manager objects, the DisplayStatusCommandText to

do an rping, and the DisplayResourceUserData to do a

TELNETPM.

663

4 Set the DisplayResourceName for a Non-SNA

resource.

663

5 Creat a view that contains all bridge aggregate

resources managed by a service point.

663

6 Create a view that contains specific bridge and

segment resources managed by service point

A19SRVCP.

663

7 Create a view that contains two new aggregate objects. 664

8 Create a view with a layout type of 6 (hierarchical)

and resources on the view on specific rows.

664

9 Unlink a bridge resource from a view. 665

10 Create a view that contains all TME managed region

aggregate resources.

665

11 Create a view that contains all TME policy region

resources that begin with RTP.

665

BLDVIEWS Example 1:

This example changes the aggregation thresholds for all the MultiSystem Manager

cluster and network aggregates for LNM and TCP/IP resources. The aggregation

thresholds are changed to 25%, 50% and 75%.

 NETWORK=ALL,AGGTHRESH=(25%,50%,75%),TYPE=LAN

 CLUSTER=ALL,AGGTHRESH=(25%,50%,75%),TYPE=LAN

 NETWORK=ALL,AGGTHRESH=(25%,50%,75%),TYPE=IP

 CLUSTER=ALL,AGGTHRESH=(25%,50%,75%),TYPE=IP

BLDVIEWS Example 2:

The example sets the generic commands in RODM for the MultiSystem Manager

adapters, bridges, and controlled access units. Note that for MultiSystem Manager

LNM resources, BLDVIEWS appends the commands with an operator and

correlator.

 ADP=ALL,

 DISPLAY=’ADP QUERY ADP=%NAME% SEG=%SEGMENT%’,

 DEACTIVATE=’ADP REMOVE ADP=%NAME% SEG=%SEGMENT%’

 BRIDGE=ALL,TYPE=REAL,

 DISPLAY=’BRG QUERY NAME=%NAME%’,

 ACTIVATE=’BRG LINK NAME=%NAME%’,

BLDVIEWS Command Syntax

662 Resource Object Data Manager and GMFHS Programmer’s Guide

|

|

|

|
|

|
|

|

DEACTIVATE=’BRG UNLINK NAME=%NAME%’

 CAU=ALL,TYPE=REAL,

 DISPLAY=’CAU QUERY UNIT=%NAME%’,

 RECYCLE=’CAU RESTART UNIT=%NAME% CONFIRM=N’

BLDVIEWS Example 3:

This example sets the generic commands in RODM for the MultiSystem Manager

TCP/IP routers, hubs, bridges, hosts and adapters. The

DisplayStatusCommandText (generic display command) field is set to do an rping.

The DisplayResourceUserData (Remote Console) is set to do a TELNETPM.

BLDVIEWS envelopes the commands with RemoteConsole = # and #, which

correctly sets the DisplayResourceUserData field so the remote console support

will work correctly.

 IP_ROUTER=ALL,

 DISPLAY=’asis rping -n 2 %NAME%’,

 CONSOLE=’TELNETPM.EXE %NAME%’

 IP_HUB=ALL,

 DISPLAY=’asis rping -n 2 %NAME%’,

 CONSOLE=’TELNETPM.EXE %NAME%’

 IP_BRIDGE=ALL,

 DISPLAY=’asis rping -n 2 %NAME%’,

 CONSOLE=’TELNETPM.EXE %NAME%’

 IP_HOST=ALL,

 DISPLAY=’asis rping -n 2 %NAME%’,

 CONSOLE=’TELNETPM.EXE %NAME%’

 INTERFACE=ALL,

 DISPLAY=’asis rping -n 2 %NAME%’,

 CONSOLE=’TELNETPM.EXE %NAME%’

BLDVIEWS Example 4:

This example sets the DisplayResourceName for the non-SNA resource

mercury.raleigh.ibm.com to Router1.

 NONSNA=mercury.raleigh.ibm.com,

 DISPLAY_NAME=’Router1’

BLDVIEWS Example 5:

This example creates a view that contains all bridge aggregate resources managed

by service point A19SRVCP.

 VIEW=GAF_ALLBridgesA,ANNOTATION=’All Bridge Aggregates’

 LANSPNAME=A19SRVCP

 BRIDGE=ALL,TYPE=AGG

BLDVIEWS Example 6:

This example creates a view that contains specific bridge and segment resources

managed by service point A19SRVCP. This example also sets the aggregation

thresholds for the segment aggregates to 20%, 60% and 80%.

 VIEW=GAF_BLDG_500,ANNOTATION=’Building 500’

 LANSPNAME=A19SRVCP

 BRIDGE=A085C17,TYPE=AGG

 BRIDGE=A082C17,TYPE=AGG

 BRIDGE=AC15C17,TYPE=AGG

 BRIDGE=A056C17,TYPE=AGG

 BRIDGE=AC15C16,TYPE=AGG

 BRIDGE=A056C16,TYPE=AGG

BLDVIEWS Control Statement Examples

Appendix A. RODM Tools 663

|

|

|

BRIDGE=AC16B00,TYPE=AGG

 BRIDGE=A032C01,TYPE=AGG

 BRIDGE=A03B032,TYPE=AGG

 SEGMENT=0C16,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=0056,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=0C15,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=0C17,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=0082,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=0085,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=0C01,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=0032,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

 SEGMENT=003B,TYPE=AGG,AGGTHRESH=(20%,60%,80%)

BLDVIEWS Example 7:

This example creates a view that contains two new aggregate resources with

specific resources.

 VIEW=GAF_Key_Bridges,ANNOTATION=’Key Bridges’

 LANSPNAME=A19SRVCP

 AGG=GAF_B500_Bridges,type=BRIDGE,

 AGGTHRESH=(40%,60%,75%),CREATE=YES

 AGGCHILD=A085C17,TYPE=BRIDGE_AGG

 AGGCHILD=A082C17,TYPE=BRIDGE_AGG

 AGGCHILD=AC15C17,TYPE=BRIDGE_AGG

 AGGCHILD=A056C17,TYPE=BRIDGE_AGG

 AGGCHILD=AC15C16,TYPE=BRIDGE_AGG

 AGGCHILD=A056C16,TYPE=BRIDGE_AGG

 AGGCHILD=AC16B00,TYPE=BRIDGE_AGG

 AGGCHILD=A032C01,TYPE=BRIDGE_AGG

 AGGCHILD=A03B032,TYPE=BRIDGE_AGG

 AGG=GAF_MS_Bridges,type=BRIDGE,

 AGGTHRESH=(40%,60%,75%),CREATE=YES

 AGGCHILD=AC01B00,TYPE=BRIDGE_AGG

 AGGCHILD=AB01B00,TYPE=BRIDGE_AGG

 AGGCHILD=AC03B00,TYPE=BRIDGE_AGG

 AGGCHILD=AC24B00,TYPE=BRIDGE_AGG

 AGGCHILD=AC03B01,TYPE=BRIDGE_AGG

 AGGCHILD=AC24B01,TYPE=BRIDGE_AGG

 AGGCHILD=AC05B00,TYPE=BRIDGE_AGG

 AGGCHILD=AC06B01,TYPE=BRIDGE_AGG

 AGGCHILD=A059C05,TYPE=BRIDGE_AGG

 AGGCHILD=A059C06,TYPE=BRIDGE_AGG

 AGGCHILD=A061C05,TYPE=BRIDGE_AGG

 AGGCHILD=A062C05,TYPE=BRIDGE_AGG

 AGGCHILD=A062C06,TYPE=BRIDGE_AGG

BLDVIEWS Example 8:

This example creates a view with a layout type of 6 (hierarchical) and puts specific

resources in the view on the rows that are specified:

 VIEW=GAF_View_Hier,ANNOTATION=’Resources on specific rows’,

 LAYOUT=6

 LANSPNAME=A19SRVCP

 NWSPNAME=A19NWAPU

 NONSNA=NV6000.CODEBUST.BUDDY,ROW=1

 BRIDGE=A059C06,TYPE=AGG,ROW=2

 SEGMENT=0C16,TYPE=AGG,ROW=3

 CAU=5A982D60,TYPE=AGG,ROW=4

BLDVIEWS Control Statement Examples

664 Resource Object Data Manager and GMFHS Programmer’s Guide

|

|

ADP=GARY,ROW=5

 NWSERVER=ESP_A86A,TYPE=IBM_AGENT,ROW=5

BLDVIEWS Example 9:

This example unlinks a bridge resource from a view.

 VIEW=GAF_BLDG_500,CREATE=NO

 LANSPNAME=A19SRVCP

 BRIDGE=A085C17,TYPE=AGG,UNLINK

BLDVIEWS Example 10:

This example creates a view that contains all TME managed region aggregate

resources.

VIEW=TME_MANAGED_REGIONS,ANNOTATION=’MANAGED REGION VIEW’,

CREATE=YES,LAYOUT=9

TME_TMR=ALL

BLDVIEWS Example 11:

This example creates a view that contains all TME policy region resources that

begin with RTP.

VIEW=TME_POLICY_REGION_RTP,ANNOTATION=’POLICY REGION VIEW’,

CREATE=YES,LAYOUT=9

TME_POLICYREGION=RTP*

Deleting Views

This section describes how to delete a view or a group of views beginning with a

specified prefix using DELVIEWS.

DELVIEWS Syntax

 DELVIEWS view_name|view_name_prefix

 {TYPE=NETWORK|PEER|EXCP|BACKBONE|LC|PC|MDL|MDP}

 {RODM=rodmname}

view_name is the name of the view to be deleted from RODM.

To delete a group of views beginning with a prefix, specify the prefix with the

wildcard character *.

TYPE specifies the type of views to delete as follows:

NETWORK Network views (default)

PEER Configuration peer views

EXCP Exception views

BACKBONE Configuration backbone views

LC Logical connectivity views

PC Physical connectivity views

MDL More detailed logical views

MDP More detailed physical views

RODM specifies the RODM name. The RODM name does not have to be specified

if MultiSystem Manager is initialized, because DELVIEWS retrieves the RODM

name from the MultiSystem Manager common global variable for RODM name.

BLDVIEWS Control Statement Examples

Appendix A. RODM Tools 665

|

|

|

Examples of Deleting Views

This section provides examples of using DELVIEWS to delete views.

To delete a network view with the name of MY_LAN_VIEW:

 DELVIEWS MY_LAN_VIEW

To delete a group of network views beginning with the prefix RTP_ :

 DELVIEWS RTP_*

To delete a configuration peer view with the name of MY_PEER_VIEW:

 DELVIEWS MY_PEER_VIEW TYPE=PEER

To delete views with names that contain lower case characters, prefix the

DELVIEWS REXX clist with the NetView NETVASIS command:

 NETVASIS DELVIEWS Raleigh_Site_LAN

Refer to the IBM Tivoli NetView for z/OS Data Model Reference for more information.

Examples of Deleting Views

666 Resource Object Data Manager and GMFHS Programmer’s Guide

Appendix B. View Layout Facility

The view layout facility provides services that the NetView management console

uses when laying out views. The input to the view layout facility consists of the

view information stored in RODM as well as views that were created by the view

preprocessor and downloaded from the host.

This appendix provides the following information for each layout type:

v A graphic example

v Advantages and disadvantages

v An explanation of how each layout type is affected by the GMFHS fields that it

uses

View Layout Examples

For representing different aspects of a network, some views of a network model

might be easier to visually interpret than others. Therefore, the view layout facility

can produce many types of views:

v Radial layout for clustering by link (see Figure 165 on page 668)

v Radial layout for user-defined clusters by cluster ID (see Figure 165 on page 668)

v Radial layout for broad-band networks (see Figure 165 on page 668)

v Radial layout for token-ring networks (see Figure 166 on page 668)

v Radial layout for local area networks (see Figure 167 on page 669)

v Radial layout for local area networks with a central bus (see Figure 168 on page

669)

v Elliptical layout with a single ellipse (see Figure 169 on page 670)

v Hierarchical layout (see Figure 170 on page 670)

v Connectivity tree layout (see Figure 171 on page 671)

v Grid layout for exception, configuration, and network views (see Figure 172 on

page 671)

For a list of the advantages and disadvantages of each layout type, see Table 240

on page 672.

© Copyright IBM Corp. 1997, 2007 667

Figure 165. Radial Layout Example

Figure 166. Token-Ring Layout Example

668 Resource Object Data Manager and GMFHS Programmer’s Guide

Figure 167. LAN Net Layout Example

Figure 168. LAN Bus Layout Example

Appendix B. View Layout Facility 669

Figure 169. Ellipse Layout Example

Figure 170. Hierarchical Graph Layout Example

670 Resource Object Data Manager and GMFHS Programmer’s Guide

Figure 171. Connectivity Tree Layout Example

Figure 172. Grid Layout Example

Appendix B. View Layout Facility 671

Choosing a View Layout Type

Table 240 describes some of the advantages and disadvantages for each layout

type.

 Table 240. Advantages and Disadvantages of View Layout Types

View Layout Type Advantages Disadvantages

Radial by link type Efficiently uses presentation

space on workstation.

Can effectively show

groupings of resources at

physical sites.

Can lay out any view

regardless of connectivity.

The mental picture of the

user might not correspond to

the view layout.

Does not convey parent-child

relationships well.

Radial by cluster ID Same advantages as radial

layout by link type.

Gives you complete control

of how nodes are grouped.

Requires you to assign a

cluster ID to each node in the

view.

Single ellipse Makes optimal use of the

presentation space.

Can only represent a single

site or grouping.

You must set sequence

numbers for link-crossing

reduction.

LAN network layout Well suited to laying out

views containing a broad

band LAN.

The view must meet

connectivity requirements for

a LAN view as defined by

the view layout facility.

LAN token-ring layout Well suited to laying out

views containing a token-ring

LAN.

The view must meet

connectivity requirements for

a token-ring view as defined

by the view layout facility.

LAN bus layout Well suited to laying out

views containing a LAN with

a central bus.

The view must meet

connectivity requirements for

a LAN bus view as defined

by the view layout facility.

Connectivity tree layout. Quick layout.

Shows the parent-child

relationships among

resources.

The view must meet

connectivity requirements for

a connectivity tree view as

defined by the view layout

facility.

Hierarchical graph by node

priority

Shows the parent-child

relationships among network

resources.

Can lay out any view

regardless of connectivity.

You must assign a

hierarchical priority to each

node in the view.

Grid layout Quick layout.

Good for displaying lists of

related or unrelated network

objects.

Does not display network

topology unless you define

the rows and columns.

Does not show connectivity.

672 Resource Object Data Manager and GMFHS Programmer’s Guide

GMFHS Fields Used By the View Layout Facility

The following GMFHS fields supply data that is used by the view layout facility:

v BinPackingFlag

v BusNode

v ClusterIDValue

v DefaultRowSpacing

v EllipseAspectRatioHeight

v EllipseAspectRatioWidth

v FirstNode

v HierarchicalPriority

v LayoutOrientation

v LayoutSequence

v LayoutType

v LayoutWidth

v LinkCrossOptionValue

v ResourceLayoutCharacteristics

v RootNode

v SecondNode

See the following section for a description of how the view layout facility uses

these fields.

Layout Type Descriptions

This section describes the view layout types. For each view layout type, a

description is provided and the fields used with each view layout type is

described.

Note: Setting the SymbolRadiusValue field in RODM no longer has any effect on

the appearance of a view. Control of this aspect of view appearance has

been moved to the NetView management console, which allows users to

change the appearance of a view. For NMC, refer to the online help for more

information.

Radial Layout View by Link Type

The radial layout view by link type is a radial layout with clustering based on link

type. Nodes that are connected by a link whose ResourceLayoutCharacteristics bit

3 is turned on are put in the same cluster (circle).

Field Descriptions

The following fields are associated with the view and affect how the Radial Layout

View by Link Type function will lay out the view:

LayoutType

Set the value of the LayoutType field to 1 to specify this type of view.

BinPackingFlag

If the BinPackingFlag field is set to 1, the Radial Layout View by Link Type

function rearranges sites of the same level and weight attempting to obtain

an even distribution of nodes.

LinkCrossOptionValue

This field controls the link-crossing optimization level. The greater this

number is, the more time the view layout facility will spend attempting to

reduce the number of link-crossings in the view. The range for values is

0–6.

GMFHS Fields Used By the View Layout Facility

Appendix B. View Layout Facility 673

The following field is associated with each node in the view and affects how the

Radial Layout View by Link Type function will lay out the view:

ResourceLayoutCharacteristics

If bit 2 of this field for a node is turned on, and that node is a single node

that is attached to a node in a cluster (circle) but is not attached to any

other nodes, the node will be merged into the cluster (circle) to which it is

attached.

The following field is associated with each link in the view and affects how the

Radial Layout View by Link Type function will lay out the view:

ResourceLayoutCharacteristics

Nodes that are connected by a link with the ResourceLayoutCharacteristics

bit 3 turned on will be placed in the same cluster (circle). You can use this

bit in any way that is appropriate for you. For example, you can turn the

bit on for all links whose link types indicate that they are high speed links.

Devices that are attached by high speed links are often at the same site, so

this results in devices that are probably at the same site being placed in the

same circle.

Radial Layout View by Cluster ID

The radial layout view by cluster ID is a radial layout with clustering based on the

ClusterIDValue fields of the nodes in the view. Nodes that have the same cluster

IDs will be clustered together in the same site circle.

Field Descriptions

The following fields are associated with the view and affect how the Radial Layout

View by Cluster ID function will lay out the view:

LayoutType

Set the value of the LayoutType field to 2 to specify this type of view.

BinPackingFlag

If the BinPackingFlag field is set to 1, the Radial Layout View by Cluster

ID function will rearrange sites on the same level and of the same weight

to attempt to obtain a homogenous distribution of nodes.

LinkCrossOptionValue

This field controls the link-crossing optimization level. The greater this

number is, the more time the view layout facility will spend attempting to

reduce the number of link-crossings in the view. The range for valid values

is 0–6.

The following field is associated with each node in the view and affects how the

Radial Layout View by Cluster ID function will lay out the view:

ResourceLayoutCharacteristics

If bit 2 of this field for a node is turned on, and that node is a single node

that is attached to a node in a cluster (circle) but is not attached to any

other nodes, the node will be merged into the cluster (circle) to which it is

attached.

ClusterIDValue

This field allows the user to indicate how the nodes are grouped

(clustered). Nodes that have the same ClusterIDValue will be grouped

(clustered) together in the same circle.

Radial Layout View by Link Type

674 Resource Object Data Manager and GMFHS Programmer’s Guide

Local Area Network Layout View

The local area network layout is a variation of the radial layout that is tailored to

local area network views.

Field Descriptions

The following fields are associated with the view and affect how the Local Area

Network Layout function will lay out the view:

LayoutType

Set the value of the LayoutType field to 3 to specify this type of view.

BinPackingFlag

If the BinPackingFlag field is set to 1, the Local Area Network Layout

function will rearrange sites on the same level and of the same weight to

attempt to obtain a homogenous distribution of nodes.

LinkCrossOptionValue

This field controls the link-crossing optimization level. The greater this

number is, the more time the view layout facility will spend attempting to

reduce the number of link-crossings in the view. The range for valid values

is 0–6.

The following field is associated with each node in the view and affects how the

Local Area Network Layout function will lay out the view:

LayoutSequence

In views where there are multiple children of the same parent on the

subsite and sub-subsite circles, the ordering of the children will be based

on the value in the LayoutSequence field for each node. The children will

be ordered so that their LayoutSequence fields will be in ascending order

when travelling in a clockwise direction around the circle. If you do not

want to control the sequence in which the nodes are placed, set the

LayoutSequence field of each of the nodes in the view to 0, which is the

default.

Token-Ring Network Layout View Interface

The token-ring network layout is a variation of the radial layout that is tailored to

token-ring network views.

Field Descriptions

The following fields are associated with the view and affect how the Token-Ring

Network Layout function will lay out the view:

LayoutType

Set the value of the LayoutType field to 4 to specify this type of view.

FirstNode

The ID of the node on the main site circle that is to be placed at the top of

the circle (the twelve o’clock position).

SecondNode

The ID of the node on the main site circle that is to be placed immediately

adjacent to (in a clockwise direction) the node with the ID of FirstNode.

The following field is associated with each node in the view and affects how the

Token-Ring Network Layout function will lay out the view:

LayoutSequence

In views where there are multiple children of the same parent on the

Local Area Network Layout View

Appendix B. View Layout Facility 675

subsite and sub-subsite circles, the ordering of the children will be based

on the value in the LayoutSequence field for each node. The children will

be ordered so that their LayoutSequence fields will be in ascending order

when travelling in a clockwise direction around the circle. If you do not

want to control the sequence in which the nodes are placed, set the

LayoutSequence field of each of the nodes in the view to 0, which is the

default.

Bus Network Layout View Interface

The bus network layout is a variation of the radial layout that is tailored to bus

network views.

Field Descriptions

The following fields are associated with the view and affect how the Bus Network

Layout function will lay out the view:

LayoutType

Set the value of the LayoutType field to 5 to specify this type of view.

BusNode

The object ID of the central bus node for the view. This node will be the

parent node of all the nodes on the main site circle of the view.

The following field is associated with each node in the view and affects how the

Bus Network Layout function will lay out the view:

LayoutSequence

In views where there are multiple children of the same parent on the

subsite and sub-subsite circles, the ordering of the children will be based

on the value in the LayoutSequence field for each node. The children will

be ordered so that their LayoutSequence fields will be in ascending order

when travelling in a clockwise direction around the circle. If you do not

want to control the sequence in which the nodes are placed, set the

LayoutSequence field of each of the nodes in the view to 0, which is the

default.

Hierarchical Graph Layout View

The Hierarchical Graph Layout function is a layout with each level of a hierarchy

occupied by nodes of equivalent specified priority.

This type of layout requires that no node be connected to a node or tackpoint that

is more than 1 level away. However, you can build a view that does not satisfy this

requirement. If this happens, the view layout facility will add as many additional

tackpoints and links as necessary to meet this requirement.

Field Descriptions

The following fields are associated with the view and affect how the Hierarchical

Graph Layout function will lay out the view:

LayoutType

Set the value of the LayoutType field to 6 to specify this type of view.

LayoutOrientation

When this field is set to 0, the view layout facility lays out the graph from

top to bottom. When this field is set to 1, the view layout facility lays out

the graph from left to right.

Token-Ring Network Layout View

676 Resource Object Data Manager and GMFHS Programmer’s Guide

DefaultRowSpacing

This value indicates the default distance between rows in the connectivity

tree. If this field is set to 0 or to any value not in the range from 1–50, the

rows will be spaced the distance necessary to make the view square. If you

need to explicitly control the distance between rows, set this field to any

value in the range of 1–50. This value indicates a multiple of the symbol

radius. For example, a value of 3 indicates that the rows are to be a

distance equal to three times the symbol radius apart.

The following field is associated with each node in the view and affects how the

Hierarchical Graph Layout function will lay out the view:

HierarchicalPriority

This field is used to specify the hierarchical priority of the node. Nodes are

placed in the various levels of the hierarchical graph such that their

priority values are in ascending order as the graph is traversed from top to

bottom, or from left to right if a left to right orientation was specified for

the view. All nodes with the same hierarchical priority are placed on the

same row in the view. You can assign the hierarchical priority field of each

node in any way that suits your needs. For example, one method is to set

the hierarchical priority according to the node object type, so that all nodes

of a type are on the same row.

 Note that for this type of layout, the hierarchical priority is used as a

relative value. For example, if all of the nodes in a view are assigned

hierarchical priority values of either 1, 2, or 12, the distance between row 1

and row 2 is the same as the distance between row 2 and row 12. Note

also that 0 is not a valid value for this field.

Elliptical Layout View

The Elliptical Layout Function lays out a view as a single ellipse.

Field Descriptions

The following fields are associated with the view and affect how the Elliptical

Layout function will lay out the view:

LayoutType

Set the value of the LayoutType field to 7 to specify this type of view.

EllipseAspectRatioHeight

EllipseAspectRatioHeight and EllipseAspectRatioWidth will be used as the

aspect ratio for the ellipse. An EllipseAspectRatioHeight of 1, and an

EllipseAspectRatioWidth of 1 will result in a circle. An

EllipseAspectRatioWidth of 640 and an EllipseAspectRatioHeight of 480

will result in an ellipse that approximates the height to width ratio of a

standard VGA monitor in 640 X 480 mode.

EllipseAspectRatioWidth

See the definition of EllipseAspectRatioHeight.

The following field is associated with each node in the view and affects how the

Elliptical Layout function will lay out the view:

LayoutSequence

Starting at the top of the ellipse, nodes will be arranged in a clockwise

sequence, so that the LayoutSequence values for each node are in

ascending order. If you do not want to control the sequence in which the

nodes are placed, set the LayoutSequence field of each of the nodes in the

view to 0, which is the default.

Hierarchical Layout View

Appendix B. View Layout Facility 677

Connectivity Tree Layout View

The Connectivity Tree Layout function lays out a view as a simple connectivity

tree. The view must be composed of 1 or more true trees. Except for root nodes,

each node must be connected to exactly 1, parent. Nodes can be connected to

multiple child nodes. Child nodes cannot be connected.

Field Descriptions

The following fields are associated with the view and affect how the Connectivity

Tree Layout function will lay out the view:

LayoutType

Set the value of the LayoutType field to 8 to specify this type of view.

LayoutOrientation

When this field is set to 0 the view layout facility lays out the graph from

top to bottom. When this field is set to 1 the view layout facility lays out

the graph from left to right.

DefaultRowSpacing

This value indicates the default distance between rows in the connectivity

tree. If this field is set to 0, or to any value not in the range from 1–50. the

rows will be spaced the distance necessary to make the view square. If you

need to explicitly control the distance between rows, you can set this field

to any value in the range of 1–50, This value indicates a multiple of the

symbol radius. For example, a value of 3 indicates that the rows are to be a

distance equal to 3 times the symbol radius apart.

The following fields are associated with each node in the view and affect how the

Connectivity Tree Layout function will lay out the view:

RootNode

Setting this field to 0x80 indicates to the view layout facility that the node

is a root node. All nodes other than root nodes have a root node as their

ancestor. Nodes that are not root nodes and that do not have a root node

as their ancestor, will be laid out in a rectangular grid at the bottom of the

view.

LayoutSequence

Nodes that are connected to a common parent node will be ordered such

that the values in their LayoutSequence fields will be in ascending order

from left to right, or from bottom to top depending on the orientation of

the view. If you do not want to control the sequence in which the nodes

are placed you can set the LayoutSequence field of each of the nodes in the

view to 0, which is the default.

Grid Layout

The grid layout function aligns the view objects into a grid of rows and columns.

The object locations can be specified by the row number, the column number, or

both. If no coordinates are specified, the nodes are randomly placed in a grid

formation.

The grid layout can be used with the following types of views:

v Exception

v Network

v Configuration

For exception views, the grid layout is the only layout that can be used, and you

cannot specify row and column parameters.

Connectivity Tree Layout View

678 Resource Object Data Manager and GMFHS Programmer’s Guide

For network or configuration peer views, it is suggested that you specify row and

column values for all the objects in the view. The row and column values

determine the placement of objects within the view.

Field Descriptions

The following fields are associated with the view and affect how the Grid Layout

function will lay out the view:

LayoutType

Set the value of the LayoutType field to 9 to specify this type of view.

LayoutOrientation

When this field is set to 0, the view layout facility lays out the grid from

top to bottom. That is the upper left corner is row 1 column 1, with the

row numbers increasing as you move from top to bottom and the column

numbers increasing as you move from left to right. When this field is set to

1 the view layout facility lays out the grid from left to right. That is the

lower-left corner is row 1 column 1, with the row numbers increasing as

you move from left to right and the column numbers increasing as you

move from bottom to top.

LayoutWidth

The maximum column number to be used by the view layout facility when

assigning nodes to columns. The view layout facility only makes column

assignments for nodes whose column number was zero. If the

LayoutWidth field is zero, the view layout facility will set the LayoutWidth

to a value that will make the view square.

The following fields are associated with each node in the view and affect how the

Grid Layout function will lay out the view:

HierarchicalPriority

This field is used to assign an absolute row number to the node. Absolute

means that if you were to assign three different nodes row numbers of 1, 2,

and 12 respectively, the distance between the rows on which nodes 1 and 2

are placed is one-tenth of the distance between the rows on which nodes 2

and 3 are placed. If you do not want to control the row on which the node

is placed, set this field to 0 and the view layout facility assigns it to the

next available unfilled row. This is the default.

LayoutSequence

This field is used to assign an absolute column number to the node. The

meaning of absolute in this context is the same as for the

HierarchicalPriority field. If you do not want to control the column in

which the node is placed, set this field to 0 and the view layout facility

will assign it to the next available column. This is the default. The value in

the LayoutWidth field indicates the largest column number to which nodes

are assigned. Note that this field only affects values that are assigned by

the view layout facility, so it is valid to explicitly specify a column number

greater than the LayoutWidth.

The following fields are associated with each link in the view and affect how the

Grid Layout function will lay out the view:

HierarchicalPriority

This field is used to assign an absolute row number to the link. Links are

drawn by the view layout facility between end-point nodes. The row value

for a link is inherited by these end-point nodes, if they were not assigned

to a row, that is, if their HierarchicalPriority field is set to 0. If you do not

Grid Layout

Appendix B. View Layout Facility 679

want to control the row on which the link is placed, set this field to zero

and the view layout facility will assign it to the next available unfilled row.

This is the default.

LayoutSequence

This field is used to assign an absolute column number to the link. Links

are drawn by the view layout facility between end-point nodes. The

column value for a link is inherited by these end-point nodes, if they were

not assigned to a column, that is, if their LayoutSequence field is set to 0.

If you do not want to control the column in which the node is placed, set

this field to 0 and the view layout facility will assign it to the next

available column. This is the default.

Grid Layout Notes

If a link is defined without end points, null end points are created for the link, so

it can be placed in the view. Note that for grid layouts, when null nodes are

created as end points for a link, they inherit the row and column fields for the link.

If these fields are not specified for the link, the link and its null nodes are drawn at

a random location in the view.

Table 241 lists examples of differently defined links and the results of each

definition:

 Table 241. Link Definitions and Results

A link is defined with row and column

layout parameters. No end points are defined

for the link.

The link is drawn with two null nodes at the

coordinates specified by the link. In this case,

the layout parameters for the link are

transferred to the layout parameters of both

nodes.

A link is defined without row and column

layout parameters. No end points are defined

for the link.

The link is drawn with two null nodes at

random locations. To control the location of

the node, specify coordinates on the link.

A link is defined with row and column

layout parameters. Only 1 end point is

defined with row and column layout

parameters.

The defined end point is drawn at the

specified coordinates. A null node is created

with the coordinates of the link. A link is

drawn between the defined end point and

the newly created null node.

A link is defined with row and column

layout parameters. Only 1 end point is

defined, but without row and column layout

parameters.

A null node is created with the coordinates

of the link. The defined end point is drawn

at a random location and a link is drawn

between the defined end point and the

newly created null node.

A link is defined with row and column

layout parameters. Two end points are

defined with row and column layout

parameters specified for both.

Both end points are drawn at their specified

coordinates. The link is drawn between the

two end points. The row and column layout

parameters for the link are not used.

Grid Layout

680 Resource Object Data Manager and GMFHS Programmer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2007 681

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

2Z4A/101

11400 Burnet Road

Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

Programming Interfaces

This publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of Tivoli NetView for z/OS.

Trademarks

IBM, the IBM logo, Advanced Peer-to-Peer Networking, AIX, BookManager,

Candle, Language Environment, MVS, NetView, OMEGAMON, OS/2, OS/390,

RACF, REXX, RISC System/6000, RS/6000, SystemView, Tivoli, Tivoli Enterprise,

TME, VSE/ESA, VTAM, z/Architecture, z/OS, and z/VM are trademarks or

registered trademarks of International Business Machines Corporation in the

United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered

trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

682 Resource Object Data Manager and GMFHS Programmer’s Guide

Index

Special characters
%APPL% replacement parameter 61

%DOMAIN% replacement parameter 61

%RESOURCE% replacement parameter 61

%SPNAME% replacement parameter 61

%TYPE% replacement parameter 61

A
abstract data types 221, 223

access block
definition 8

description 305

RODM_name parameter 306

Sign_on_token parameter 306

User_appl_ID parameter 306

access functions 367

accessibility xx

accessing and changing GMFHS-defined fields 182

Acrobat Search command (for library search) xix

action functions 368

adding NMGs and domains, GMFHS 58

adding objects, GMFHS 55

administrative functions 367

aggregate objects
defining 38

definition 25

aggregate, suspending aggregation 128

aggregation
aggregation child description 131

aggregation hierarchy description 132

aggregation hierarchy loop description 132

aggregation hierarchy, building 132

aggregation hierarchy, creating 132

aggregation level 130

aggregation parent description 130

aggregation path description 131

aggregation priority 137

aggregation thresholds 136

DisplayStatus field, role in 134

DUIFCUAP method, role in 133

events that start process 139

introduction 130

parent status, calculating 136

problems 139

process overview 130

ResourceTraits field 130

rules 138

status group 142

status group customization 137

status, affects on aggregation 134

suspending resources from 136

updating status 134

aggregation limits 25

AggregationChild connectivity relationship 27

AggregationParent connectivity relationship 27

AGGRST parameter 494

alert processing, DUIFEDEF 172

alert translation tables 176

alerts
down 80

GMFHS data model 167

INIT, DOMS010 protocol 78

monitoring 167

receiving 74

resolving 167

session termination 80

timing 74

ANONYMOUSVAR
load function data type 298

null value 260

API_version parameter, transaction information block 307

application programs
API query field control block sample 305

asynchronous error notification 325

calls, RODM 301

compiling programs 303

control block relationships 305

EKGUAPI module 302

error conditions, user API transactions 317

languages, RODM user applications 220

link-editing programs 303

object deletion notification 326

parameters, user API calls to RODM 304

program calls 301

programming reference 367

register conventions 302

RODM system (z/OS), illustration 221

user API calls to RODM 304

using control blocks 304

using user APIs 302

writing RODM application programs 301

APPLICATIONID
load function data type 298

null value 260

applying policy to views 122

ASSIST_CHARVAR data item 485

asterisk 281

asynchronous error
definition 200

notification 325

ATTRLIST high-level syntax keyword 276

authorization
function calls 372

load function statements 252

automation
accessing and changing GMFHS-defined fields 182

advantages 181

CNMSNIFF sample application 186

EKGSNIFF sample method 186

GMFHS 181

GMFHS example 185

notifying applications, field changes 181

overview 181

RODM 189

sample application 186

sample method 186

using GMFHS methods 183

writing automation code, data model 181

© Copyright IBM Corp. 1997, 2007 683

B
backbone 31

BackboneConnPP 28

BASED attribute 228

batch job, RODM load function 250

BERVAR
load function data type 298

null value 260

Bit_map function parameter 444

building views
See GMFHS, view building process

C
C, definition 6

calling load function 251

calls
call statement format 354

program 301, 354

cause undetermined subvector, INIT alert 78

CE keyword, DOMP010 protocol 64

change method
change subfield 343

description 342

parameters 342

procedure interface 344

restrictions 362

change subfield
definition 214

description 343

Change_status function parameter 444

changes, non-SNA domain 23

changing
views 41

changing objects, GMFHS 55

char_literal data type 291

characters 195, 208, 210

class name 195

field name 210

object name 208

characters, allowed 195

class name 195

field name 210

object name 208

characters, double-byte 229

chars data type 290

CHARVAR
load function data type 298

null value 260

CHARVARADDR
load function data type 298

null value 260

checking output listings 253

checkpoint
coding checkpoint control 382

definition 5

process 380

TRANSPARENT_CHECKPOINT keyword 382

ChildAccess connectivity relationship 27

class
names, in RODM 195

class locking, RODM 220

class structure definitions 245

Class_access_info_ptr function parameter 444

Class_access_info_ptr parameter
EKG_CreateClass function 384

Class_access_info_ptr parameter (continued)
EKG_CreateField function 385

EKG_CreateSubfield function 388

EKG_DeleteClass function 389

EKG_DeleteField function 391

EKG_DeleteSubfield function 395

Class_ID function parameter 444

Class_ID parameter
EKG_QueryNotifyQueue function 420

EKG_WhereAmI function 443

entity access-information block 310

class_list, common syntactic element 291

Class_name function parameter 444

Class_name parameter, EKG_QueryObjectName function 422

Class_name_length parameter, entity access-information

block 310

Class_name_ptr parameter, entity access-information

block 310

class, common syntactic element 291

classes 195

CLASSID
load function data type 298

using data type 259

CLASSIDLIST load function data type 298

CLASSLINK load function data type 298

classlink_list, common syntactic element 291

CLASSLINKLIST load function data type 298

CM keyword, DOMP010 protocol 65

CMD_CHARVAR data item 486

CMD_DESC_CHARVAR data item 486

CNMQAPI service routine, description 189

CNMS4402 sample application 186

CNMSJH12, sample 55

CNMSNIFF sample application 186

CODEPAGE parameter 269

coding high-level load function statements 272

coding installation-written methods 358

coding primitive statements 281

cold start, definition 5

collection definition object 143

collection definition object fields 144

collection definition objects 144

collection definition objects, examples 155

collection specification syntax 149

collection specification values 150

collection specification, using 145

command responses, timing 75

command session 75

command transport envelope, PPI 84

command, protocol
INIT_ACCEPT 67

INIT_ACCEPT_ACCEPT 67

SESSION_REQUEST 66

SESSION_REQUEST_ACCEPT 67

SET_CLOCK 67

SET_CLOCK_ACCEPT 67

common operations services (COS) NMGs 83

common syntactic elements
class 291

class_list 291

classlink_list 291

field 293

method_spec 294

object 295

objectid_list 295

objectlink_list 295

recipient_spec 296

684 Resource Object Data Manager and GMFHS Programmer’s Guide

common syntactic elements (continued)
sd_parm 296

subfield 296

subs_spec 297

subs_spec_list 297

type 297

typed_value 298

communicating, NMGs 59

compiling application programs 303

compiling programs 359

complex conditional statements 147

ComposedOfLogical connectivity relationship 26

ComposedOfPhysical connectivity relationship 26

Concat_of_strings function parameter 444

Concat_of_strings parameter
EKG_TriggerNamedMethod function 437

EKG_TriggerOIMethod function 439

conditional statements 145

CONFIG DOMAIN command, GMFHS 56

CONFIG NETWORK command, GMFHS 56

CONFIG VIEW command, GMFHS 56

configuration view
description 31

types of 31

configuration views
defining

backbone 43

logical 43

peer 43, 44

physical 43

configuration, RODM 33

connecting, RODM 327

connectivity relationships
defining 40

identifying 26

connectors
NSL_B202 32

NSL_ENET 32

OEMLAB 32

control blocks
access block 305

API query field control block, sample 305

entity access information block 309

field access information block 312

function block 308

relationships 305

response block 314

transaction information block 307

using 304

control functions 367

control table
modifying 260

sample 260

conventions
typeface xxi

correlation
aggregate object names 333

concepts 330

customization
changing display name priority 337

disabling correlation for specific resources 338

enabling 329

extending for MultiSystem Manager and SNA topology

manager objects 335

methods 330

object display labels 333

object field values 334

correlation (continued)
object relationships 333

objects enabled 331

types
free-form 331

network 331

using objects you created 335

Correlation_ID function parameter 444

Correlation_ID parameter, EKG_QueryResponseBlockOverflow

function 423

COS NMGs 83

COS transport protocol, definition 81

CP keyword, DOMP010 protocol 65

CREATE high-level statement 277

creating
class structure and object definitions 245

high-level load function statements 272

primitive statements 281

RODM data models 239

creating a notification queue 320

crossing user APIs 302

customizing fast path to failing resource views 95

customizing locate failing resource views 95

D
data definitions

initialization 265

object load 265

statements 264

structure load 265

Data function parameter 444

data model, system class definitions 196

Data parameter
EKG_QueryField function 410

EKG_QueryResponseBlockOverflow function 423

EKG_QuerySubfield function 425

data types
abstract data types 223

fields 222

identifiers 222

null values 222

reserved data types 223

subfields 215

data types, values and 153

Data_to_be_returned function parameter 444

Data_to_be_returned parameter, EKG_ResponseBlock

function 427

Data_type function parameter 444

Data_type parameter
EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 379

EKG_CreateField function 385

EKG_Locate function 403

EKG_QueryEntityStructure function 408

EKG_QueryField function 410

EKG_QueryFieldStructure function 414

EKG_QueryMultipleSubfields function 418

EKG_QuerySubfield function 425

EKG_SwapField function 434

EKG_SwapSubfield function 436

Data_value parameter, EKG_QueryMultipleSubfields

function 418

Date/Time subvector, INIT alert 79

dbcs_literal data type 292

DD List Structure 267

Index 685

deciding load type 246

deciding method type 352

defining
configuration, RODM 33

network elements 22

non-SNA domain 35

DELETE high-level statement 278

deleting notification queues 325

deleting objects, GMFHS 55

delimiters, load function statements 273

designing RODM data models 239

digits data type 292

directory names, notation xxi

disconnecting, RODM 328

Display_Resource_Type_Class 90

DisplayStatus field
defining exception criteria 101

ExceptionViewFilter field 103

DisplayStatus method, creating
DUIFVCFT method 112

sample method DUIFCUX2 112

sample method DUIFCUXM 111

USRXMETH keyword 108

DM keyword, DOMP010 protocol 66

domains 33, 35

DOMP010 presentation protocol 60

DOMP010 protocol
CE keyword 64

CM keyword 65

CP keyword 65

DM keyword 66

packet definition 63

packet format 63

PT keyword 66

RN keyword 67

RP keyword 68

SN keyword 68, 69

ST keyword 69

TM keyword 71

TX keyword 71

DOMP020 presentation protocol 61

DOMS010 protocol 76

double-byte characters 229, 292

down alert 80

DSINOR service routine, description 189

DUIFCAAP method 487

DUIFCADT method 487

DUIFCAPC method 487

DUIFCASB method 487

DUIFCATC method 487

DUIFCATC method, description 183

DUIFCCAN method
description 488

DUIFCCAN method, description 183

DUIFCCAP method 487

DUIFCDTC method 487

DUIFCDUC method 487

DUIFCGR2 method 487

DUIFCGR3 method 487

DUIFCGRA method 487

DUIFCGRT method 487

DUIFCLRT method
description 488

overview 183

DUIFCLS2 method 487

DUIFCLS3 method 487

DUIFCLSR method 487

DUIFCMUU method 487

DUIFCRDC method 487

DUIFCRTP method 487

DUIFCRTU method 487

DUIFCRUC method 487

DUIFCSRT method 487

DUIFCUAP method
description 490

overview 183

DUIFCURA method 487

DUIFCUTC method 487

DUIFCUUS method
description 491

overview 184

DUIFECDS method
description 493

overview 184

DUIFECMV 167

DUIFEDEF 171

DUIFEDEF AlertProc 172

DUIFEDST, DUIFEIBM, and DUIFEUSR alert translation

tables 176

DUIFEGSN method 487

DUIFFAWS method
description 494

overview 184

DUIFFIRS method
description 495

overview 184

DUIFFRAS method
description 496

overview 184

DUIFFSUS method
description 496

overview 184

DUIFITKN method 487

DUIFRAIP method 487

DUIFRFDS method
description 497

not triggering DisplayStatus recalculation 105

overview 185

DUIFRRTC method 487

DUIFSMT
DUIFSMTE statement syntax 104

DUIFSMTE macro
keywords

CLASS 105

CLASS, alias values for 105

MYNAME 108

RESOURCE 108

USRXMETH 108

XCPT 106

sample table DUIFSMT 105

syntax for 105

DUIFVCFT method
description 497

overview 185

using 112

DUIFVCVT method 487

DUIFVDRT method 487

DUIFVEFC method 487

DUIFVEVF method 488

DUIFVEXV method 488

DUIFVFPV method 488

DUIFVGET method 488

DUIFVIEW method 488

686 Resource Object Data Manager and GMFHS Programmer’s Guide

DUIFVINS method
description 498

overview 185

DUIFVLST method 488

DUIFVLTT method 488

DUIFVMDR method 488

DUIFVNGI method 488

DUIFVNGN method 488

DUIFVNOI method 488

DUIFVNOT method 488

DUIFVPFR method 488

DUIFVSUB method 488

DUIFVTKN method 488

DUIFVUNS method 488

DUIFVUPD method 488

DUIFVVLC method 488

dynamically built views 89

defining to spans 115

object discovery 89

E
ECBADDRESS

load function data type 298

null value 260

education
see Tivoli technical training xx

EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 374

EKG_APIVersion field, EKG_System class 199

EKG_AsyncTasks field, EKG_System class 200

EKG_BOUNDARY 228

EKG_boundary macro substitution variable 372

EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 378

EKG_Checkpoint function 380

EKG_ConcurrentUsers field, EKG_System class 201

EKG_Connect function 383

EKG_CreateClass function 384

EKG_CreateField function 385

EKG_CreateObject function 387

EKG_CreateSubfield function 388

EKG_DeleteClass function 389

EKG_DeleteField function 390

EKG_DeleteNotifySubscription function 392

EKG_DeleteObject function 393

EKG_DeleteSubfield function 394

EKG_DelObjDelSubs function 396

EKG_Disconnect function 397

EKG_ECBAddress field, EKG_NotificationQueue class 205

EKG_ECBPostedStatus field, EKG_NotificationQueue

class 205

EKG_ExecuteFunctionList function 399

EKG_ExternalLogState field, EKG_System class 199

EKG_InstallerID field, EKG_Method class 207

EKG_LastAsyncError field
EKG_System class 200

EKG_User class 203

EKG_LastCheckpointID field, EKG_System class 200

EKG_LastCheckpointResult field, EKG_System class 200

EKG_LinkNoTrigger function 218, 401

EKG_LinkTrigger function 218, 401

EKG_Locate function 403

EKG_LockObjectList function 404

EKG_LogLevel field, EKG_User class 203

EKG_Maximum_Q_Entries field, EKG_NotificationQueue

class 206

EKG_MessagesOnQueue field, EKG_NotificationQueue

class 206

EKG_MessageTriggeredAction function 405

EKG_Method class 206

EKG_MLogLevel field, EKG_User class 203

EKG_MTraceFlag field, EKG_Method class 208

EKG_MTraceType field, EKG_User class 204

EKG_Name field, EKG_System class 199

EKG_NotificationQueue class 204

EKG_OutputToLog function 407

EKG_PLI_ISA field, EKG_System class 201

EKG_QueryEntityStructure function 408

EKG_QueryField function 409

EKG_QueryFieldID function 411

EKG_QueryFieldName function 412

EKG_QueryFieldStructure function 414

EKG_QueryFunctionBlockContents function 415

EKG_QueryMultipleSubfields function 417

EKG_QueryNotifyQueue function 419

EKG_QueryObjectName function 422

EKG_QueryResponseBlockOverflow function 423

EKG_QuerySubfield function 425

EKG_RBOverflowAction field, EKG_User class 203

EKG_Refresh field, EKG_Method class 207

EKG_ReleaseID field, EKG_System class 199

EKG_ResponseBlock function 426

EKG_RevertToInherited function 428

EKG_SendNotification function 429

EKG_SetReturnCode function 431

EKG_SSBChain field, EKG_System class 201

EKG_Status field
EKG_NotificationQueue class 205

EKG_User class 202

EKG_Stop function 433

EKG_StopMode field, EKG_User class 202

EKG_SubscribedForDelete field, EKG_NotificationQueue

class 206

EKG_SubscribedFromClass field, EKG_NotificationQueue

class 205

EKG_SubscribedFromObject field, EKG_NotificationQueue

class 206

EKG_SwapField function 434

EKG_SwapSubfield function 435

EKG_System class 198

EKG_SystemDataParent class 198

EKG_TransSegment field, EKG_System class 201

EKG_TriggerNamedMethod function 437

EKG_TriggerOIMethod function 439

EKG_UnlinkNoTrigger function 440

EKG_UnlinkTrigger function 440

EKG_UnlockAll function 442

EKG_UsageCount field, EKG_Method class 207

EKG_UsedBy field, EKG_NotificationQueue class 205

EKG_User class 201

EKG_Uses_Q field, EKG_User class 203

EKG_WhereAmI function 443

EKG_WindowSize field, EKG_System class 201

EKG1ACCB access block sample 306

EKG1ENTB entity access information block sample 310

EKG1FLDB field access information block sample 313

EKG1TRAB transaction information block sample 308

EKG3ACCB access block sample 306

EKG3ENTB entity access information block sample 310

EKG3FLDB field access information block sample 313

EKG3TRAB transaction information block sample 308

Index 687

EKG5VDCL sample variable declarations 223

EKG5WAIT sample PL/I call, EKGWAIT 321

EKG6VDCL sample variable declarations 223

EKG6WAIT sample C call, EKGWAIT 321

EKGCPPI method 484

EKGCTABL control table 260

EKGCTIM method 483, 484

EKGIN1 DD Statement 264

EKGIN2 DD Statement 265

EKGIN3 DD Statement 265

EKGINMTB method name table 245, 261

EKGLANG DD statement 264

EKGLIILM method 249

EKGLISLM method 249

EKGLLOAD sample job, load function 250

EKGLOADP sample procedure, load function 250

EKGLUTB DD statement 264

EKGMANC 357

EKGMIMV method 484

EKGNEQL notification method 481

EKGNLST notification method 482

EKGNOTF notification method 481

EKGNTHD notification method 482

EKGOPPI method 484

EKGPRINT DD statement 264

EKGSNIFF sample method 186

EKGSPPI method 484

EKGSPPI method, description 189

EKGUAPI module 302

EKGWAIT 321

element management system
communicating 60

session 75

entity access information block
Class_ID parameter 310

Class_name_length parameter 310

Class_name_ptr parameter 310

definition 8

description 309

Naming_count parameter 310

Object_ID parameter 310

Object_name_length parameter 310

Object_name_ptr parameter 310

Entity_access_info_ptr function parameter 445

Entity_access_info_ptr parameter
EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 375

EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 378

EKG_CreateObject function 387

EKG_DeleteNotifySubscription function 392

EKG_DeleteObject function 393

EKG_DelObjDelSubs function 396

EKG_QueryEntityStructure function 408

EKG_QueryField function 410

EKG_QueryFieldName function 412

EKG_QueryFieldStructure function 414

EKG_QueryMultipleSubfields function 417

EKG_QuerySubfield function 425

EKG_RevertToInherited function 428

EKG_SwapField function 434

EKG_SwapSubfield function 436

EKG_TriggerNamedMethod function 437

Entity_access_info_ptr_1 function parameter 445

Entity_access_info_ptr_1 parameter
EKG_LinkNoTrigger function 401

Entity_access_info_ptr_1 parameter (continued)
EKG_LinkTrigger function 401

EKG_UnlinkNoTrigger function 440

EKG_UnlinkTrigger function 440

Entity_access_info_ptr_2 function parameter 445

Entity_access_info_ptr_2 parameter
EKG_LinkNoTrigger function 401

EKG_LinkTrigger function 401

EKG_UnlinkNoTrigger function 440

EKG_UnlinkTrigger function 440

envelope, PPI command transport 84

environment variables, notation xxi

errors
asynchronous error notification 325

reporting error conditions 317

user API transactions 317

ESTAE routines, method restrictions 363

ESTAX routines, method restrictions 363

Ethernet network 20

example
layout parameters, detailed views 51

layout parameters, objects 53

examples of collection definition objects 155

exception state
affect on exception views 104

defining exception criteria 101

defining ExceptionViewFilter field 103

examples, mapping DisplayStatus to 110

fast path to failing resource view 95

user methods 112

exception view
customizing DisplayStatus mapping table DUIFSMT

CNMSJH13 104

DUIFSMTE statements 104

examples of 110

syntax of DUIFSMTE macro 105

Customizing DisplayStatus mapping table DUIFSMT
See also DisplayStatus method, creating

creating DisplayStatus method 111

defining 41, 100

defining candidates for 103

defining the ExceptionViewFilter field 103

description 28

DUIFDEXV
example of 41

using 100

illustration 29

layout parameter used 46

mapping display status
using sample table DUIFSMT 101

object connectivity process 100

object discovery process 99

open view, creating objects for 103

open view, deleting objects from 103

sample DUIFDEXV 100

user method, not triggered 111

using table DUIFSMT 104

exception views
implementing 112

ExceptionViewFilter field
defining 103

defining exception criteria 101

DisplayStatus filter 103

role in exception view object discovery process 100

UserStatus filter 104

ExceptionViewList field
in sample DUIFDEXV 101

688 Resource Object Data Manager and GMFHS Programmer’s Guide

ExceptionViewList field (continued)
role in exception view object discovery process 100

ExceptionViewName field
role in exception view object discovery process 99

execute command major vector 84

F
fast path to failing resource views, customizing 95

field
identifiers, RODM 211

names, RODM 210

field access information block
definition 8

description 312

Field_ID parameter 313

Field_name_length parameter 313

Field_name_ptr parameter 313

Naming_count parameter 313

Field_access_info_ptr function parameter 445

Field_access_info_ptr parameter
EKG_AddNotifySubscription function 373

EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 378

EKG_CreateField function 385

EKG_CreateSubfield function 388

EKG_DeleteField function 391

EKG_DeleteNotifySubscription function 392

EKG_DeleteSubfield function 395

EKG_Locate function 403

EKG_QueryField function 410

EKG_QueryFieldID function 411

EKG_QueryFieldName function 412

EKG_QueryFieldStructure function 414

EKG_QueryMultipleSubfields function 417, 418

EKG_QuerySubfield function 425

EKG_RevertToInherited function 428

EKG_SwapField function 434

EKG_SwapSubfield function 436

EKG_TriggerNamedMethod function 437

Field_access_info_ptr_1 function parameter 445

Field_access_info_ptr_1 parameter
EKG_LinkNoTrigger function 401

EKG_LinkTrigger function 401

EKG_UnlinkNoTrigger function 440

EKG_UnlinkTrigger function 440

Field_access_info_ptr_2 function parameter 445

Field_access_info_ptr_2 parameter
EKG_LinkNoTrigger function 401

EKG_LinkTrigger function 401

EKG_UnlinkNoTrigger function 440

EKG_UnlinkTrigger function 440

Field_ID function parameter 445

Field_ID parameter
EKG_QueryEntityStructure function 408

EKG_QueryFieldID function 411

EKG_QueryNotifyQueue function 420

EKG_WhereAmI function 443

Field_ID parameter, field access information block 313

Field_info_array function parameter 445

Field_info_array parameter
EKG_QueryEntityStructure function 408

EKG_QueryMultipleSubfields function 417, 418

Field_info_count function parameter 445

Field_info_count parameter, EKG_QueryEntityStructure

function 408

Field_info_element_size function parameter 445

Field_info_element_size parameter, EKG_QueryEntityStructure

function 408

Field_name function parameter 445

Field_name parameter
EKG_QueryEntityStructure function 408

EKG_QueryFieldName function 413

Field_name_length parameter, field access information

block 313

Field_name_ptr parameter, field access information block 313

Field_type_flag function parameter 445

Field_type_flag parameter, EKG_CreateField function 385

field, common syntactic element 293

FIELDID load function data type 298

fields
customizing, performance 479

RODM classes and objects 210

first product set ID subvector, INIT alert 79

FLCSEXV sample, exception view statements 113

FLCSSMT table 112

float_constant data type 293

FLOATING load function data type 298

FORCE_HAS_NO_INSTANCE load function primitive 282

FORCE_NOT_A_CLASS load function primitive 282

freeing methods 356

function block
definition 8

method API 355

user API 308

function ID 477

function parameters
Bit_map 444

Change_status 444

Class_access_info_ptr 444

Class_ID 444

Class_name 444

Concat_of_strings 444

Correlation_ID 444

Data 444

Data_to_be_returned 444

Data_type 444

Entity_access_info_ptr 445

Entity_access_info_ptr_1 445

Entity_access_info_ptr_2 445

Field_access_info_ptr 445

Field_access_info_ptr_1 445

Field_access_info_ptr_2 445

Field_ID 445

Field_info_array 445

Field_info_count 445

Field_info_element_size 445

Field_name 445

Field_type_flag 445

Function_block_copy 445

Function_block_origin 445

Function_block_ptr 446

Function_ID 446

Function_info_array 446

Indexed_data_length 446

Indexed_data_ptr 446

Inheritance_state 446

Last_checkpoint_ID 446

Local_copy_map 446

Local_inherited_flag 446

Log_message 446

Long_lived_parm 446

Message_CCSID 446

Index 689

function parameters (continued)
Method_name 447

Method_output_message 447

Method_parms 447

New_char_data_length 447

New_data_ptr 447

Notification_queue 447

Notification_queue_count 447

Notify_method 447

Number_of_fields 447

Number_of_functions 447

Number_of_subfields 447

Object_array 447

Object_ID 447

Object_list_length 447

Object_name 447

Old_char_data_length 448

Old_data_ptr 448

Parent_access_info_ptr 448

Private_public_flag 448

Reason_code 448

Requesting_method_ID 448

Response_block_length 448

Response_block_reference 448

Response_block_type 448

Response_block_used 448

Response_data 449

Return_code 449

Stop_ECB 449

Stop_type 449

Subfield 449

Subfield_map 449

Subscription_info 450

User_appl_ID 450

User_area 450

User_password 450

User_word 450

Value_for_reason_code 451

Value_for_return_code 451

Function_block_copy function parameter 445

Function_block_copy parameter,

EKG_QueryFunctionBlockContents function 415

Function_block_origin function parameter 445

Function_block_origin parameter,

EKG_QueryFunctionBlockContents function 415

Function_block_ptr function parameter 446

Function_block_ptr parameter
EKG_ExecuteFunctionList function 399

EKG_MessageTriggeredAction function 405

Function_ID function parameter 446

Function_ID parameter
EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 374

EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 378

EKG_Checkpoint function 380

EKG_Connect function 383

EKG_CreateClass function 384

EKG_CreateField function 385

EKG_CreateObject function 387

EKG_CreateSubfield function 388

EKG_DeleteClass function 389

EKG_DeleteField function 391

EKG_DeleteNotifySubscription function 392

EKG_DeleteObject function 393

EKG_DeleteSubfield function 395

Function_ID parameter (continued)
EKG_DelObjDelSubs function 396

EKG_Disconnect function 397

EKG_ExecuteFunctionList function 399

EKG_LinkNoTrigger function 401

EKG_LinkTrigger function 401

EKG_Locate function 403

EKG_LockObjectList function 404

EKG_MessageTriggeredAction function 405

EKG_OutputToLog function 407

EKG_QueryEntityStructure function 408

EKG_QueryField function 410

EKG_QueryFieldID function 411

EKG_QueryFieldName function 412

EKG_QueryFieldStructure function 414

EKG_QueryFunctionBlockContents function 415

EKG_QueryMultipleSubfields function 417

EKG_QueryNotifyQueue function 420

EKG_QueryObjectName function 422

EKG_QueryResponseBlockOverflow function 423

EKG_QuerySubfield function 425

EKG_ResponseBlock function 427

EKG_RevertToInherited function 428

EKG_SendNotification function 430

EKG_SetReturnCode function 431

EKG_Stop function 433

EKG_SwapField function 434

EKG_SwapSubfield function 436

EKG_TriggerNamedMethod function 437

EKG_TriggerOIMethod function 439

EKG_UnlinkNoTrigger function 440

EKG_UnlinkTrigger function 440

EKG_UnlockAll function 442

EKG_WhereAmI function 443

Function_info_array function parameter 446

Function_info_array parameter, EKG_ExecuteFunctionList

function 399

functions
access functions 367

action functions 368

administrative functions 367

control functions 367

EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 374

EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 378

EKG_Checkpoint function 380

EKG_Connect function 383

EKG_CreateClass function 384

EKG_CreateField function 385

EKG_CreateObject function 387

EKG_CreateSubfield function 388

EKG_DeleteClass function 389

EKG_DeleteField function 390

EKG_DeleteNotifySubscription function 392

EKG_DeleteObject function 393

EKG_DeleteSubfield function 394

EKG_DelObjDelSubs function 396

EKG_Disconnect function 397

EKG_ExecuteFunctionList function 399

EKG_LinkNoTrigger function 218, 401

EKG_LinkTrigger function 218, 401

EKG_Locate function 403

EKG_LockObjectList function 404

EKG_MessageTriggeredAction function 405

EKG_OutputToLog function 407

690 Resource Object Data Manager and GMFHS Programmer’s Guide

functions (continued)
EKG_QueryEntityStructure function 408

EKG_QueryField function 409

EKG_QueryFieldID function 411

EKG_QueryFieldName function 412

EKG_QueryFieldStructure function 414

EKG_QueryFunctionBlockContents function 415

EKG_QueryMultipleSubfields function 417

EKG_QueryNotifyQueue function 419

EKG_QueryObjectName function 422

EKG_QueryResponseBlockOverflow function 423

EKG_QuerySubfield function 425

EKG_ResponseBlock function 426

EKG_RevertToInherited function 428

EKG_SendNotification function 429

EKG_SetReturnCode function 431

EKG_Stop function 433

EKG_SwapField function 434

EKG_SwapSubfield function 435

EKG_TriggerNamedMethod function 437

EKG_TriggerOIMethod function 439

EKG_UnlinkNoTrigger function 440

EKG_UnlinkTrigger function 440

EKG_UnlockAll function 442

EKG_WhereAmI function 443

method API services 370

query functions 369

reason codes 469, 471

reference 371

user API services 370

G
gateways 59

GENALERT command, monitoring non-network devices 83

generic alert data subvector, INIT alert 78

generic commands using DOMP010 protocol 60

global character 281

GMFHS 25, 114

accessing and changing fields 182

adding NMGs and domains 58

adding, changing, deleting objects 55

aggregate objects, defining 38

aggregate objects, definition 25

aggregation process 130

automation 181

automation example 185

CONFIG DOMAIN command 56

CONFIG NETWORK command 56

CONFIG VIEW command 56

configuration views 31

defining network 17

exception views 28

identifying network elements 22

initialization process 87

aggregation warm start 87

normal 88

resource status warm start 87

loading the data model, RODM 55

monitoring topology managers 89

more detail views 32

network views 29

sample network 18

span-of-control processing 114

status keywords 70

use of resource and view names 114

view building process 89

GMFHS (continued)
configuration backbone views 97

configuration child II view 98

configuration child III view 99

configuration children views 95

configuration logical views 96

configuration parent views 95

configuration peer views 94

configuration physical views 96

exception views 99

fast path to failing resource 94

general description 89

locate failing resources 94

more detail logical 98

more detail physical 98

network views 94

object connectivity process 100

object discovery process 89

object discovery process for dynamically built

views 89

object discovery process for predefined 89

refreshing open views 114

restricting recursive views 114

using Display_Resource_Type_Class objects 90

using View_Information_Class objects 91

views 28

GMFHS fields used by the view layout facility 673

gmfhs methods, restricted
DUIFCAAP method 487

DUIFCADT method 487

DUIFCAPC method 487

DUIFCASB method 487

DUIFCATC method 487

DUIFCCAP method 487

DUIFCDTC method 487

DUIFCDUC method 487

DUIFCGR2 method 487

DUIFCGR3 method 487

DUIFCGRA method 487

DUIFCGRT method 487

DUIFCLS2 method 487

DUIFCLS3 method 487

DUIFCLSR method 487

DUIFCMUU method 487

DUIFCRDC method 487

DUIFCRTP method 487

DUIFCRTU method 487

DUIFCRUC method 487

DUIFCSRT method 487

DUIFCURA method 487

DUIFCUTC method 487

DUIFEGSN method 487

DUIFITKN method 487

DUIFRAIP method 487

DUIFRRTC method 487

DUIFVCVT method 487

DUIFVDRT method 487

DUIFVEFC method 487

DUIFVEVF method 488

DUIFVEXV method 488

DUIFVFPV method 488

DUIFVGET method 488

DUIFVIEW method 488

DUIFVLST method 488

DUIFVLTT method 488

DUIFVMDR method 488

DUIFVNGI method 488

Index 691

gmfhs methods, restricted (continued)
DUIFVNGN method 488

DUIFVNOI method 488

DUIFVNOT method 488

DUIFVPFR method 488

DUIFVSUB method 488

DUIFVTKN method 488

DUIFVUNS method 488

DUIFVUPD method 488

DUIFVVLC method 488

GMFHS parameter, AGGRST 494

GMFHS_Aggregate_Objects_Class objects 25

GMFHS_Managed_Real_Objects_Class objects 24

GMFHS_Shadow_Objects_Class objects 24

GMT offset 74, 80

GRAPHICVAR
load function data type 298

null value 260

grouping of method API services 353

H
HAS_FIELD load function primitive 283

HAS_INDEXED_FIELD load function primitive 283

HAS_INSTANCE load function primitive 283

HAS_NO_FIELD load function primitive 284

HAS_NO_INSTANCE load function primitive 284

HAS_NO_SUBFIELD load function primitive 285

HAS_PARENT load function primitive 285

HAS_PRV_FIELD load function primitive 285

HAS_SUBFIELD load function primitive 286

HAS_VALUE load function primitive 286

hex_chars data type 293

hex_literal data type 294

hierarchy resource list subvector, INIT alert 79

high-level load function statements
CREATE 277

definition 10

DELETE 278

description 242

MANAGED OBJECT CLASS 275

SET 279

syntax 274

syntax rules 273

how GMFHS builds views
See GMFHS, view building process

I
identifiers, data type fields 222

identifying installation methods 245

il_parm data type 294

index for searching the library xix

indexed fields 220, 479

Indexed_data_length function parameter 446

Indexed_data_length parameter, EKG_Locate function 403

Indexed_data_ptr function parameter 446

Indexed_data_ptr parameter, EKG_Locate function 403

INDEXLIST load function data type 298

inheritance in methods 350

Inheritance_state function parameter 446

Inheritance_state parameter, EKG_QueryFieldStructure

function 414

INHERITS load function primitive 287

INIT alert
cause undetermined subvector 78

INIT alert (continued)
Date/Time subvector 79

DOMS010 protocol 78

first product set ID subvector 79

generic alert data subvector 78

hierarchy resource list subvector 79

probable cause subvector 78

second product set ID subvector 79

self-defining text message subvector 80

INIT high-level syntax keyword 276

INIT_ACCEPT protocol command 67

INIT_ACCEPT_ACCEPT protocol command 67

INITIAL high-level syntax keyword 276

initialization load
cold start 249

description 246

warm start 249

initialization method
coding 341

definition 6

services available 364

installing methods 356

INTEGER load function data type 298

interfaces 220

INVOKED_WITH load function primitive 287

INVOKER high-level syntax keyword 277

IS_LINKED_TO load function primitive 288

IS_NOT_LINKED_TO load function primitive 288

IsPartOf connectivity relationship 26

L
languages, methods 221

languages, RODM user applications 220

Last_checkpoint_ID function parameter 446

Last_checkpoint_ID parameter, EKG_Connect function 383

layout algorithms 46

layout parameters
defining detailed views 48

defining network and configuration views 46

exception views 46

objects, detailed views 51

library search (Acrobat Search command) xix

library, RODM method 365

link action functions 218

link-editing application programs 303

link-editing RODM programs 360

linkage conventions 265

links between objects 216, 217

LISTLEVEL parameter 269

load function
ATTRLIST high-level syntax keyword 276

authorization level 252

batch job 250

calling load function, module 251

checking output listings 253

class structure definitions 245

coding high-level load function statements 272

coding primitive statements 281

common syntactic elements 290

CREATE high-level statement 277

creating class structure and object definitions 245

data definitions necessary
initialization 265

object load 265

structure load 265

data types 298

692 Resource Object Data Manager and GMFHS Programmer’s Guide

load function (continued)
deciding load type 246

DELETE high-level statement 278

delimiters 273

EKGLLOAD sample job 250

EKGLOADP sample procedure 250

FORCE_HAS_NO_INSTANCE primitive 282

FORCE_NOT_A_CLASS primitive 282

HAS_FIELD primitive 283

HAS_INDEXED_FIELD primitive 283

HAS_INSTANCE primitive 283

HAS_NO_FIELD primitive 284

HAS_NO_INSTANCE primitive 284

HAS_NO_SUBFIELD primitive 285

HAS_PARENT primitive 285

HAS_PRV_FIELD primitive 285

HAS_SUBFIELD primitive 286

HAS_VALUE primitive 286

identifying installation methods 245

INHERITS primitive 287

INIT high-level syntax keyword 276

INITIAL high-level syntax keyword 276

initialization load
cold start 249

description 246

warm start 249

input columns 273

introduction 240

INVOKED_WITH primitive 287

INVOKER high-level syntax keyword 277

IS_LINKED_TO primitive 288

IS_NOT_LINKED_TO primitive 288

link-edit restriction, calling module 251

loading class structure and method names 250

loading data cache 244

loading data models, RODM 244

loading definitions and method names 251

loading modules 251

loading object definitions 250

loading RODM data cache 241

MANAGED OBJECT CLASS high-level statement 275

MODE high-level syntax keyword 279

MODLIST high-level syntax keyword 279

NOT_A_CLASS primitive 289

OBJCLASS high-level syntax keyword 277

object definitions 245

object load 248

OBJINST high-level syntax keyword 277

operations 240

parameters
CODEPAGE 269

LISTLEVEL 269

LOAD 270

NAME 270

OPERATION 271

ROUTECODE 272

SEVERITY 272

parameters, invoking 269

PARENT IS high-level syntax keyword 276

PL/I and C 251

primitive statements 242

primitive statements, definition 10

PRIVATE high-level syntax keyword 276

processing logic 281

PUBLIC high-level syntax keyword 276

PUBLIC_INDEXED high-level syntax keyword 276

reference 258

load function (continued)
SET high-level statement 279

statements 240

structure load 247

SUBFIELD_HAS_VALUE primitive 289

SUBFIELD_INHERITS primitive 290

submitting jobs, invoking load functions 250

syntax rules
high level statements 273

primitive statements 281

syntax, primitive statements 281

using CLASSID data type 259

using OBJECTID data type 259

verify operation 258

LOAD parameter 270

loading class structure and method names 250

loading data models, RODM 244

loading definitions and method names 251

loading modules 251

loading object definitions 250

loading RODM data cache 241

loading the data models, RODM
Using sample CNMSJH12 55

Local_copy_map function parameter 446

Local_copy_map parameter, EKG_QueryFieldStructure

function 414

Local_inherited_flag function parameter 446

locate failing resource views, customizing 95

locate resource function 113

Log_message function parameter 446

Log_message parameter, EKG_OutputToLog function 407

logging
controlling, EKG_LogLevel field 203

controlling, EKG_MLogLevel field 203

logical 31

logical connectivity, defining 40

LogicalConnDownstream connectivity relationship 28

LogicalConnPP connectivity relationship 28

LogicalConnUpstream connectivity relationship 28

Long_lived_parm function parameter 446

Long_lived_parm parameter
EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 375

EKG_DeleteNotifySubscription function 392

EKG_DelObjDelSubs function 396

long-lived parameters 355

LookAt message retrieval tool xviii

M
MACRO preprocessor option, PL/I

applications 303

macros 360

major vector
execute 84

reply, execute command 84

text data parameter 84

MANAGED OBJECT CLASS high-level statement 275

managed objects
defining 36

definition 4

identifying 23

managed real objects, definition 24

management objects
defining 33

definition 4

identifying 22

Index 693

manuals
see publications xv, xix

maximizing RODM performance
customizing parameters and system fields 479

data model structure and size 479

method design 479

user application design 479

using indexed fields 479

message retrieval tool, LookAt xviii

Message_CCSID function parameter 446

Message_CCSID parameter, EKG_OutputToLog function 407

method API
asynchronous error notification 325

call statement format 354

coding installation-written methods 358

compiling programs 359

control block relationships 305

deciding method type 352

description 339

designing, performance 479

function reference 371

general restrictions 362

grouping, API services 353

languages 221

linking programs 360

long-lived parameters 355

method API services 353, 370

method parameters 355

programming language specific preprocessor

statements 359

programming reference 367

query field control block sample 355

query field control block, sample 305

restrictions 360, 361

RODM system (z/OS), illustration 221

services available, initialization methods 364

services available, object-specific methods 364

services available, RODM methods 363, 364

short-lived parameters 356

tasks best performed 339

writing installation-written methods 358

writing RODM methods 339

method name table
bypassing load 261

description 261

Method_name function parameter 447

Method_name parameter
EKG_QueryNotifyQueue function 420

EKG_TriggerOIMethod function 439

Method_output_message function parameter 447

Method_output_message parameter, EKG_SendNotification

function 430

Method_parms function parameter 447

Method_parms parameter
EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_CreateClass function 384

EKG_CreateObject function 387

EKG_DeleteClass function 390

EKG_DeleteObject function 393

EKG_LinkTrigger function 401

EKG_QueryField function 410

EKG_SwapField function 434

EKG_TriggerNamedMethod function 437

EKG_TriggerOIMethod function 439

EKG_UnlinkTrigger function 440

method_spec, common syntactic element 294

method, class 206

METHODNAME
load function data type 298

null value 260

METHODPARAMETERLIST
load function data type 298

null value 260

methods
change method 342

deciding method type 352

definition 6

description 339

DUIFCAAP method 487

DUIFCADT method 487

DUIFCAPC method 487

DUIFCASB method 487

DUIFCATC method 487

DUIFCCAN method 488

DUIFCCAP method 487

DUIFCDTC method 487

DUIFCDUC method 487

DUIFCGR2 method 487

DUIFCGR3 method 487

DUIFCGRA method 487

DUIFCGRT method 487

DUIFCLRT method 488

DUIFCLS2 method 487

DUIFCLS3 method 487

DUIFCLSR method 487

DUIFCMUU method 487

DUIFCRDC method 487

DUIFCRTP method 487

DUIFCRTU method 487

DUIFCRUC method 487

DUIFCSRT method 487

DUIFCUAP method 490

DUIFCURA method 487

DUIFCUTC method 487

DUIFCUUS method 491

DUIFECDS method 493

DUIFEGSN method 487

DUIFFAWS method 494

DUIFFIRS method 495

DUIFFRAS method 496

DUIFFSUS method 496

DUIFITKN method 487

DUIFRAIP method 487

DUIFRFDS method 497

DUIFRRTC method 487

DUIFVCFT method 497

DUIFVCVT method 487

DUIFVDRT method 487

DUIFVEFC method 487

DUIFVEVF method 488

DUIFVEXV method 488

DUIFVFPV method 488

DUIFVGET method 488

DUIFVIEW method 488

DUIFVINS method 498

DUIFVLST method 488

DUIFVLTT method 488

DUIFVMDR method 488

DUIFVNGI method 488

DUIFVNGN method 488

DUIFVNOI method 488

DUIFVNOT method 488

DUIFVPFR method 488

694 Resource Object Data Manager and GMFHS Programmer’s Guide

methods (continued)
DUIFVSUB method 488

DUIFVTKN method 488

DUIFVUNS method 488

DUIFVUPD method 488

DUIFVVLC method 488

EKGCPPI method 484

EKGCTIM method 483, 484

EKGLIILM 249

EKGLISLM 249

EKGMIMV method 484

EKGNEQL notification method 481

EKGNLST notification method 482

EKGNOTF notification method 481

EKGNTHD notification method 482

EKGOPPI method 484

EKGSPPI notification method 484

general restrictions 362

identifying installation methods 245

inheritance 350

initialization method 341

installation-written methods 358

installing and freeing methods 356

long-lived parameters 355

method library 365

method parameters 355

name table 245

named methods 349

NetView-supplied methods 358, 480

not for customer use, list of 487

notification methods 346

null method 352

object-independent methods 340

object-specific methods 342

obtaining storage 357

query methods 344

reason codes 478

restrictions 360, 362

return and reason codes 451

services available, initialization methods 364

services available, object-specific methods 364

services available, RODM methods 363, 364

short-lived parameters 356

types 340

using object-independent methods 352

using object-specific methods 352

writing RODM methods 339

METHODSPEC load function data type 298

MODE high-level syntax keyword 279

MODLIST high-level syntax keyword 279

monitoring alerts 167

monitoring non-network devices 83

more detail view
description 32

types of 32

more detail views
defining

logical 45

physical 45

more detail views, defining layout parameters 48

multiple policies, resources belonging 124

multiple-response presentation protocol 73

MultiSystem Manager
exception views 112

multivalued fields
description 216

example 217

MyClassChildren field 212

MyID field 212

MyName field 212

MyObjectChildren field 212

MyPrimaryParentID field 211

MyPrimaryParentName field 212

N
NAME parameter 270

named method
description 349

parameters 349

procedure interface 350

restrictions 362

Naming_count parameter, entity access information block 310

Naming_count parameter, field access information block 313

navigating using menus 504

NETCENTER
converting status keywords 70

internal status values 70

migrating 85

protocols, migrating 85

NetView for AIX, establishing session
using sample CNMS4406 77

NetView interface, RODM 189

NetView Resource Manager (NRM) 159

NetView-supplied methods
change methods 483

descriptions 358

EKGCTIM method 483, 484

EKGMIMV method 484

EKGNEQL notification method 481

EKGNLST notification method 482

EKGNOTF notification method 481

EKGNTHD notification method 482

EKGSPPI notification method 484

GMFHS methods 487

named methods 484

notification methods 480

object-independent methods 484

reason codes 478

NetView/6000, establishing session
using sample CNMS4406 77

network command manager 83

network configuration
defining to RODM 33

definition 5

network management gateway
defining 34

definition 22

network view
defining 42

description 29

illustration 30, 31

New_char_data_length function parameter 447

New_char_data_length parameter
EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 379

EKG_SwapField function 434

EKG_SwapSubfield function 436

New_data_ptr function parameter 447

New_data_ptr parameter
EKG_ChangeField function 376

EKG_ChangeMultipleFields function 377

EKG_ChangeSubfield function 379

Index 695

New_data_ptr parameter (continued)
EKG_SwapField function 434

EKG_SwapSubfield function 436

NMG
communicating 59

COS 83

defining 34

definition 22

OST 83

PPI 83

types 83

non-network devices, monitoring 83

non-SNA domain
defining 35

definition 23

non-SNA real resources, defining 37

NOT_A_CLASS load function primitive 289

notation
environment variables xxi

path names xxi

typeface xxi

notification block 420

notification method
description 346

example 480

parameters 346

procedure interface 348

restrictions 362

notification process
C coding example 323

clean up 325

definition 9

EKGWAIT 321

notification 324

PL/I coding example 322

setup 319

wait 321

notification queue
creating 320

definition 9

deleting 325

example 480

notification queue class 204

notification subscription, definition 9

Notification_queue function parameter 447

Notification_queue parameter
EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 375

EKG_DelObjDelSubs function 396

EKG_QueryNotifyQueue function 420

EKG_SendNotification function 430

Notification_queue_count function parameter 447

Notification_queue_count parameter, EKG_QueryNotifyQueue

function 420

notify subfield, definition 214

Notify_method function parameter 447

Notify_method parameter
EKG_AddNotifySubscription function 373

EKG_DeleteNotifySubscription function 392

NRM, NetView Resource Manager 159

null method 352

null pointer 302

null values, data type 222

NullMeth 352

Number_of_fields function parameter 447

Number_of_fields parameter, EKG_ChangeMultipleFields

function 377

Number_of_functions function parameter 447

Number_of_Functions parameter, EKG_ExecuteFunctionList

function 399

Number_of_subfields function parameter 447

Number_of_subfields parameter, EKG_QueryMultipleSubfields

function 417

numeric_literal data type 295

O
OBJCLASS high-level syntax keyword 277

object
deletion notification 326

identifiers 210

locking 220

names 208

RODM 208

object correlation
See corsee

object definitions 245

object deletion, notification 326

object linking 216

object load, load function 248

Object_array function parameter 447

Object_array parameter, EKG_LockObjectList function 404

Object_ID function parameter 447

Object_ID parameter
EKG_LockObjectList function 404

EKG_QueryNotifyQueue function 420

EKG_QueryObjectName function 422

EKG_WhereAmI function 443

Object_ID parameter, entity access information block 310

Object_list_length function parameter 447

Object_list_length parameter, EKG_LockObjectList

function 404

Object_name function parameter 447

Object_name parameter, EKG_QueryObjectName

function 422

Object_name_length parameter, entity access information

block 310

Object_name_ptr parameter, entity access information

block 310

object-independent methods
definition 6

description 340

initialization method 341

installing and freeing methods 356

parameters 341

procedure interface 341

restrictions 362

services available, object-independent methods 363, 364

using 352

object-specific methods
change method 342, 350

definition 6

description 340

installing and freeing methods 356

named method 350

named methods 349

notification methods 346

parameters 342

query method 344, 350

services available, object-specific methods 363, 364

types 342

using 352

object, common syntactic element 295

OBJECTID load function data type 298

696 Resource Object Data Manager and GMFHS Programmer’s Guide

objectid_list, common syntactic element 295

OBJECTIDLIST load function data type 298

OBJECTLINK load function data type 298

objectlink_list, common syntactic element 295

OBJECTLINKLIST load function data type 298

OBJECTNAME
load function data type 298

null value 260

objects, collection definition 143, 144

OBJINST high-level syntax keyword 277

offset, GMT 74, 80

Old_char_data_length function parameter 448

Old_char_data_length parameter
EKG_SwapField function 434

EKG_SwapSubfield function 436

Old_data_ptr function parameter 448

Old_data_ptr parameter
EKG_SwapField function 434

EKG_SwapSubfield function 436

online publications
accessing xix

OPERATION parameter 271

operator station task (OST) NMGs 83

ORCNTL command, description 189

ORCONV command, description 189

ordering publications xix

OST NMGs 83

OST transport protocol, definition 82

overflow, response block 315

P
parameter mapping table

modifying 262

sample 263

parameter substitution using DOMP010 protocol 61

parameters
customizing, performance 479

long-lived 355

method 355

short-lived 356

PARENT IS high-level syntax keyword 276

Parent_access_info_ptr function parameter 448

Parent_access_info_ptr parameter, EKG_CreateClass

function 384

parent-child relationships, defining 41

ParentAccess connectivity relationship 27

PASSTHRU presentation protocol, definition 62

PASSTHRU session protocol, definition 76

path names, notation xxi

path, resource owner 27

peer 31, 44

performance 479

physical 31

physical connectivity, defining 40

PhysicalConnDownstream connectivity relationship 28

PhysicalConnPP connectivity relationship 27

PhysicalConnUpstream connectivity relationship 28

PL/I, definition 6

pointer, null 302

policies, resources belonging to multiple 124

policy, resources suspended from aggregation due to 128

policy, system status updates no longer sent to resources due

to 129

postfix notation in conditional statements 146

PPI command transport envelope 84

PPI NMGs 83

PPI transport protocol, definition 82

presentation protocol
defining 60

multiple-response 73

single-response 72

PresentationProtocolName
defining 60

DOMP010 60

DOMP020 61

PASSTHRU 62

typical values 59

prev_val subfield, definition 215

primitive statements
description 242

FORCE_HAS_NO_INSTANCE 282

FORCE_NOT_A_CLASS 282

global character 281

HAS_FIELD 283

HAS_INDEXED_FIELD 283

HAS_INSTANCE 283

HAS_NO_FIELD 284

HAS_NO_INSTANCE 284

HAS_NO_SUBFIELD 285

HAS_PARENT 285

HAS_PRV_FIELD 285

HAS_SUBFIELD 286

HAS_VALUE 286

INHERITS 287

INVOKED_WITH 287

IS_LINKED_TO 288

IS_NOT_LINKED_TO 288

NOT_A_CLASS 289

processing logic 281

SUBFIELD_HAS_VALUE 289

SUBFIELD_INHERITS 290

syntax rules 281

PRIVATE high-level syntax keyword 276

Private_public_flag function parameter 448

probable cause subvector, INIT alert 78

process, loading data cache 244

processing logic, primitive statements 281

program calls, RODM 301

program-to-program interface (PPI) NMGs 83

programming languages
C 6, 9

PL/I 6, 9

protocol
multiple-response 73

single-response 72

protocol command
INIT_ACCEPT 67

INIT_ACCEPT_ACCEPT 67

SESSION_REQUEST 66

SESSION_REQUEST_ACCEPT 67

SET_CLOCK 67

SET_CLOCK_ACCEPT 67

protocol specification, migrating 85

PT keyword, DOMP010 protocol 66

PUBLIC high-level syntax keyword 276

PUBLIC_INDEXED high-level syntax keyword 276

publications xv

accessing online xix

ordering xix

Index 697

Q
query field control block sample, method API 355

query functions 369

query method
description 344

parameters 345

procedure interface 345

query subfield, definition 213

R
RCVRID_CHARVAR data item 485

reason codes
each function 469

functions 471

NetView-supplied methods 478

return code 0 452

return code 12 466

return code 4 452

return code 8 456

RODM 451

Reason_code function parameter 448

Reason_code parameter
EKG_ChangeMultipleFields function 377

EKG_ExecuteFunctionList function 399

EKG_LockObjectList function 404

EKG_QueryMultipleSubfields function 418

Reason_code parameter, transaction information block 308

recipient_spec, common syntactic element 296

RECIPIENTSPEC load function data type 298

register conventions 302

reply, execute command major vector 84

representing policy definitions in RODM 122

Requested_data parameter, EKG_Locate function 403

Requested_info_array parameter, EKG_QueryMultipleSubfields

function 418

Requesting_method_ID function parameter 448

Requesting_method_ID parameter, EKG_WhereAmI

function 443

reserved data types 223

resource owner path 27

resources belonging to multiple policies 124

resources suspended from aggregation due to policy 128

resources, updates no longer sent 129

ResourceTraits field
changing with a user method 112

defining exception criteria 102

response block
definition 8

description 314

overflow 315

response block, error message 315

Response_block_length function parameter 448

Response_block_length parameter
EKG_ExecuteFunctionList function 399

EKG_Locate function 403

EKG_QueryEntityStructure function 408

EKG_QueryField function 410

EKG_QueryFieldID function 411

EKG_QueryFieldName function 413

EKG_QueryFieldStructure function 414

EKG_QueryFunctionBlockContents function 415

EKG_QueryMultipleSubfields function 418

EKG_QueryNotifyQueue function 420

EKG_QueryObjectName function 422

EKG_QueryResponseBlockOverflow function 423

Response_block_length parameter (continued)
EKG_QuerySubfield function 425

EKG_TriggerNamedMethod function 437

EKG_TriggerOIMethod function 439

EKG_WhereAmI function 443

Response_block_reference function parameter 448

Response_block_reference parameter
EKG_ExecuteFunctionList function 399

EKG_QueryMultipleSubfields function 417, 418

Response_block_type function parameter 448

Response_block_type, EKG_QueryNotifyQueue function 420

Response_block_used function parameter 448

Response_block_used parameter
EKG_ExecuteFunctionList function 399

EKG_Locate function 403

EKG_QueryEntityStructure function 408

EKG_QueryField function 410

EKG_QueryFieldID function 411

EKG_QueryFieldName function 413

EKG_QueryFieldStructure function 414

EKG_QueryFunctionBlockContents function 415

EKG_QueryMultipleSubfields function 417, 418

EKG_QueryNotifyQueue function 420

EKG_QueryObjectName function 422

EKG_QueryResponseBlockOverflow function 423

EKG_QuerySubfield function 425

EKG_TriggerNamedMethod function 437

EKG_TriggerOIMethod function 439

EKG_WhereAmI function 443

Response_data function parameter 449

restrictions 402, 441

ESTAE routines in methods 363

ESTAX routines in methods 363

GMFHS methods 487

input columns for load function 273

link-edit, calling load function as module 251

SPIE routines in methods 363

STAE routines in methods 363

using C 361

using change methods 362

using methods 360, 362

using named methods 362

using notification methods 362

using object-independent methods 362

using PL/I 360

return code 0 reason codes 452

return code 12 reason codes 466

return code 4 reason codes 452

return code 8 reason codes 456

return codes, RODM 451

Return_code function parameter 449

Return_code parameter
EKG_ChangeMultipleFields function 377

EKG_ExecuteFunctionList function 399

EKG_QueryMultipleSubfields function 417, 418

Return_code parameter, transaction information block 308

RN keyword, DOMP010 protocol 67

RODM (Resource Object Data Manager)
abstract data types 221, 223

adding NMGs and domains, GMFHS 58

adding, changing, deleting objects, GMFHS 55

asynchronous error notification 325

automation platform 189

automation platform, definition 6

checkpoint process 380

class locking 220

class names 195

698 Resource Object Data Manager and GMFHS Programmer’s Guide

RODM (Resource Object Data Manager) (continued)
class structure definitions 245

classes 195

concepts 195

connecting 327

creating class structure and object definitions 245

creating data models 239

data definition statements 264

designing data models 239

disconnecting 328

error conditions, user API transactions 317

field identifiers 211

field names 210

fields, classes and objects 210

function summary 367

interface, NetView 189

languages, methods 221

languages, RODM user applications 220

load function introduction 240

load function primitive statements, definition 10

loading data cache 241, 244

loading data models 244

loading the data models 55

maximizing performance 479

method API services 370

method library 365

network configuration, defining 33

notification process 318

notification process, definition 9

object definitions 245

object deletion notification 326

object identifiers 210

object locking 220

object names 208

objects 208

program calls 301

reserved data types 223

return and reason codes 451

structure 195

subfields 213

system structure (z/OS), illustration 221

system-defined classes 196

system-defined fields 211

user API services 370

using load functions 239

using user APIs 302

writing RODM application programs 301

writing RODM methods 339

RODM unload function
customizing 539

description 538

running 541

starting 539

RODM_name parameter, access block 306

RODM, representing policy definitions 122

RODMView 503

change field function 528

compound query function 515

create actions function 533

delete actions function 535

link function 525

locate objects function 522

method actions function 536

navigating within RODMView 504

restrictions 505

signing on to 507

simple query function 508

RODMView (continued)
starting 505

subfields actions function 531

unlink function 525

ROUTECODE parameter 272

RP keyword, DOMP010 protocol 68

running RODM load functions 248

S
sample network

illustration 18

loading 55

samples
EKG5VDCL sample variable declarations 223

EKG5WAIT sample PL/I call, EKGWAIT 321

EKG6VDCL sample variable declarations 223

EKG6WAIT sample C call, EKGWAIT 321

EKGLLOAD sample job, load function 250

EKGLOADP sample procedure, load function 250

FLCSEXV 113

FLCSSMT 112

sd_parm, common syntactic element 296

search command, Acrobat (for library search) xix

second product set ID subvector, INIT alert 79

self-defining text message subvector, INIT alert 80

SELFDEFINING
load function data type 298

null value 260

SENDER_CHARVAR data item 486

service point 5, 19

services, method API 353

session
element management system 75

establishing for NetView for AIX 77

establishing for NetView/6000 77

establishing with DOMS010 protocol 76

termination 80

session protocol 75

session termination alert 80

SESSION_REQUEST protocol command 66

SESSION_REQUEST_ACCEPT protocol command 67

SessionProtocolName
defining 75

DOMS010 75

NONE 76

PASSTHRU 76

typical values 59

SET high-level statement 279

SET_CLOCK protocol command 67

SET_CLOCK_ACCEPT protocol command 67

SEVERITY parameter 272

shadow objects 36

definition 24

NMC support for 24

short-lived parameters 356

SHORTNAME
load function data type 298

null value 260

Sign_on_token parameter, access block 306

single-response presentation protocol 72

SMALLINT load function data type 298

SN keyword, DOMP010 protocol 68, 69

SNA domain
defining 33

definition 22

SNA resources, defining 36

Index 699

SNA topology manager
loading the data model, RODM 55

spans
defining dynamically built views to 115

defining predefined views to 115

DisplayResourceName, use with spans 118

examples of defining views to 116

examples of restricting resources in views 119

GMFHS processing 114

MyName field, use with spans 118

RACF 121

resolving problems for views 120

restricting resources in views 118

set and clear operator status 121

UserSpanName, use with spans 118

SPIE routines, method restrictions 363

ST keyword, DOMP010 protocol 69

stack model postfix processing 148

STAE routines, method restrictions 363

statements, complex conditional 147

statements, conditional 145

statements, postfix notation in conditional 146

status groups
description 142

using 142

using to customize DisplayStatus 143

status, NETCENTER internal 70

STEPLIB DD statement 264

Stop_ECB function parameter 449

Stop_ECB parameter, EKG_Connect function 383

Stop_type function parameter 449

Stop_type parameter, EKG_Stop function 433

storage key 360

structure load, load function 247

Subfield function parameter 449

Subfield parameter
EKG_ChangeField function 376

EKG_ChangeSubfield function 378

EKG_QueryNotifyQueue function 420

EKG_QuerySubfield function 425

EKG_RevertToInherited function 428

EKG_SwapSubfield function 436

EKG_WhereAmI function 443

SUBFIELD_HAS_VALUE load function primitive 289

SUBFIELD_INHERITS load function primitive 290

Subfield_map function parameter 449

Subfield_map parameter
EKG_CreateField function 385

EKG_CreateSubfield function 388

EKG_DeleteSubfield function 395

EKG_QueryFieldStructure function 414

subfield, common syntactic element 296

subfields
associated fields 219

change subfield 214

data types 215

notify subfield 214

prev_val subfield 215

query subfield 213

RODM fields 213

time-stamp subfield 215

value subfield 213

submitting jobs, invoking load functions 250

subs_spec_list, common syntactic element 297

subs_spec, common syntactic element 297

SUBSCRIBEID
load function data type 298

SUBSCRIBEID (continued)
null value 260

subscribing 318

Subscription_info function parameter 450

Subscription_info parameter, EKG_DeleteNotifySubscription

function 392

subscription, definition 9

SUBSCRIPTSPEC load function data type 298

SUBSCRIPTSPECLIST load function data type 298

substitution, parameter, using DOMP010 protocol GMFHS

replaces the 61

subvector
cause undetermined 78

Date/Time 79

first product set ID 79

generic alert data 78

hierarchy resource list 79

probable cause 78

second product set ID 79

self-defining text message 80

supporting data correlation 84

supporting data correlation subvector 84

suspending aggregation using an aggregate 128

syntax
common syntactic elements 290

high-level load function statements 274

primitive statements 281

syntax rules
high-level statements 273

primitive statements 281

syntax, collection specification 149

system class 198

system class definitions 196

system data parent class 198

system object class, defined fields 198

system status updates no longer sent to resources due to

policy 129

system-defined classes in RODM 196

system-defined fields, RODM classes and objects 211

T
target, definition 7

TASKINFO_CHARVAR data item 485

TASKNAME_CHARVAR data item 486

tasks best performed with methods 339

text data parameter major vector 84

time-stamp keyword 71

TIMESTAMP load function data type 298

timestamp subfield, definition 215

timing
alerts 74

command responses 75

considerations 74

time stamp 74

Tivoli Software Information Center xix

Tivoli technical training xx

TM keyword, DOMP010 protocol 71

token-ring network layout 21

tracing
controlling, EKG_MTraceFlag field 208

controlling, EKG_MTraceType field 204

training, Tivoli technical xx

transaction
definition 7

handling error conditions 317

700 Resource Object Data Manager and GMFHS Programmer’s Guide

transaction information block
API_version parameter 307

definition 8

description 307

Reason_code parameter 308

Return_code parameter 308

Transaction_ID parameter 308

Transaction_ID parameter, transaction information block 308

TRANSID load function data type 298

TRANSPARENT_CHECKPOINT keyword 382

transport protocol, defining 81

TransportProtocolName
COS 81

defining 81

OST 82

PPI 82

typical values 59

trigger, definition 6

TX keyword, DOMP010 protocol 71

type, common syntactic element 297

typed_value, common syntactic element 298

typeface conventions xxi

types, values and data 153

U
UNALIGNED attribute 221, 228

UNALIGNED BASED(*) 372

UniversalClass 197

unlink action functions 218

updates no longer sent to resources 129

user API
asynchronous error notification 325

calls, RODM 301

compiling programs 303

control block relationships 305

designing, performance 479

EKGUAPI module 302

error conditions, API transactions 317

function reference 371

link-editing programs 303

parameters, API calls 304

programming reference 367

query field control block, sample 305

register conventions 302

user API calls, RODM 304

user API services 370

using 302

using control blocks 304

writing RODM application programs 301

user application, definition 6

user class 201

user data, notification queue 480

User_appl_ID function parameter 450

User_appl_ID parameter
EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 375

EKG_DelObjDelSubs function 396

EKG_QueryNotifyQueue function 420

EKG_SendNotification function 430

User_appl_ID parameter, access block 306

User_area function parameter 450

User_area parameter, EKG_QueryNotifyQueue function 420

User_password function parameter 450

User_password parameter, EKG_Connect function 383

User_word function parameter 450

User_word parameter
EKG_AddNotifySubscription function 373

EKG_AddObjDelSubs function 375

EKG_DelObjDelSubs function 396

EKG_QueryNotifyQueue function 420

EKG_SendNotification function 430

UserStatus field
defining exception criteria 101

ExceptionViewFilter field 103

using collection specification 145

using control blocks 304

using data fields 222

using GMFHS methods 183

using NetView Resource Manger (NRM) 159

using OBJECTID data type 259

using RODM load functions 239

using RODM methods 339

using the collection definition objects 143

V
valid characters 195

class name 195

field name 210

ojbect name 208

value subfield, definition 213

Value_for_reason_code function parameter 451

Value_for_reason_code parameter, EKG_SetReturnCode

function 431

Value_for_return_code function parameter 451

Value_for_return_code parameter, EKG_SetReturnCode

function 431

values and data types 153

values, collection specification 150

variables, notation for xxi

vector
execute 84

reply, execute command 84

supporting data correlation 84

text data parameter 84

verify operation 258

view layout facility 667

list of GMFHS fields used by 673

view objects, definition 5

View_Information_Object_Class object 92, 93

views
defining 41

configuration backbone view 43

configuration logical view 43

configuration peer view 43

configuration physical view 43

exception 41

more detail logical view 45

more detail physical view 45

network 42

peer 44

identifying 28

layout 667

layout definition
bus network layout 676

connectivity tree layout 678

elliptical layout 677

grid layout 678

hierarchical graph layout 676

local area network layout 675

radial layout view by cluster ID 674

radial layout view by link type 673

Index 701

views (continued)
layout definition (continued)

token-ring network layout 675

layout type
examples of 667

layout types
choosing, advantages and disadvantages 672

description 673

span
See spans

views, applying policy 122

views, build process
See GMFHS, view building process

W
warm start, definition 5

WhatIAm field 212

workstations 21

writing installation-written methods 358

writing RODM methods
compiling programs 359

linking programs 360

Z
z/OS linkage conventions 265

702 Resource Object Data Manager and GMFHS Programmer’s Guide

����

File Number: S370/4300/30XX-50

Program Number: 5697-ENV

Printed in USA

SC31-8865-02

	Contents
	Figures
	About this publication
	Intended audience
	Publications
	IBM Tivoli NetView for z/OS library
	Prerequisite publications
	Related publications
	Accessing terminology online
	Using LookAt to look up message explanations
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Downloads
	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths
	Syntax Diagrams
	Position and Appearance of Syntax Elements
	Required Syntax Elements
	Optional Syntax Elements
	Default Keywords and Values
	Syntax Fragments
	Commas and Parentheses
	Abbreviations

	Part 1. Learning About RODM
	Chapter 1. Overview
	Managing SNA Resources with NetView
	Defining Non-SNA Resources to NetView
	Resource Definition Task
	Resources Supported by GMFHS
	Saving RODM Data

	RODM in Network Automation
	Automation Concepts
	Automation Example
	For More Information

	RODM Programming Tasks
	RODM Transactions
	RODM Functions
	Programming Languages
	RODM Notification Process
	RODM Load Function

	Additional RODM Documentation
	Tools for RODM
	RODM Samples and Macros

	Part 2. Defining Resources to NetView
	Chapter 2. Defining Your Network to GMFHS
	Manual Network Definition Overview
	Sample Network
	SNA Components of the Sample Network
	Non-SNA Components of the Sample Network
	Service Points
	DEC Network
	Ethernet Network
	Token-Ring Local Area Network
	NV6000 Network

	Identifying Which Network Elements to Define
	Identifying Management Objects
	SNA Domains
	Network Management Gateways
	Non-SNA Domains

	Identifying Managed Objects
	GMFHS_Shadow_Objects_Class Objects
	GMFHS_Managed_Real_Objects_Class Objects
	GMFHS_Aggregate_Objects_Class Objects

	Identifying Connectivity Relationships
	ComposedOfLogical and IsPartOf
	ComposedOfPhysical and IsPartOf
	AggregationParent and AggregationChild
	ParentAccess and ChildAccess
	PhysicalConnPP
	LogicalConnPP
	PhysicalConnUpstream and PhysicalConnDownstream
	LogicalConnUpstream and LogicalConnDownstream
	BackboneConnPP

	Identifying Views
	Exception Views
	Network Views
	Configuration Views
	More Detail Views

	Defining Your Configuration to RODM
	Defining Management Objects
	Defining SNA Domains
	Defining Network Management Gateways
	Defining Non-SNA Domains

	Defining Managed Objects
	Defining SNA Resources
	Defining Non-SNA Real Resources
	Defining GMFHS Aggregate Objects

	Defining Connectivity Relationships Between Objects
	Defining Logical Connectivity
	Defining Physical Connectivity
	Defining Parent-Child Relationships

	Defining Views
	Defining Exception Views
	Defining Network Views
	Defining Configuration Views
	Defining More Detail Views

	Defining Layout Parameters
	Defining Layout Parameters for Exception Views
	Defining Layout Parameters for Network, Configuration, and More Detail Views
	Defining Layout Parameters for Dynamically Built More Detail Views

	Putting It All Together

	Chapter 3. Loading the GMFHS Data Model
	Loading the Data Models and Network Definitions
	Changing Network Definitions When GMFHS Is Running
	Selecting the Required GMFHS CONFIG Command
	Non_SNA_Domain_Class Changes
	SNA_Domain_Class Changes
	NMG_Class Changes
	GMFHS_Managed_Real_Objects_Class Changes

	Adding NMGs and Domains When GMFHS Is Active

	Chapter 4. Communicating with Network Management Gateways
	Defining Non-SNA Presentation Protocol
	DOMP010 Presentation Protocol
	DOMP020 Presentation Protocol
	PASSTHRU Presentation Protocol
	NONE Presentation Protocol
	Output Formatting For All Presentation Protocols
	DOMP020 and PASSTRU Output Formatting
	DOMP010 Output Formatting

	DOMP010 Formatting Rules
	General Packet Format
	Keyword and Value Definitions
	Command Execution—CE
	Command—CM
	Component ID—CP
	Domain—DM
	Protocol—PT
	Reason—RN
	Response—RP
	Command Sender ID—SN
	Message Sequence Number—SQ
	Status—ST
	Time Stamp—TM
	Text—TX

	Command Formatting and Protocol Examples
	Single-Response Protocol
	Multiple-Response Protocol

	Timing Considerations
	Alerts
	Command Responses

	Defining Non-SNA Session Protocols
	DOMS010
	PASSTHRU
	NONE
	Session Establishment for DOMS010
	Session Establishment for NetView/6000 V2, NetView for AIX V3, NetView for AIX V4, and DOMS010
	GMFHS-Initiated Session Establishment
	INIT Generic Alert for Session Establishment
	Session Termination

	Defining Non-SNA Transport Protocols
	COS Gateway Support
	Program-to-Program Interface Gateway
	OST/PPT Gateway
	Monitoring Non-Network Devices
	Types of NMGs
	Common Operations Services NMGs
	Operator Station Task NMGs
	Program-to-Program Interface NMGs
	PPI Command Transport Envelope

	Migrating from NETCENTER Protocols to GMFHS Protocols

	Chapter 5. How GMFHS Uses RODM
	GMFHS Initialization
	Aggregation Warm Start
	Resource Status Warm Start
	GMFHS Initialization Process Overview
	Setup Subprocess
	Session Establishment Subprocess

	Monitoring Topology Managers
	Building Views
	Object Discovery Process
	Predefined Views
	Dynamically Built Views
	Object Discovery Process Description for Specific Views

	Object Connectivity Process
	Defining Exception View Objects and Criteria
	Defining Exception Criteria
	Defining Candidates for Exception Views
	Defining the ExceptionViewFilter Field
	Customizing the DisplayStatus Mapping Table for Exception Views
	Default Values for Classes
	Specifying Resource Names for DisplayStatus Mapping
	Examples of Customizing DisplayStatus Mapping
	Creating a DisplayStatus Method for Exception Views
	Implementing Exception View Processing for MultiSystem Manager

	Locate Resource Function
	Restricting Recursive Views
	Refreshing Open Views

	Applying Span-of-Control to Views
	Views
	Defining Predefined Views to Spans
	Defining Dynamically Built Views to Spans
	Examples of Defining Views to Spans

	Resources
	Examples of Restricting Resources Within Views Using Spans

	Helpful Hints
	No Views in the View List Are in the Operator's Span-of-Control
	No Resource in the View Is in the Operator's Span-of-Control
	Selected Object Is Not in the Operator's Span-of-Control
	Changing the NGMFVSPN Attribute
	RACF Is Used for RODM Security

	Applying Span-of-Control to Set and Clear Operator Status
	Applying Policy to Views
	Representing Policy Definitions in RODM
	Resources Belonging to Multiple Policies
	Resources Suspended from Aggregation Due to Policy
	Suspending Aggregation Using an Aggregate
	System Status Updates No Longer Sent to Resources Due to Policy
	Additional Information

	Aggregation Concepts
	Aggregation Overview
	Creating an Aggregation Hierarchy
	Building the Aggregation Hierarchy in RODM
	Updating Status
	How Status Affects Aggregation
	Using the DisplayStatus of Real Objects
	Calculating the Aggregate Parent Status
	Aggregation Problems
	UserStatus Field
	Events That Start the Aggregation Process
	Aggregation Methods

	Status Groups
	Using Status Groups
	Examples of Customizing Aggregate DisplayStatus

	Using the Collection Definition Objects
	Collection Definition Objects
	Collection Definition Object Fields

	Using Collection Specifications
	Conditional Statements
	Postfix Notation in Conditional Statements
	Complex Conditional Statements
	Stack Model Postfix Processing
	Collection Specification Syntax
	Collection Specification Values
	Values and Data Types

	Examples of Collection Definition Objects

	Using NetView Resource Manager
	NetView Resource Manager Views
	NetView Resource Manager Object Information
	NMC Command support for NetView Resource Manager

	Modifying DUIFSMT for NetView Resource Manager
	Using DUIFVINS with NetView Resource Manager
	NetView Resource Manager Sample Loader Files
	Customizing Sample Loader Files

	Chapter 6. Customizing GMFHS to Process and Receive Alerts and Resolutions
	Receiving and Monitoring Alerts or Resolutions
	What GMFHS Receives from the Hardware Monitor
	Objects in RODM Representing SNA Resources
	Objects in RODM Representing NMGs
	Objects in RODM Representing Non-SNA Domains
	First Method
	Second Method

	Objects in RODM Representing Non-SNA Resources
	Single Non-SNA Resource
	Multiple Non-SNA Resources

	DUIFEDEF Alert Processing
	Parameters
	Pointer to a reentrant work area
	Pointer to a second reentrant work area
	Value of the EMDomain field
	Value of the DomainCharacteristics field
	Pointer to an array of structures
	Pointer to hardware monitor resource hierarchy
	Pointer to the length of the hardware monitor resource hierarchy
	Register 15 Conventions
	Default DUIFEDEF Actions

	Alert Translation Tables

	Part 3. Using RODM for Network Automation
	Chapter 7. Writing Automation Code
	Advantages of Using the NetView-Supplied Data Models for Automation
	Notifying Your Application about Changes in GMFHS Fields
	Accessing and Changing GMFHS-Defined Fields
	Using GMFHS Methods
	DUIFCCAN: Clear All Notes
	DUIFCATC: Aggregation Threshold Change
	DUIFCLRT: Link Resource Type
	DUIFCUAP: Update Aggregation Path
	DUIFCUUS: Update User Status
	DUIFECDS: Change Display Status
	DUIFFAWS: Aggregation Warm Start
	DUIFFIRS: Set Initial Resource Status
	DUIFFRAS: Recalculate Aggregate Status
	DUIFFSUS: Set Unknown Status
	DUIFRFDS: Refresh DisplayStatus Change Method DUIFCRDC
	DUIFVCFT: Change Exception State
	DUIFVINS: Install View Notification Granularity Method
	GMFHS Methods That Cannot Be Used

	GMFHS Automation Example
	Sample Automation Application and Method

	Chapter 8. Using the RODM Automation Platform
	RODM Automation Platform Services
	Sample Automation Code

	Part 4. Application Programming Using RODM
	Chapter 9. Understanding RODM Concepts
	RODM Classes
	Class Names
	Class Name Characteristics with CHARACTER_VALIDATION(YES)
	Class Name Characteristics with CHARACTER_VALIDATION(NO)

	System-Defined Classes
	UniversalClass
	EKG_SystemDataParent Class
	EKG_System Class
	EKG_User Class
	EKG_NotificationQueue Class
	EKG_Method Class

	RODM Objects
	Object Names
	Object Name Characteristics with CHARACTER_VALIDATION(YES)
	Object Name Characteristics with CHARACTER_VALIDATION(NO)

	Object Identifiers

	RODM Fields
	Field Names
	Field Name Characteristics with CHARACTER_VALIDATION(YES)
	Field Name Characteristics with CHARACTER_VALIDATION(NO)

	Field Identifiers
	System-Defined Fields

	RODM Subfields
	Data Types for Subfields

	Multivalued Fields and Links between Objects
	Link and Unlink Action Functions
	Subfields Associated with Fields

	Indexed Fields
	Object and Class Locking in RODM
	Using the Application Program Interfaces
	User Application Program Interface (API)
	Method Application Program Interface (API)

	RODM Abstract Data Types
	Null Values of Data Type
	Data Type Identifiers
	Types of Data in Fields
	Abstract Data Type Reference
	Anonymous(N) (Reserved)
	AnonymousVar
	ApplicationID (Reserved)
	BERVar
	CharVar
	CharVarAddr (Reserved)
	ClassID (Reserved)
	ClassIDList (Reserved)
	ClassLinkList (Reserved)
	ECBAddress (Reserved)
	FieldID
	Floating
	GraphicVar
	Integer
	IndexList
	MethodName (Reserved)
	method_parameter_list (Reserved)
	MethodSpec
	ObjectID (Reserved)
	ObjectIDList (Reserved)
	ObjectLink
	ObjectLinkList
	ObjectName (Reserved)
	RecipientSpec (Reserved)
	SelfDefining
	ShortName (Reserved)
	Smallint
	SubscribeID (Reserved)
	SubscriptSpec (Reserved)
	SubscriptSpecList (Reserved)
	TimeStamp
	TransID (Reserved)

	Chapter 10. Using the RODM Load Function
	Considerations When Designing a Data Model
	Introduction to the RODM Load Function
	Load Function Statements
	Load Function Operations
	Loading the RODM Data Cache

	Using Load Function Statements
	High-Level Load Function Statements
	Load Function Primitive Statements
	When to Use High-Level or Primitive Load Function Statements

	Process for Loading the RODM Data Cache
	Identifying the Methods to Install
	Creating the Class Structure and Object Definitions
	Data Definition Statement Labels
	Concatenation of Data Sets
	Definition Examples

	Deciding on the Type of Load
	Initialization Load
	Structure Load Only
	Object Load Only

	Running the RODM Load Function
	The Load Function as an Initialization Method
	Invoking the Load Function As a Batch Job
	Calling the Load Function from a Module
	Considerations When Running the RODM Load Function

	Checking the Output Listings
	RODM Load Function Output Listing
	RODM Load Function Output Format

	Load Function Reference
	Understanding the Verify Operation
	Using CLASSID and OBJECTID Data Types
	CLASSID
	OBJECTID

	Null Values for RODM Load Function Data Types
	Control Table—EKGCTABL
	Relationships to Other Tables and DD Names

	Method Name Table
	Associated DD Statements and Control Table

	Parameter Mapping Table
	RODM Data Definition (DD) Statements
	Data Definitions Necessary for Initialization
	Data Definitions Necessary for Structure Load Only
	Data Definitions Necessary for Object Load Only

	z/OS Linkage Conventions
	Parameter Structure
	DD List Structure
	Access Block
	Calling the RODM Load Function

	RODM Load Function Parameter Syntax
	CODEPAGE
	LISTLEVEL
	LOAD
	NAME
	OPERATION
	ROUTECODE
	SEVERITY

	Coding RODM High-Level Load Function Statements
	Syntax Rules for High-Level Load Function Statements
	Syntax for High-Level Load Function Statements

	Coding RODM Load Function Primitive Statements
	Global Character
	Syntax Rules for Load Function Primitives
	Syntax and Processing Logic for Load Function Primitives

	Common Syntactic Elements
	Syntax for Common Syntactic Elements

	Chapter 11. Writing Applications that Use RODM
	Tasks Best Performed with User Applications
	Using the User Application Program Interface
	Register Conventions
	Usage Notes
	Compiling and Link-Editing
	Compiling C Modules that Call EKGUAPI
	Compiling PL/I Modules that Call EKGUAPI
	Linking Modules that Call EKGUAPI Directly
	Linking Modules that Load and then Call EKGUAPI

	Using Control Blocks
	Access Block
	Transaction Information Block
	Function Block
	Entity Access Information Block
	Field Access Information Block
	Response Block

	Error Conditions in Transactions
	RODM Notification Process
	Setup
	Wait
	Calling EKGWAIT
	PL/I Coding Example
	C Coding Example
	EKGWAIT Usage Notes

	Notification
	Clean Up

	Asynchronous Error Notification
	Object Deletion Notification
	Setup for Object-Deletion Notification
	Wait for Object-Deletion Notification
	Notification for Object-Deletion Notification
	Cleanup for Object-Deletion Notification

	Connecting to RODM
	Disconnecting from RODM

	Chapter 12. Topology Object Correlation
	Enabling the Correlation Function
	Enabling MultiSystem Manager Object Correlation
	Enabling SNA Topology Manager Object Correlation
	Enabling GMFHS Object Correlation

	Correlation Concepts
	Correlation Methods
	Method FLCMCONI
	Method FLCMCON
	Method FLCMCOR

	Objects Enabled for Correlation
	Types of Correlation
	Network Address Correlation
	Free-Form Correlation

	Correlated Aggregate Object Classes and Names
	Correlated Object Relationships
	Correlated Aggregate Object Display Labels
	Correlated Aggregate Object Field Values

	Using Correlation for Objects You Create
	Extending Correlation of Objects Created by MultiSystem Manager and SNA Topology Manager
	How to Determine Object Names
	Correlating MultiSystem Manager Objects
	Correlating SNA Topology Manager Objects

	Customizing the Correlation Function
	Changing the Display Name Priority
	Disabling Correlation for Specific Resources

	Chapter 13. Writing RODM Methods
	Tasks Best Performed with Methods
	Types of Methods
	Object-Independent Methods
	Initialization Method

	Object-Specific Methods
	Change Methods
	Query Methods
	Notify Methods
	Named Methods
	Inheritance in Object-Specific Methods

	Null Method

	Deciding Which Method Type to Use
	When to Use an Object-Independent Method
	When to Use an Object-Specific Method
	Query Method
	Change Method
	Notify Method
	Named Method

	Using the Method API
	Register Conventions
	Usage Notes
	Method Parameters
	Long-Lived Parameters
	Short-Lived Parameters

	Installing and Freeing Methods
	Synchronous and Asynchronous Execution of Functions

	Method Anchor Service
	Coding Your RODM Method
	Installation Written Methods
	NetView-Supplied Methods
	Programming Language Specific Preprocessor Statements
	Compiling IBM C Methods
	Compiling IBM PL/I Methods
	Linking Methods that Call EKGMAPI Directly

	Restrictions on Methods
	PL/I Language Restrictions
	C Language Restrictions
	Restrictions in General

	RODM Method Services
	Services Available to both Object-Specific and Object-Independent Methods
	Other Services Available to Object-Independent Methods
	Other Services Available to Object-Specific Methods
	Services Available to the Initialization Method
	RODM Method Library

	Chapter 14. Application Programming Reference
	Summarizing RODM Functions
	Access Functions
	Control Functions
	Administrative Functions
	Action Functions
	Query Functions
	RODM User API Services
	RODM Method API Services

	Function Reference
	Function Reference Format
	Purpose
	Function block format
	Examples
	Summary
	Usage Notes

	EKG_AddNotifySubscription — Add Notification Subscription
	EKG_AddObjDelSubs — Add Object Deletion Subscription
	EKG_ChangeField — Change a Field
	EKG_ChangeMultipleFields — Change Multiple Fields
	EKG_ChangeSubfield — Change a Subfield
	EKG_Checkpoint — Checkpoint RODM to DASD
	EKG_Connect — Connect to RODM
	EKG_CreateClass — Create a Class
	EKG_CreateField — Create a Field
	EKG_CreateObject — Create an Object
	EKG_CreateSubfield — Create a Subfield
	EKG_DeleteClass — Delete a Class
	EKG_DeleteField — Delete a Field
	EKG_DeleteNotifySubscription — Delete Notification Subscription
	EKG_DeleteObject — Delete an Object
	EKG_DeleteSubfield — Delete a Subfield
	EKG_DelObjDelSubs — Delete Object Deletion Subscription
	EKG_Disconnect — Disconnect from RODM
	EKG_ExecuteFunctionList — Execute a List of Functions
	EKG_LinkNoTrigger, EKG_LinkTrigger — Link Two Objects
	EKG_Locate—Locate Objects Using Public Indexed Field
	EKG_LockObjectList — Lock List of Objects
	EKG_MessageTriggeredAction — Trigger an Action by a Message
	EKG_OutputToLog — Output to Log
	EKG_QueryEntityStructure — Query Structure of an Entity
	EKG_QueryField — Query a Field
	EKG_QueryFieldID — Query Field Identifier
	EKG_QueryFieldName — Query a Field Name
	EKG_QueryFieldStructure — Query Structure of a Field
	EKG_QueryFunctionBlockContents — Query Function Block Contents
	EKG_QueryMultipleSubfields — Query Multiple Value Subfields
	EKG_QueryNotifyQueue — Query Notification Queue
	EKG_QueryObjectName — Query Object Name
	EKG_QueryResponseBlockOverflow — Query for Response Block Overflow
	EKG_QuerySubfield — Query a Subfield
	EKG_ResponseBlock — Output to Response Block
	EKG_RevertToInherited — Revert to Inherited Value
	EKG_SendNotification — Send a Notification
	EKG_SetReturnCode — Set Return and Reason Codes
	EKG_Stop — Stop RODM
	EKG_SwapField — Swap a Field
	EKG_SwapSubfield — Swap a Subfield
	EKG_TriggerNamedMethod — Trigger a Named Method
	EKG_TriggerOIMethod — Trigger an Object-Independent Method
	EKG_UnlinkNoTrigger, EKG_UnlinkTrigger — Unlink Two Objects
	EKG_UnlockAll — Unlock All Held Entities
	EKG_WhereAmI — Where Am I

	Function Parameter Descriptions
	RODM Return and Reason Codes
	Reason Codes for Return Code 0
	Reason Codes for Return Code 4
	Reason Codes for Return Code 8
	Reason Codes for Return Code 12
	List of Reason Codes for Each Function
	List of Functions for Each Reason Code
	List of Function Names by Function ID
	List of Reason Codes from NetView-Supplied Methods

	Maximizing RODM Performance
	Data Model Structure and Size
	Method Design
	User Application Design
	Customization Parameters and System Fields
	Indexed Fields

	NetView-Supplied Methods
	RODM Notification Methods
	EKGNOTF: General Notification
	EKGNEQL: Notify If Equal
	EKGNLST: Notify if Equal to List
	EKGNTHD: Notify If Outside Threshold

	RODM Change Methods
	EKGCTIM: Trigger Object-Independent Method

	RODM Named Methods
	EKGMIMV: Increment Value
	EKGCTIM: Trigger Object-Independent Method

	RODM Object-Independent Methods
	EKGSPPI: Send a command to NetView

	GMFHS Methods
	DUIFCCAN: Clear All Notes
	DUIFCLRT: Link Resource Type Method
	DUIFCUAP: Update Aggregation Path Method
	DUIFCUUS: Update User Status Method
	DUIFECDS: Change Display Status Method
	DUIFFAWS: Aggregation Warm Start Method
	DUIFFIRS: Set Initial Resource Status Method
	DUIFFRAS: Recalculate Aggregate Status Method
	DUIFFSUS: Set Unknown Status Method
	DUIFRFDS: Refresh DisplayStatus Change Method DUIFCRDC
	DUIFVCFT: Change Exception State
	DUIFVINS: Install View Granularity Method (DUIFVNOT)

	Part 5. Appendixes
	Appendix A. RODM Tools
	RODMView
	Navigating Within RODMView
	Navigating Using Menus

	RODMView Restrictions
	Starting RODMView
	Access and Control Function
	Simple Query Function
	Querying RODM Using SystemView Class and Field Names
	Querying RODM Using Pattern-Matching Characters

	Compound Query Function
	Compound Query Example 1
	Compound Query Example 2

	Locate Objects Function
	Link/Unlink Function
	Linking with GMFHS Methods DUIFCLRT and DUIFCUAP

	Change Field Function
	Changing IndexList Fields

	Subfield Actions Function
	Create Actions Function
	Delete Actions Function
	Method Actions Function

	RODM Unload Function
	Starting the RODM Unload Function
	Customizing the RODM Unload Function
	Running the RODM Unload Function

	FLCARODM
	Overview
	Stem Building Subroutines
	AddAttr Subroutine
	AddAttrForQuery Subroutine
	AddLink Subroutine
	AddLinkForDelete Subroutine
	CheckChildrenUpdate Subroutine
	CheckDelinkResponse Subroutine
	InitRODMConstants Subroutine
	InitRODMStem Subroutine
	MakeRODMCall Subroutine
	SetIndexList Subroutine
	StartObject Subroutine

	About the Examples
	Using the Samples

	FLCARODM Command
	FLCARODM

	FLCARODM Functions
	BUILD Function
	UPDATE Function
	QUERY Function
	DELOBJ Function
	DELINKA Function
	DELINKAB Function
	PURGE Function
	LOCATE Function
	QUERYALL Function
	QUERYSTR Function
	QUERYSF Function
	REBUILD Function

	Putting It All Together
	Building Objects
	Updating Objects
	Querying Objects
	Delinking Objects
	Deleting Objects
	Working with IndexList Fields

	Result Stem
	Result Stems for Operations That Complete Successfully
	MultiSystem Manager Operations

	Return Codes
	Object Data Stream Detail
	Data Stream Explanation
	Data Stem Detail

	BLDVIEWS
	Before You Begin
	BLDVIEWS Processing
	Views
	Aggregate Objects

	BLDVIEWS Control Statements
	Control Statement Syntax
	Common Control statement Parameters
	Defining Wildcard Characters
	Selective Control Statements
	View Control Statements
	Resource Control Statements
	Aggregation Control Statements

	Running BLDVIEWS
	Coding Control Statements in a NetView DSIPARM Member
	Coding Control Statements in a fully Qualified Data set
	Coding Control Statements in REXX Stem Arrays

	BLDVIEWS Control Statement Examples
	BLDVIEWS Example 1:
	BLDVIEWS Example 2:
	BLDVIEWS Example 3:
	BLDVIEWS Example 4:
	BLDVIEWS Example 5:
	BLDVIEWS Example 6:
	BLDVIEWS Example 7:
	BLDVIEWS Example 8:
	BLDVIEWS Example 9:
	BLDVIEWS Example 10:
	BLDVIEWS Example 11:

	Deleting Views
	DELVIEWS Syntax
	Examples of Deleting Views

	Appendix B. View Layout Facility
	View Layout Examples
	Choosing a View Layout Type
	GMFHS Fields Used By the View Layout Facility
	Layout Type Descriptions
	Radial Layout View by Link Type
	Field Descriptions

	Radial Layout View by Cluster ID
	Field Descriptions

	Local Area Network Layout View
	Field Descriptions

	Token-Ring Network Layout View Interface
	Field Descriptions

	Bus Network Layout View Interface
	Field Descriptions

	Hierarchical Graph Layout View
	Field Descriptions

	Elliptical Layout View
	Field Descriptions

	Connectivity Tree Layout View
	Field Descriptions

	Grid Layout
	Field Descriptions

	Grid Layout Notes

	Notices
	Trademarks

	Index

